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Abstract

Exponential regressions are frequently used when outcomes are non-negative.

They are attractive because they are easy to interpret and to estimate, using pseudo

maximum likelihood (PML). However, the validity of these methods depends on the

correct speci�cation of the conditional expectation, and little is known regarding

their properties when the conditional expectation is misspeci�ed. We show that

PML estimators of misspeci�ed exponential models provide optimal approximations

to the conditional expectation, in a weighted mean squared error sense, and we give

conditions under which their Poisson PML estimator identi�es average marginal

e¤ects.
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INTRODUCTION

The pseudo maximum likelihood (PML) estimators introduced by Gourieroux, Monfort

and Trognon (1984) owe their popularity to the fact that, even if other distributional as-

sumptions are violated, they remain consistent as long as the models correctly specify the

conditional expectation function. However, in practice, it is likely that models will su¤er

from some degree of misspeci�cation, and relatively little is known about the properties

of PML estimators when the conditional expectation is misspeci�ed.

We consider PML estimators for working models that assume that the conditional mean

is equal to the exponential of a linear combination of regressors. We call them linear index

function exponential models, or LIFE models in short. If correctly speci�ed, the slope

parameters estimate the elasticities or semi-elasticities of the mean outcome with respect

to the regressor. Under misspeci�cation, this is no longer the case, and we are interested

in the interpretation of these estimators when the assumed conditional expectation is

incorrect.

We show that PML estimators for misspeci�ed exponential regressions provide best

LIFE predictors in a minimum weighted mean squared error (MSE) sense. Furthermore,

asymptotically, they provide optimal LIFE approximations to the conditional expecta-

tion, also in a minimum weighted MSE sense. Therefore, PML estimators of exponential

regression models are interpretable, even when the models misspecify the conditional ex-

pectation.1 In contrast, as far as we are aware, estimators for other models with positive

conditional expectation, such as the Tobit (Tobin, 1958) or zero-in�ated models (Mullahy,

1986), do not have a clear interpretation when the models are misspeci�ed. We also give

conditions under which the Poisson PML (PPML) estimator for the exponential model

identi�es the average marginal e¤ects (AMEs) of the regressors, or the average treatment

e¤ect in the case of a binary regressor, and present numerical illustrations of the main

results.
1As is well known, ordinary least squares provides the best linear approximation, in a minimum MSE

sense, to the conditional expectation (see, e.g., Goldberger, 1991, p. 52)
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SET UP AND NOTATION

Suppose that a sample f( )g=1 is available and that the speci�ed working model is

 = exp (0 + 11 + ¢ ¢ ¢+ ) +  = exp (0) +  (1)

where  is the outcome of interest,  = (1 1     )
0 is a vector of regressors,  =

(0     )
0 is a conformable vector of parameters, and  is the error term. LIFE models

such as (1) are commonly used to describe counts (e.g., Winkelmann, 2008) and other data

for which the conditional mean is positive, being especially popular in health economics

(e.g., Manning and Mullahy, 2001) and in the estimation of gravity equations for trade,

migration, investment, and other �ows (e.g., Santos Silva and Tenreyro, 2006); Santos

Silva and Tenreyro (2022) brie�y survey the use of LIFE models in economics and related

areas.

The popularity of LIFE models is partially due to the fact that important economic

models such as the Cobb-Douglas production function and the gravity equation are of

this form, but it is also due to the availability of suitable PML estimators that are valid

under very mild assumptions. Indeed, as shown by Gourieroux, Monfort and Trognon

(1984), when

 [j] = exp
¡
0

0
¢
 (2)

the PML estimators of  in (1) will identify 0, the parameters of the conditional expec-

tation, even if other aspects of the distribution are misspeci�ed.

Letting  ( ) denote a strictly positive weight that depends on  and on a vector of

parameters , the PML estimators of  in (1) satisfy moment conditions of the form

1



X
=1

³
 ¡ exp

³
0̂

´´ exp
³
0̂

´

³
 ̂

´  = 0, (3)

where ̂ is the PML estimator of  obtained with weights 
³
 ̂

´
, whose form de-

pends on the estimator. Indeed, (3) coincides with �rst-order conditions of the non-

linear least squares (NLS) estimator when  ( ) = 1, with those of the PPML esti-
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mator when  ( ) = exp (0), and with those of the gamma PML estimator when

 ( ) = exp (20).
2

Although the robustness of the PML estimators makes them very attractive, in practice

many factors conspire against the validity of (2), the form of the conditional mean assumed

by the working model in (1). The literature provides many examples of models with

positive conditional expectations that do not have the exponential form assumed in (1).

Examples are the zero-in�ated and the hurdle models introduced by Mullahy (1986), the

Tobit model (Tobin, 1958), and the beta-binomial regression model for counts with an

explicit upper bound (Heckman and Willis, 1977).3 The misspeci�cation of the linear

index can result from measurement error (e.g., Kukush, Schneeweis, and Wolf, 2004),

omitted variables (e.g., Gail et al., 1984, and Drake and McQuarrie, 1995), and coe¢cient

heterogeneity (Breinlich, Novy, and Santos Silva, 2024), to name just a few possibilities.

Next we consider the interpretation of PML estimators for (1) when (2) does not hold.

PML ESTIMATORS OF MISSPECIFIED EXPONENTIAL MODELS

Exponential models as approximations

The seminal papers of White (1981, 1982) consider the properties of estimators of mis-

speci�ed non-linear models. Speci�cally, White (1981) establishes conditions under which

the NLS estimator of a misspeci�ed model asymptotically provides the best approxima-

tion, in a minimum MSE sense, to the conditional expectation function. This result,

however, does not extend to other PML estimators of (1). In turn, White (1982) shows

that maximum likelihood estimators of misspeci�ed models identify the parameters that

minimize the Kullback-Leibler (1951) divergence between the model and the true dis-

tribution. Again, this result is not useful when the purpose is simply to estimate the

conditional mean, or an approximation to it, because minimizing the Kullback-Leibler

2Naturally, other consistent estimators can obtained by choosing di¤erent forms of  ( ).
3The Tobit model is designed to deal with censoring, but it is often used to model uncensored obser-

vations with a mass-point as zero. Indeed, that was the kind of data used by Tobin (1958) to illustrate

the application of his method.
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divergence takes into account other aspects of the conditional distribution, such as the

variance.

To understand the properties of PML estimators of (1) when the conditional mean is

misspeci�ed, we write ̂ as the following self-consistent weighted least squares estimator

̂ = argmin


1



X
=1

( ¡ exp (0))
2


³
 ̂

´  (4)

whose �rst-order conditions are given by (3).4 Self consistent estimators are functions of

the data and of the estimators themselves (see, e.g., Efron, 1967, Powell, 1986, Flury and

Tarpey, 2006, and Peng, 2012), and can be implemented using a self-consistent algorithm

that starts with a suitable set of estimates and iteratively updates them until convergence;

that is, until the estimates �con�rm themselves� (see Flury and Tarpey, 2006).

Equation (4) shows that, even when (2) does not hold, the PML estimators of  in

(1) have a clear interpretation: they minimize the weighted sum of the squared residuals

( ¡ exp (0)) and, in this sense, they deliver the best predictor of  of the form exp(0).

That is, they are the best LIFE predictors in a minimum weighted MSE sense.

A more interesting insight is obtained by considering the probability limit or pseudo-

true value of ̂, which we denote by ¤. Following Cox (1961), ¤ is such that



·
(()¡ exp (0

¤
))

exp (0
¤
)

 ( 
¤
)



¸
= 0 (5)

where we have used the law of iterated expectations to replace  with [j] = ().

Assuming that it is possible to interchange integration and di¤erentiation, ¤ can also be

de�ned as

¤ = argmin



"
(()¡ exp (0))

2

 ( 
¤
)

#
 (6)

The de�nition of ¤ in (6) shows that, asymptotically, the PML estimators of (1)

minimize the weighted mean square of the di¤erence (()¡ exp (0)) and, in this sense,

deliver the parameters of the best LIFE approximation to the conditional expectation.

4Although (4) resembles the objective function of the quasi-generalized NLS estimator discussed by

Gourieroux, Monfort and Trognon (1984, pp. 688/9), ̂ is a standard PML estimator because 
³
 ̂

´
does not have to be proportional to the conditional variance of .
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When  ( 
¤
) = 1, this result matches the seminal �nding of White (1981), but the

results for other weighting functions appear to be new.5

Interpretation of misspeci�ed models

Since all PML estimators are consistent for 0 when (2) holds, the choice between

di¤erent PML estimators is often based on attempts to maximize the e¢ciency of the

estimator by choosing weights that better approximate the conditional variance of  (see,

e.g., Manning and Mullahy 2001, and Santos Silva and Tenreyro, 2006). However, in the

likely scenario where (2) does not hold, di¤erent PML estimators will identify di¤erent

sets of parameters, and therefore the precision of the estimators becomes a second-order

question.6 That is, when di¤erent PML estimators lead to signi�cantly di¤erent results,

it is reasonable to choose the estimator based on the asymptotic properties of the approx-

imation to the conditional expectation it delivers, rather than on the speci�cation of the

conditional variance. For that, it is important to understand what di¤erent estimators

do.

The objective function of the gamma PML estimator depends on the size of the residual

( ¡ exp (0
¤
)) relative to the �tted value exp (

0

¤
), but not on the size of the residual

itself. This implies that when the �tted values are close to zero, even small residuals will

have a sizable contribution to the objective function, with the reverse happening when

the �tted values are large. Hence, the gamma PML estimator leads to an approximation

to () that emphasizes the �t in areas where the �tted values are close to zero, as is

made clear by its �rst-order conditions.

In contrast, the NLS estimator only takes into account the size of the residual, com-

pletely ignoring its relative size. Therefore, as made clear by its �rst-order conditions, the

NLS estimator leads to an approximation to () that emphasizes the �t in areas with

5We note that, although we focus on estimators of LIFE models, related results can be obtained for

all other generalized linear models (Nelder and Wedderburn, 1972), including the logit and probit.
6Our result suggests that (2) can be tested by estimating  simultaneously using moment conditions

of di¤erent PML estimators and performing a -test (Hansen, 1982). Such test is closely related to the

reweighting test suggested by White (1981).
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large �tted values, which are typically associated with larger errors. In between these two

extremes, PPML has an objective function that takes into account both the absolute and

relative sizes of the residuals.7 Therefore, this estimator does not put particular weight

on any observations, as is con�rmed by its �rst-order conditions in which all observations

have the same weight.

Finally, we note that, in general, ¤ depends on two sets of weights. Indeed, besides

the weight  ( 
¤
) that de�nes the estimator, (6) shows that, as in White (1981),

¤ generally also depends on  (), the probability density of the regressors, which is

implicitly used as a weighting function when taking expectations over .8 The exception

to this is the case where (2) holds, because then we have that ¤ = 0, whatever the

distribution of .9 Consequently, under misspeci�cation, all estimators will provide a

better approximation to () in regions where the regressors have higher density. In

contrast, the approximation may be poor in regions where the regressors have low density.

We also note that, because ¤ depends on  () when (2) does not hold, the interpretation

of exp (0
¤
) as an approximation will change when data are obtained by some form

of exogenously strati�ed sampling. Indeed, in this case, exp (0
¤
) is the best LIFE

approximation to the conditional expectation in the arti�cial population induced by the

sampling scheme, but it may be possible to estimate the parameters of the best LIFE

approximation to () in the population if suitable sampling weights are available (see,

e.g., Wooldridge, 1999).

These results are illustrated in Figure 1 for the case where there is a single regressor.

Figure 1 displays a conditional expectation (solid black line) of the form  [j] =

001£ 151 , and the corresponding approximations obtained by estimating a LIFE model

using gamma PML (dashed line), PPML (long-dashed line) and NLS (dotted line), as

well as the density of the regressor (solid grey line at the bottom). In the top panel

7Notice that, in the Poisson case, the contributions to the objective function in (4) can be seen as the

product between the absolute and relative residuals.
8For simplicity, we do not distinguish between continuous and discrete variables.
9The fact that ¤ depends on the distribution of  introduces additional sampling variability that is

unrelated to the one induced by the randomness of  given . As noted by the Buja et al. (2019), this

implies that valid inference about ¤ has to be based on a misspeci�cation-robust covariance matrix.
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1 » N (200 402) while in the bottom one 1 » (75 325). As expected, when 1 is

normal, all approximations are good in the region where the regressor is more dense, with

the NLS approximation being better for large values of the regressor and the gamma

PML approximation being better for lower values; the Poisson approximation is between

the other two for extreme values of the regressor. When 1 has a uniform distribution,

the approximations are better in the tails, but less good in the centre. The two panels

in this �gure clearly illustrate the joint roles  ( 
¤
) and () play in obtaining an

approximation to ().

IDENTIFICATION OF AVERAGE MARGINAL EFFECTS

While it is reassuring that estimates of misspeci�ed LIFE models provide best LIFE

approximations to the conditional expectation, in a minimum weighted MSE sense, re-

searchers are often interested in parameters and marginal e¤ects. The estimated para-

meters depend on the distribution of regressors, and speci�c results are available only for

restricted classes of distributions.

An earlier literature has considered the case where the true conditional expectation is

of linear index form, the link function is misspeci�ed, and regressors have a multivariate

normal or an elliptical distribution. Ruud (1983) shows, for such regressors, that using

a logit model rather than a probit model estimates the slope parameters up to scale. Li

and Duan (1989) extend this result to any generalized linear model with a misspeci�ed

link, i.e., including the ordinary least squares estimator of the linear model (OLS), as well

as the LIFE models considered here. With estimation up to scale, hypothesis tests for

0 :  = 0 remain valid and, for models with   1, ratios of coe¢cients are identi�ed so

that statements about substitutability between regressors can be made.

The PPML estimator of a LIFE model with normally distributed regressors has an

additional useful property that seems to have gone unnoticed until now: it identi�es the

average marginal e¤ect [()], a population parameter that researchers often care

about. Importantly, PPML is the only estimator of a LIFE model with this property and

it does not require the conditional expectation function () to be of single-index form.
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Figure 1: Approximations to the conditional expectation

Note: The �gure displays conditional expectations (solid black lines) and the corresponding optimal

exponential approximations obtained with gamma PML (dashed lines), PPML (long-dashed lines),

and NLS (dotted lines), as well as the densities of the regressor (solid grey lines at the bottom),

which are normal in the top panel and uniform in the bottom one.
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To establish the general result, recall (5) showing that the PPML estimand is the solution

to the population �rst-order condition

[(()¡ exp(0¤ ))] = 0 (7)

where we use ¤ to denote the probability limit of the PPML estimator.

We start by considering the model with constant and a single regressor. It follows from

(7) that the �rst-order condition for the slope can be re-written as

(1 (1)) = (1 exp(
¤
0 + ¤11)) (8)

where ¤0 and ¤1 are the elements of 
¤.

Stein�s Lemma (Stein, 1981) states that if  is normally distributed and the

relevant moments exist, then for any di¤erentiable function (), ( ()) =

 ()(()). Assuming that its conditions are satis�ed, we can apply the

Lemma on both sides of (8) to obtain the equality  (1) [(1)1] =

 (1)[(exp(
¤
0 + ¤11)

¤
1], and therefore

 [(1)1] = [exp(¤0 + ¤11)]
¤
1 (9)

Thus, as long as PPML is used for estimation and the regressor is normally distributed,

the estimated AME of 1 obtained with a LIFE model (the right-hand side of equation 9)

is equal to the AME of the conditional expectation (1) even if the model is misspeci�ed.

A similar result exists for the OLS estimator of a linear working model (e.g., Wooldridge

2010, p. 579, who draws on Stoker, 1986), which, under normality of , also identi�es the

AME for arbitrary ().10

Often, researchers are interested in relative marginal e¤ects, or semi-elasticities. When

the exponential model is misspeci�ed, the relative marginal e¤ects ((1)1) (1)

are not constant. However, under normality of 1, the PPML estimand ¤1 identi�es the

AME relative to the mean of , since from the �rst-order condition it follows that

() = (()) = [exp(¤0 + ¤11)]

10The result applies to all estimators that solve an unweighted zero-correlation moment condition
between the working model�s residuals and the regressors. Other examples include the logit maximum
likelihood estimator, and a probit estimated by solving the sample analog of [(¡©(0))] = 0, where
©(¢) denotes the normal CDF.
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and hence ¤1 = [()1][()].

This result generalizes to multiple regressors. Let  be multivariate normal with

non-singular covariance matrix §, and let () be a di¤erentiable function of  with

partial derivatives r() =
³
()
1

     ()


´0
. Then, if the relevant moments exist,

( ()) = §(r()). The PPML �rst-order conditions for the -variate regres-

sion model imply that ( ()) = ( exp(
0¤
 )). Substituting the terms from

Stein�s equality, writing r() =
³
()
1

     ()


´0
, and pre-multiplying both sides by

§¡1 , we obtain

(r()) = [exp(0¤ )]
¤

which again implies that, for normally distributed regressors, the PPML estimator of

the AMEs of the regressors in a LIFE model is equal to the AMEs of the conditional

expectation even under misspeci�cation.

The main limitation of these results remains the assumption of a normally distributed

design matrix, which is not realistic in many applications and is a necessary condition for

the results to hold: under misspeci�cation, PPML identi�es the AMEs of the regressors

i¤ the regressors are normally distributed (see Ross, 2011, p. 215).11 The numerical

experiments in Section 5 document how the bias of PPML estimates of the AMEs increases

with departures from normality. In these experiments, the relative bias remains moderate,

and for departures that preserve symmetry, PPML generally performs better than gamma

PML or NLS.

In cases where  is not normally distributed, one could be tempted to use a weighted

version of (7) such that the marginal distribution of  becomes approximately normal.

Indeed, Ruud (1986) suggests such a procedure and shows that it can identify the para-

meters of a single-index model up to scale. In the present context, where the objective is

to estimate AMEs, the value of this approach is limited by the fact that it would identify

the AME for the arti�cial population induced by the weighting scheme, which may not

be interesting.

Another set of robustness results exists for binary regressors. Consider a model where

the single regressor, 1, is binary. It follows from the PPML �rst-order conditions that

11We are grateful to a referee for bringing this result to our attention.
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() = [exp(¤0 + ¤11)] and (1) =  [exp(¤0 + ¤11)1]. By applying iterated

expectations to both sides of these equalities, and letting  = Pr(1 = 1), we can write

(j1 = 1) + (1¡ )(j1 = 0) =  exp(¤0 + ¤1) + (1¡ ) exp(¤0)

(j1 = 1) =  exp(¤0 + ¤1)

from where it follows that (j1 = 1) = exp(¤0 + ¤1) and (j1 = 0) = exp(¤0).

Therefore, the average treatment e¤ect is given by exp(¤0+¤1)¡exp(¤0), and the relative
treatment e¤ect by exp(¤1)¡ 1.

Since the model with a single binary regressor is saturated, there is no approximation

error and the model is trivially �correct�. However, Negi andWooldridge (2022) show that

the argument extends to an exponential regression with additional, potentially continuous,

covariates, as long as those are distributed independently of 1. The leading application

is that of a randomized treatment 1 where a covariate adjustment is considered for

e¢ciency reasons and the exponential regression is used because the outcome is non-

negative. In this case, for a model with  = 2, we have that

[exp(¤0 + ¤1 + ¤22)]¡[exp(¤0 + ¤22)]

identi�es the average treatment e¤ect even if the link is misspeci�ed, as long as PPML is

used for the estimation of a LIFE model.

NUMERICAL ILLUSTRATION

In this section we present numerical evidence to illustrate how misspeci�cation a¤ects

the ability of a LIFE model to identify AMEs. Speci�cally, we consider a population

where

 [j1] =  (1) =
10 exp (1)

(1 + exp (1))

 (10)

and compare the AME in the population with their estimates obtained with di¤erent

PML estimators of a LIFE model like (1), with  = 1. For the sake of comparison, we

also include OLS estimates for the linear model. It is unclear ex-ante, whether the linear

or the exponential approximation to (10) provides better estimates of the AME. Only for
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normally distributed regressors (see Case 1 below) do we know that both PPML and OLS

are unbiased.

The degree of misspeci�cation is indexed by  2 f025 050 075g. For these values of ,
(1) has no upper bound but increases more slowly for larger ; that is, the LIFE model

will be a better approximation for small , whereas the �t of the linear model improves

as  increases.12

We consider several distributions of 1, which is always standardized to have 0 mean

and variance 2 2 f025 1g. In Case 1, 1 is a mixture of a normal and a uniform

distribution, being drawn from the normal with probability , and from the uniform with

probability 1 ¡ . Therefore, 1 has a symmetrical distribution that is platykurtic for

  1, and both the PPML and OLS estimators identify the population AMEs for  = 1.

In Case 2, 1 follows a 2
() distribution with  2 f6 12 24g. In this case the distribution

is leptokurtic but it approaches the normal as !1. Moreover, because the distribution

is asymmetric with zero mean, the bulk of values of 1 is negative, but the left tail is

short. Case 3 is the mirror image of Case 2, with ¡1 » 2
(), where again  2 f6 12 24g.

Finally, in Case 4, we have that 1 = (¡1) ¤ , where ¤ » 2
() and , is a Bernoulli

variable with Pr ( = 1) = 05. As before, we consider cases with  2 f6 12 24g. For a
given , 1 has the same degree of kurtosis as the variables considered in Cases 2 and 3,

but now it has a symmetric distribution.

The range of cases we consider allows us to see how the results in Section 3 and Section

4 interact. From Section 4, we know that PPML and OLS will identify the AMEs in

Case 1, with  = 1, and we will see how di¤erent departures from normality a¤ect their

ability to identify the AMEs. Other PML estimators of the LIFE model generally do not

identify the AMEs under misspeci�cation, but our results provide information on how

sensitive they are to misspeci�cation under di¤erent scenarios. From Section 3, we know

that di¤erent PML estimators of misspeci�ed LIFE models will provide approximations

to  (1) whose quality varies over the range of . Therefore, we expect that the gamma

PML estimator will perform well in Case 2 because in this case the bulk of observations

will have low values of  (1); conversely, we expect NLS to have an advantage in Case

12Note that for  = 0 the LIFE model is correctly speci�ed.
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3. Because PPML and OLS give the same weight to all observations, we expect them to

perform better in Cases 1 and 4, where 1 has a symmetrical distribution.

For each of the four cases described above, we generate  (1) for 1 000 draws of

the relevant distribution of 1, evaluate  (1) 1, obtain the pseudo-true values of

the parameters by solving the relevant moment conditions, and compute the estimated

AMEs. We then repeat the process 10 000 times and average the results. That is, we

evaluate  [ (1) 1] and its approximations using Monte Carlo integration over the

distribution of 1. Note that we never actually generate , and therefore our results

abstract from sampling noise and are only informative about the results that should be

expected in very large samples, but are valid for any distribution of .

Tables 1 and 2 report the results for each of the four cases. Each table displays,

for the di¤erent combinations of parameters we consider, the population AME (denoted

AME) and the di¤erences between this and the estimated AMEs obtained with PPML

(labelled PPML), gamma PML (labelled GPML), and non-linear least squares (labelled

NLS) estimators of the LIFE model, as well as with the OLS estimator of the linear model

(labelled OLS).

The results in Table 1 show that, as expected, PPML and OLS identify the AMEs when

1 is normally distributed ( = 1), while the same is not true for the other estimators.13

Naturally, the performance of the PPML and OLS estimators deteriorates as  goes to 0.

Interestingly, the performance of the NLS estimator improves as the distribution of 1

approaches the uniform, dominating the other estimators of the LIFE model for  = 0.

In turn, for all values of  and , the gamma PML estimator is by far the worst performer

among the estimators of the LIFE model. Finally, for   1, the OLS results very much

depend on the value of , being very poor when (1) grows quickly, but being excellent

when (1) grows more slowly.

Turning to Table 2, the results for Case 2 show that the gamma PML estimator has an

excellent performance when 2 = 025, but is often outperformed by PPML when 2 = 1.

In contrast, NLS has a poor performance with 2 = 025, and is dominated by PPML,

13The situation is very similar to the top panel of Figure 1: We know that PPML gives the AME.
The LIFE model �tted by NLS is �atter, and hence there is a downward bias in the AMEs, whereas the
GPML curve is steeper than PPML, leading to an upward bias.
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but not by the gamma PML estimator, when 2 = 1. In Case 3, it is NLS that has the

best performance, while the gamma PML estimator has the worst performance among

the estimators of the LIFE model. PPML is in between these two estimators, and its

performance naturally improves with . For Case 4, PPML leads to the best results of

all estimators of the LIFE model, with the gamma PML estimator dominating NLS for

2 = 025, but being almost dominated by it for 2 = 1. As in Case 1, in Cases 2 to 4,

the OLS performance varies from excellent to very poor with the value of .

Overall, with the chosen distributions and parameters, it is noteworthy that the relative

biases of the PML estimators of the LIFE model tend to be rather small. For example,

in almost all cases it is below 10 percent of the true AME when 2 = 025. Moreover the

bias of these estimators varies little with the degree of misspeci�cation, changing little

as  goes from 025 to 075. By contrast, the OLS bias is very sensitive to the value of

, and can be very large, both in absolute and relative terms, especially when  = 025

and the distribution is leptokurtic. Hence, the use of the linear model to estimate AMEs

cannot be recommended unless the regressors are close to being normally distributed, or

() has little curvature.

Table 1: Average marginal e¤ects and biases for Case 1
2 = 025 2 = 10

  AME PPML GPML NLS OLS AME PPML GPML NLS OLS
10 025 791 000 013 ¡010 ¡000 982 001 069 ¡023 ¡001

050 543 000 017 ¡014 ¡000 589 001 077 ¡034 ¡000
075 365 000 017 ¡014 000 352 000 066 ¡034 000

05 025 791 003 012 ¡005 ¡011 974 010 062 ¡017 ¡048
050 543 005 017 ¡007 ¡003 587 014 073 ¡021 ¡012
075 365 005 017 ¡006 001 350 015 065 ¡017 004

00 025 790 007 012 002 ¡022 967 024 055 007 ¡096
050 543 009 017 003 ¡005 585 032 069 010 ¡023
075 364 010 017 003 003 349 031 063 010 008

Note: AME is the true average marginal e¤ect. The remaining columns show the di¤erence between AME and

its estimates obtained by di¤erent methods. The regressor has a normal distribution with probability , and a

uniform distribution with probability 1¡ , and is standardized to have zero mean and variance 2.
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Table 2: Average marginal e¤ects and biases for Cases 2 to 4
2 = 025 2 = 10

  AME PPML GPML NLS OLS AME PPML GPML NLS OLS
Case 2

6 025 800 ¡017 001 ¡030 230 1106 ¡027 099 ¡033 845
050 544 ¡027 ¡004 ¡046 100 602 ¡043 061 ¡070 253
075 364 ¡032 ¡011 ¡050 030 350 ¡049 022 ¡083 057

12 025 797 ¡012 004 ¡024 150 1056 ¡020 081 ¡033 471
050 544 ¡019 002 ¡036 068 597 ¡031 063 ¡062 161
075 364 ¡022 ¡003 ¡039 022 350 ¡035 034 ¡070 041

24 025 795 ¡008 007 ¡020 101 1029 ¡014 074 ¡032 290
050 544 ¡013 006 ¡029 047 594 ¡022 067 ¡055 107
075 364 ¡015 003 ¡031 016 351 ¡024 043 ¡060 030

Case 3
6 025 784 012 025 005 ¡148 924 023 074 003 ¡291

050 543 020 038 009 ¡080 582 035 102 007 ¡148
075 366 026 044 013 ¡035 357 042 106 013 ¡062

12 025 786 009 022 001 ¡111 937 018 071 ¡004 ¡289
050 543 015 032 004 ¡059 584 027 095 ¡003 ¡111
075 366 019 037 006 ¡025 355 031 095 001 ¡044

24 025 787 007 019 ¡001 ¡081 948 013 070 ¡009 ¡175
050 543 011 028 ¡001 ¡042 585 020 090 ¡011 ¡082
075 365 014 031 001 ¡017 354 023 087 ¡008 ¡031

Case 4
6 025 792 ¡010 014 ¡027 041 1015 ¡026 109 ¡041 273

050 544 ¡013 018 ¡037 010 592 ¡034 097 ¡071 052
075 365 ¡012 017 ¡036 ¡003 354 ¡029 071 ¡074 ¡002

12 025 791 ¡005 013 ¡020 019 996 ¡016 086 ¡037 119
050 543 ¡007 018 ¡027 005 590 ¡019 086 ¡059 024
075 365 ¡006 017 ¡026 ¡002 353 ¡016 068 ¡059 ¡002

24 025 791 ¡003 013 ¡016 010 989 ¡009 077 ¡033 058
050 544 ¡003 017 ¡021 002 589 ¡010 082 ¡050 012
075 365 ¡003 017 ¡021 ¡001 352 ¡008 067 ¡048 ¡001

Note: AME is the true average marginal e¤ect. The remaining columns show the di¤erence between AME and

its estimates obtained by di¤erent methods. In case 2 the regressor has a 2 distribution with  degrees of

freedom. In Case 3 the regressor has a 2 distribution with  degrees of freedom multiplied by ¡1. In case 4

the regressor has a 2 distribution with  degrees of freedom that is multiplied by ¡1 with probability 05. In

all cases, the regressor is standardized to have zero mean and variance 2.
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Our �ndings con�rm that the quality of the results obtained with the di¤erent estima-

tors of a LIFE model is heavily dependent on the distribution of the regressors. In our

setting, there are cases in which the gamma PML and the NLS estimators perform very

well, but both estimators can also perform poorly. In contrast, the PPML estimator was

never the worst performer and it dominates the other estimators when 1 has a symmet-

ric distribution that is not platykurtic. Finally, as could be expected, we note that the

results are generally better for 2 = 025 than for 2 = 1.

It is naturally di¢cult to generalize these results to more complex settings but, together

with our earlier �ndings, it is reasonable to conclude that PPML is always a relatively

safe choice, in the sense that it may not be the best, but it is also unlikely to be the

worst performer. Of course, having additional information on the nature of the problem,

researchers may be justi�ed to choose a di¤erent approach.

We conclude by reiterating that our results are only informative about the asymp-

totic performance of the estimators. In �nite samples, it is also important to take into

consideration how robust the estimators are to departures from assumptions about the

heteroskedasticity pattern. The results in Manning and Mullahy (2001) and Santos Silva

and Tenreyro (2006) suggest that the NLS can be particularly ine¢cient and have a

signi�cant �nite-sample bias, and therefore its use is di¢cult to recommend.

CONCLUDING REMARKS

We show that, asymptotically, pseudo maximum likelihood estimators of misspeci�ed

exponential models provide optimal approximations to the conditional expectation, in

a weighted mean squared error sense, and we give conditions under which their Poisson

pseudo maximum likelihood estimator identi�es the average marginal e¤ects of the regres-

sors. These results provide an additional motivation for the use of exponential models,

and suggest that researchers should carefully consider the interpretation of the estimates

under misspeci�cation when choosing between estimators for these models. Moreover, our

results establish a striking similarity between the properties of a misspeci�ed linear model

estimated by OLS and those of a misspeci�ed exponential model estimated by Poisson

pseudo maximum likelihood.
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Which of the estimators of an exponential model is preferable will, of course, depend

on the purpose of the model and on the nature of the problem, but our results show

that the Poisson pseudo maximum likelihood estimator is generally a reasonable choice

under misspeci�cation, and has properties that are not shared by the other estimators. It

therefore has a range of characteristics that make it a suitable workhorse for the estimation

of exponential regression models.
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