Field observations1 and modelling2 of tall building wakes

1Janet Barlow
2Omduth Coceal

Sue Grimmond, Will Morrison, Matthew Paskin, Matt Clements
(University of Reading)

Matthias Zeeman, Fred Meier, Daniel Fenner, Andreas Christen
(urbisphere project)
Doppler lidars – ideal for measuring urban winds

Doppler effect: frequency shift proportional to velocity

- Wind, turbulence, particulate pollution at ranges typically out to a few km’s
- Eye-safe (1.5 μm, pulsed)
- Gate length 18 m
- Integration time: 2 s (20k pulses)

E.g.
Barlow et al. 2011 ACP turbulence profiles
Drew et al. 2013 JWEIA wind profiles over London

HALO Photonics Streamline

London, September 18 2019
Horizontal scanning

- Plan Position Indicator (PPI) horizontal scan
- “slice” through building wakes

Scan around tall buildings in central London, Sensor at: London Southbank University site (MAGIC project)

Building wakes analysis paper
Natalie Theeuwes et al., in prep.
FUTURE Project: Collaboration with urbisphere - Berlin field campaign

Berlin field campaign 2021-22

- **Aim:** Impact of city on urban-and regional-scale boundary layer

- **Observations:**
 - boundary layer depth/winds
 - surface heat flux
 - microclimate, radiation aerosol, clouds
 - digital surface model
 - satellite data

- **Methods:**
 - micro/mesoscale modelling
 - socio-economic analysis

http://urbisphere.eu/index.html
FUTURE Project: Berlin **dual** lidar wake observations

- **TUCC site, TU-Berlin lidar**
- **Tall building clusters**
- **SCHO site Reading lidar**

Deployed: (28/06/22 – 19/09/22)
- PPI horizontal scan – every 5 mins

Other scans:
- boundary layer depth:
 - *time variation*
 - *spatial variation*
- aerosol layering
- wind profile
- turbulence profile
View from SCHO site, looking WNW

SCHO site:
- Sensor height: 87 - 92 m above sea level
- Building cluster extent approx. 280° → 295°
View from TUCC site, looking SE

TUCC site:
- Sensor height: 80 - 82 m above sea level
- Building cluster extent approx. 140° → 160°
Horizontal PPI scans from SCHO

NW wind direction

range m

azimuth ° from N

radial velocity ms⁻¹
Horizontal PPI scans from SCHO

NW wind direction

velocity deficit in wakes

azimuth ° from N
Next steps

- Welcome Matt Clements! PDRA@ Reading!

- Data analysis:
 QAQC: 68 days data from both lidars (19.5k PPI scans!)
 Analysis of wind direction, weather conditions
 Co-locating buildings and velocities

- Ensemble wake analysis:
 Ex: comparing velocity deficit in neutral conditions with ADMS model wake
 (Theeuwes et al., in prep)
Using Doppler lidars to measure turbine wakes

DWLs in use since 2010
Example: CWEX-13 campaign, Bodini et al. (2017) AMT