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Thermodynamics of a “gas” of finite dimensional quantum systems

We consider the thermodynamics of a quantum system consisting of a large
number of weakly interacting “molecules,” each of which has finitely many
degrees of freedom.

We assume that the molecular interactions are sufficiently weak to ensure that
the support of the state space of the system is the topological product of the
projective Hilbert spaces of the individual molecules.

It is an essential feature of the notion of a collection of weakly interacting
molecules that there should be no appreciable entanglement between the states
of the various molecules, and that the energies associated with the interactions
between the various molecules can be neglected.

Our goal is to set up the problem in such a way that the thermodynamic
properties of the system can be calculated explicitly in the limit as the number
of constituents of the system is taken to be large.
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Comments regarding the “molecules”

Three ingredients are required for the development of a statistical model for a
finite-dimensional quantum system.

These are: (i) the phase space of the system, denoted Γ , (ii) the Hamiltonian
operator of the system Ĥ, and (iii) a normalized measure P on the phase space
that determines how “averages” are taken over it.

We take the system to be modelled by a Hilbert space H of finite dimension r.

The phase space of the system is the complex projective space Γ = CPr−1

given by the space of rays through the origin in H.

The pair (Γ ,F) is a measurable space, where F denotes the Borel
sigma-algebra generated by the open sets of Γ .

The use of the term “phase space” in the present context is justified by the fact
that Γ has a natural symplectic structure.

L. P. Hughston Goldsmiths University of London
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From the operator Ĥ we construct an associated Hamiltonian function.

The Hamiltonian function is given for each point x ∈ Γ by the expectation
value of Ĥ in the corresponding pure state.

Thus we write H(x) = tr[Ĥ Π̂(x)], where Π̂(x) = |x〉〈x|/〈x|x〉 is the projection
operator on to the element |x〉 ∈ H corresponding to the point x ∈ Γ .

The point is that the symplectic manifold Γ , equipped with the Hamiltonian
function H(x), has the structure of a classical phase-space.

Phase-space measure

The choice of measure P on (Γ ,F) is not fixed in advance, except to the extent
that it must be natural to the physical problem under consideration.

For equilibrium this typically means either (a) the uniform distribution (where
the measure of a set is the volume of the set under the Fubini-Study metric) or
(b) a distribution associated in some way with the Hamiltonian function.

L. P. Hughston Goldsmiths University of London
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We take the view that the choice of measure is a modelling choice, and that the
merits of any particular choice of measure can be judged by its usefulness and
naturalness in a specific context.

In the case of a finite dimensional system one further assumption can be made
without loss of generality.

This is that the measure can be normalized in such a way that the total measure
of the phase space is unity.

Thus if we write P(A) for the measure of any measurable set A ∈ F , then we
assume that P(Γ ) = 1.

With this convention, the quantum phase space has the structure of a
probability space (Γ ,F ,P), upon which H : Γ → R is a random variable.

Entropy of a quantum system

We take the view that the entropy of a quantum system can be expressed as a
function of the number of microstates accessible to it.

L. P. Hughston Goldsmiths University of London
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This suggests the following:

Definition 1. The entropy associated with a measurable subset A ⊂ Γ of a
quantum phase space (Γ ,F ,P) with measure P is given by

S[A] = kB logP(A). (1)

Here kB is Bolzmann’s constant.

It follows that S[Γ ] = 0 and that if A is a proper subset of Γ then S[A] < 0
and that if A is a set of measure zero, then S[A] = −∞.

Systems consisting of n molecules

Let us consider a quantum system consisting of n molecules of the same type.

Each molecule will be represented by a finite quantum system for which the
Hilbert space is of some dimension r.

For the total Hamiltonian function of the system let us write

H(n)(x) = H1(x) + H2(x) + · · · + Hn(x) (2)

where the Hj(x), j = 1 : n, are the Hamiltonian functions of the molecules.

L. P. Hughston Goldsmiths University of London
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Here we have written

Hj(x) =
〈x|Ĥj|x〉
〈x|x〉

(3)

for the expectation of the Hamiltonian Ĥj (j = 1 : n) of molecule j in the
overall system state |x〉.

It follows from the assumed absence of entanglement among the molecules that
the overall state of the system admits a factorization of the form

|x〉 = |x1〉|x2〉 · · · |xn〉. (4)

Hence for each j the Hamiltonian function Hj(x) depends only on the state
space variable xj associated with molecule j.

We assume that the state space of the system as a whole is endowed with a
probability measure P concentrated on the Segre variety of disentangled states,

Q = CPr−1(1) × · · · × CP
r−1
(n) ⊂ CP

rn−1, (5)

given by a product measure of the form

P(dx) = P1(dx1)P2(dx2) . . .Pn(dxn). (6)

L. P. Hughston Goldsmiths University of London
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Here the measure on each factor of the product space is assumed to be of the
same type.

It follows that the Hj(x), j = 1, 2, . . . , n, when interpreted as functions on the
overall state space, are i.i.d. random variables under P.

As a consequence we see that the total Hamiltonian of the system is given by a
sum of n independent, identically distributed random variables.

With this fact in mind, we can abbreviate the notation and omit the arguments
of the functions, and for the total Hamiltonian of an n-particle system we write

H(n) =

n∑
j=1

Hj. (7)

Specific entropy of an ensemble

To develop a theory of the thermodynamics of such a system we shall take as
our starting point a definition of the specific entropy associated with a given
value E of the specific energy.

L. P. Hughston Goldsmiths University of London
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Thus for a system of n molecules we have:

S(n)(E) =
1

n
kB logP

1

n

n∑
j=1

Hj ≤ E

. (8)

One might object to this definition, arguing that the entropy at energy E should
be defined by confining the range of energy values to a thin band of energies
including E, say the set [E −∆, E] for some choice of ∆ > 0.

However, the resulting expression for the specific entropy in the thermodynamic
limit depends only on the upper boundary of the band.

As we shall see, for large n, and specific energy E, “most” of the entropy is
concentrated in a very thin shell just below E.

Our strategy will be to show that for fixed E the sequence S(n)(E), n ∈ N,
converges for large n to a limit

S(E) = lim
n→∞

S(n)(E). (9)

To show that S(n)(E) converges we use a variant of Cramér’s theorem in the
theory of large deviations.

L. P. Hughston Goldsmiths University of London
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Thermodynamic limit

Let us write E− and E+ respectively for the lowest and highest eigenvalues of
the Hamiltonian Ĥ of a typical molecule, and write Ē = E[H ] for the mean
under P of the associated random variable H.

Definition 2. We say that the measure P is H-complete if for any ε > E− it
holds that P(H < ε) > 0.

Proposition 1. If P is H-complete, then

lim
β→∞

E
[
He−βH

]
E [e−βH ]

= E− (10)

and for any E ∈ (E−, Ē ] there exists a unique value of β ≥ 0 such that

E =
E
[
He−βH

]
E [e−βH ]

. (11)

For each value of E ∈ (E−, Ē] let us write β(E) for the corresponding value of
the parameter β.

L. P. Hughston Goldsmiths University of London
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Then we have the following:

Proposition 2. The thermodynamic limit

S(E) = lim
n→∞

1

n
kB logP

1

n

n∑
j=1

Hj ≤ E

 (12)

exists and the specific entropy of the system is given as a function of the specific
energy by

S(E) = kB β(E)E + kB logZ(β(E)), (13)

where for each value of E ∈ (E−, Ē] the associated value of β is determined by
the relation

E =
E
[
He−β(E)H

]
E
[
e−β(E)H

] , (14)

and Z(β(E)) = E [exp (−β(E)H)].

Setting β(E) = 1/kBT (E), we find that the temperature at energy E is

dS(E)

dE
=

1

T (E)
. (15)

L. P. Hughston Goldsmiths University of London
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It is interesting to observe that in the thermodynamic limit the value of the
specific entropy is insensitive to the width of the band of energies below the
specific energy.

More precisely, let us write

S(n)(E −∆, E) =
1

n
kB logP

E −∆ ≤ 1

n

n∑
j=1

Hj ≤ E

 (16)

for the specific entropy of an n-particle system of weakly interacting molecules
when the specific energy of the system lies in the band [E −∆, E] for some
choice of ∆ > 0.

Then we have the following.

Proposition 3. The limit S(E −∆, E) = limn→∞ S
(n)(E −∆, E) exists for

the entropy associated with the energy band [E −∆, E] and is equal to S(E).

Here S(E) is the expression obtained without the specification of the lower
bound of the energy band.

L. P. Hughston Goldsmiths University of London
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This result may seem surprising at first glance, but there are many examples of
calculations in thermal physics where the device of a band of energies is
introduced, only for the physical results later not to depend on it.

The interpretation of the situation in the present context is that in the
thermodynamic limit the specific entropy, for a given specific energy, is
concentrated almost entirely in a thin shell of the quantum phase space at and
immediately below the energy surface corresponding to the specific energy.

The result can be understood as an example of the idea of “concentration of
measure”, but is perhaps more easily understood in probabilistic terms.

For the given a priori measure it is extremely unlikely that the average of the
energies of a large number of independent molecules will be anything other than
the a priori mean Ē; but if we condition on the average being no greater than
some specified value E, then it will be extremely unlikely that the average will
be much less than E.

It will be helpful to look at some examples of thermodynamic systems.

L. P. Hughston Goldsmiths University of London
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Example: the Dirac measure

This is the case when the measure P on the state space of a representative
molecule is concentrated on the energy eigenstates.

The Hilbert space associated with an individual molecule has dimension r.

In the situation that the Hamiltonian has a nondegenerate spectrum the Dirac
measure is given by

P(dx) =
1

r

∑
i

δi(dx). (17)

Here δi(dx) denotes the usual Dirac measure concentrated at the point xi
(i = 1, 2, . . . , r), where xi denotes for each i the point in Γ corresponding to
the energy eigenstate |xi〉 with energy Ei.

It follows that for r = 2 the partition function is given by

Z(β) = 1
2

(
e−βE1 + e−βE2

)
. (18)

Apart from the factor of 1
2, this is the well known formula in standard textbooks.

L. P. Hughston Goldsmiths University of London
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We find that the expression for the specific energy as a function of β is

E(β) =
E1 e−βE1 + E2 e−βE2

e−βE1 + e−βE2
. (19)

The mean energy Ē = E[H(x)] under P is given in this case by

Ē = 1
2(E1 + E2). (20)

For each value of E ∈ (E1, Ē] there exists a β ∈ R+ such that (19) is satisfied.

In fact, we can invert this relation, to give β as a function of E, as follows:

β(E) =
1

E2 − E1
log

E2 − E
E − E1

. (21)

If we set ω = 1
2(E2 − E1), then we obtain a more compact expression for the

energy, namely

E(β) = Ē − ω tanh(βω). (22)

We can use this expression to work out the heat capacity

C(β) = −kB β2dE(β)

dβ
, (23)

L. P. Hughston Goldsmiths University of London
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in the case of the Dirac measure and we obtain

C(β) = kBβ
2ω2sech2(βω). (24)

One can check that this goes to zero at low temperature.

We see that the specification of the Hamiltonian of a representative molecule at
the microscopic level along with the specification of the relevant measure on the
state space of the molecule (in this case, the Dirac measure) is sufficient to
determine the equation of state of the system as a whole.

Example: the uniform measure

Now we turn to the uniform measure, or Haar measure, which in the case of a
single molecule is given by an expression of the form

P(dx) =
1

VΓ
dVx . (25)

Here dVx denotes the natural volume element associated with the Fubini-Study
metric on Γ , and VΓ is the total volume of Γ .

In the case of n weakly interacting molecules the uniform measure is defined as
in the product (6), with a uniform measure on the phase space of each molecule.

L. P. Hughston Goldsmiths University of London
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In the case r = 2 we find that under the uniform measure on CP1 the
Hamiltonian function H(x), when viewed as a random variable, has a uniform
distribution over the interval [E1, E2].

That is to say,

P(H ≤ E) = 1{E1 ≤ E ≤ E2}
E − E1

E2 − E1
+ 1{E2 < E}. (26)

As a consequence we find that the energy is given as a function of β by

E(β) =
1

β
+
E1 e−βE1 − E2 e−βE2

e−βE1 − e−βE2
, (27)

or equivalently

E(β) =
1

β
+ 1

2(E1 + E2)− ω coth(βω). (28)

We can work out the heat capacity and in this case we obtain

C(β) = kB
(
1− β2ω2csch2(βω)

)
, (29)

which is nonvanishing at zero temperature.

L. P. Hughston Goldsmiths University of London
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Concluding remarks

In summary, we have introduced an exact model for the thermodynamics of a
quantum system containing a large number of identical “molecules”.

The model depends on the choice of the molecular Hamiltonian and also on the
choice of measure on the phase space of a representative constituent.

We have shown that the thermodynamic limit exists and gives rise to an
equation of state that determines a canonical relation between the specific
entropy and the specific energy of the system.

From the structure of the molecular state space at a microscopic level we are
able to infer the macroscopic properties of the system as a whole.

But we can also regard the system as a whole as a Gibbs ensemble and treat any
individual molecule within the ensemble as a fully functional large system in its
own right in equilibrium with a heat bath at temperature T .

L. P. Hughston Goldsmiths University of London
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