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Abstract

We study the Structural Vector Autoregressions (SVARs) that impose internal and ex-

ternal restrictions to set-identify the Forecast Error Variance Decomposition (FEVD). This

object measures the importance of shocks for macroeconomic fluctuations and is there-

fore of first-order interest in business cycle analysis. We make the following contributions.

First, we characterize the endpoints of the FEVD as the extreme eigenvalues of a symmetric

reduced-form matrix. A consistent plug-in estimator naturally follows. Second, we use the

perturbation theory to prove that the endpoints of the FEVD are differentiable. Third, we

construct confidence intervals that are uniformly consistent in level and have asymptotic

Bayesian interpretation. We also describe the conditions to derive uniformly consistent con-

fidence intervals for impulse responses. A Monte-Carlo exercise demonstrates the approach

properties in finite samples. An unconventional monetary policy application illustrates our

toolkit.
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1 Introduction and Related Literature

A common practice in empirical macroeconomics is to set-identify the parameters of a Struc-

tural Vector Autoregression (SVAR). This relies on sign restrictions (Uhlig (2005) and sub-

sequent literature) and Proxy SVARs, where set-identification naturally arises when the in-

strument is not fully exogenous (correlated with shocks other than that of interest -plausible

proxy-), e.g. Piffer and Podstawski (2018), Braun and Brüggemann (2022), Jarociński and

Karadi (2020), Ludvigson et al. (2021), Fusari (2023), Caggiano et al. (2021) and Caggiano

and Castelnuovo (2023). In this setting, the Forecast Error Variance Decomposition (FEVD) is

a pivotal object. It describes the contribution or importance of the identified shock to explain

the fluctuations (volatility) of the variables of interest over time. It is reported in any empiri-

cal application along with the Impulse Response Functions (IRFs) and yields pivotal economic

information, especially for business cycle analysis (Christiano et al., 1999; Smets and Wouters,

2007; Beaudry and Portier, 2006). Furthermore, it is also a crucial object of interest in the

recent empirical research on the long-term (“hysteresis”) effects of demand shocks (Benati and

Lubik, 2022; Furlanetto et al., forthcoming). FEVD is also commonly used as a source of

identifying information, the so-called Max Share Identification, popularized by Uhlig (2004).

For example, this approach identifies technology shocks as those which explain the most of the

FEV decomposition of labor productivity at 10-year period (Francis et al., 2014).1

Empirical practice for the estimation and inference of set-identified FEVD mostly employs

Bayesian methods (Arias et al., 2018). The main concern about standard Bayesian analysis in

set-identified frameworks is that the posterior distributions are influenced by the prior spec-

ification, even asymptotically (Poirier, 1998; Baumeister and Hamilton, 2015). Second, any

selection of prior breaks down the asymptotic equivalence between Bayesian and frequentist

inference, in the sense that the former asymptotically lies inside the true identified set (Moon

and Schorfheide, 2012). This led to alternative methodologies that do not require the char-

acterization of a prior specification over the set-identified structural parameters. Granziera

et al. (2018) proposed a frequentist approach, where a moment-inequality-minimum-distance

toolkit delivers estimation and inference for the IRFs. Gafarov et al. (2018) presented a delta-

method interval for the IRFs. Giacomini and Kitagawa (2021) [GK21] delivered robust Bayes

credible interval that achieves a given credibility level regardless of the prior specified over the

set-identified structural parameters.2 The common feature of those prior-robust contributions

1Other applications include DiCecio and Owyang (2010) (technology shocks), Barsky and Sims (2011) and

Kurmann and Sims (2021) (news shocks), Mumtaz et al. (2018) (credit shocks), Mumtaz and Theodoridis (2023)

(inflation target shocks), Caldara et al. (2016) (uncertainty and credit shocks), Levchenko and Pandalai-Nayar

(2020) (sentiment shocks) and Angeletos et al. (2020) (a variety of supply and demand shocks). Volpicella

(2022) and Carriero and Volpicella (2024) extended the setting allowing set-identification and multiple-shock

identification, respectively.
2See Giacomini et al. (2022a) for the extension to plausible proxy SVARs.
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is that they are specifically constructed for estimation and inference of IRFs. In principle,

an exception allowing robust inference for the set-identified FEVD is GK21. However, the

computational challenges of the toolkit prevent its wide use in the empirical practice.

We provide a computationally viable estimation and inference toolkit for the FEVD in

set-identified SVARs without relying on any prior specification. The toolkit can be also used

to quantify the sensitivity of the standard Bayesian inference to the choice of an unrevisable

prior. First, we characterize the lower and upper bounds of the set of the FEVD as the extreme

eigenvalues of a symmetric reduced-form matrix. We show that those endpoints correspond

to the solutions of a quadratic constrained optimization problem involving the orthonormal

matrix transforming reduced-form shocks into structural shocks. In particular, the problem

can be solved iteratively by active (binding) set strategies or interior point methods where each

iteration requires the solution of an equality constrained problem. Consistency of a plug-in

estimator follows. A user-friendly algorithm is provided. Second, we prove the differentiability

of the endpoints with respect to the reduced-form parameters. A by-product of the FEVD

differentiability is that we can guarantee frequentist validity of the robust Bayesian inference

in GK21 when applied to the FEVD. Third, we propose a delta-method interval adjusted by the

length of the identified set that is both uniformly consistent in level and has asymptotic Bayesian

interpretation. Furthermore, we illustrate that our machinery has computational advantages

with respect to GK21 and is extremely user-friendly. We also show the adjustment under which

a delta-method confidence interval for set-identified IRFs, i.e. Gafarov et al. (2018), is uniformly

consistent. A simple Monte Carlo simulation displays the properties of the approach in finite

samples and draws the attention to the improvements in coverage by using a set-length adjusted

delta-method confidence interval with respect to alternatives. The empirical application, which

relies on set-identification of unconventional monetary policy shocks, illustrates the toolkit. In

our exercise, under a standard Bayesian approach, the findings about the FEVD are mostly

driven by an unrevisable prior rather than identification itself. Computational efficiency of our

framework makes it viable for SVARs with several variables and restrictions, unlike alternative

robust frameworks, e.g. GK21.

While our coverage statements hold for the true value of the object of interest, i.e. FEVD,

rather than for its true identified set, literature for inference over interval-defined parameters

typically faces a well-known trade-off. On the one hand, valid confidence intervals - in the sense

that the coverage is at least equal to the nominal confidence level- for the parameter of interest

are not necessarily valid for the set. On the other hand, valid confidence intervals for the set

tend to be unnecessarily conservative for the targeted parameter (Imbens and Manski, 2004;

Stoye, 2009).3 Thus, we also provide users with a further confidence interval for the identified

3Imbens and Manski (2004), Stoye (2009), Gafarov et al. (2018) and Granziera et al. (2018) focused on

inference over parameter; Giacomini and Kitagawa (2021) provided a valid confidence interval for the set;
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set.

Our proposal has two main limitations. First, while it can accommodate zero restrictions

on more shocks under some conditions, sign constraints can restrict a single shock only. It is

true that some applications sign-restrict more shocks. However, the empirical practice often

sign-constrains a single shock: among many others, see Uhlig (2005), Scholl and Uhlig (2008),

Baumeister and Hamilton (2018), Dedola et al. (2017) and Arias et al. (2019) for identifica-

tion of monetary policy shocks; Fujita (2011) identifies the effects of labour market shocks;

Beaudry et al. (2011) study the effects of sentiment shocks; the application of Amir-Ahmadi

and Drautzburg (2021) identifies news shocks; Dedola and Neri (2007), Peersman and Straub

(2009) and Mumtaz and Zanetti (2012) sign-restrict technology shocks; Mumtaz et al. (2018)

analyse the effects of credit supply shocks. Furthermore, estimation and inference frameworks

for sign-restricted impulse responses typically allow constraints on a single shock only; this ap-

plies to the frequentist machinery in Granziera et al. (2018) and the delta-method of Gafarov

et al. (2018). In principle, robust Bayesian approach of GK21 allows sign restrictions on more

shocks; in practice, the non-linear nature of the algorithm for inference makes the methodology

cumbersome as the number of constraints increases. Classical Bayesian approach in Arias et al.

(2018) accommodates restrictions on a multiplicity of shocks, but it is sensitive to the prior

specification, even asymptotically.

Second, when our framework is applied to Proxy SVARs, the instrument cannot be weak.

The intuition being that the latter would make the reduced-form gradient matrix of the con-

straints rank deficient, so that the Karush-Kuhn-Tucker conditions cannot be derived.

This article is also related to the literature providing estimation and inference for the shocks’

contribution to volatility in dynamic models. Early literature includes Lütkepohl (1990), who

presented delta-method intervals for the FEVD in point-identified SVARs. Our paper focuses

on set-identified SVARs. Phillips (1998) illustrated the FEVD asymptotics for nonstationary

VAR. Amisano and Giannini (1997) delivered the asymptotics for the FEVD in SVARs. Braun

and Mittnik (1993) analysed the effect of some VAR misspecifications on the FEVD estima-

tion, e.g. omitted variables, ignored moving average terms, incorrectly specified lag lengths, or

incorrect orthogonalization of innovations. Lanne and Nyberg (2016) relied on the well-known

generalized IRFs to propose generalized FEVD. Gorodnichenko and Lee (2020) presented an

estimator in local projections. Plagborg-Møller and Wolf (2022) proposed a frequentist proce-

dures for conducting inference in a general moving-average model with external instruments.

The framework they consider also includes set-identification.

Furthermore, this paper shares the spirit of the delta-method in Gafarov et al. (2018). They

provide inference for the set-identified IRFs, and the extension to the FEVD is practically

Plagborg-Møller andWolf (2022) proposed inference over the set, but suggested - in the practical implementation-

to adjust it for the parameter.
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feasible, but not recommended. The reason being that the FEVD at a given horizon is a non-

linear function of IRFs in previous periods. For each horizon, Gafarov et al. (2018) characterize

the upper and lower bounds of the IRFs by finding the optimal rotation matrix, i.e. structural

model. However, using their estimated IRFs as plug-in estimator for the FEVD implies that

the latter comes from a multiplicity of structural models (rotation matrices), resulting in a loss

of interpretability.4 Furthermore, some by-products of our paper include i) conditions under

which the toolkit in Gafarov et al. (2018) can accommodate zero restrictions on more shocks,

and ii) showing that adjusting the IRFs confidence interval in Gafarov et al. (2018) by the

set-length makes it uniformly, rather than point-wise, consistent.

The paper is organized as follows. Section 2 introduces the SVAR and econometric frame-

work. Section 3 delivers estimation, differentiability and inference for the FEVD in set-identified

SVARs. Section 4 presents the empirical application. Section 5 illustrates the Monte-Carlo sim-

ulations. Section 6 concludes. The appendices provide omitted proofs (Appendix A), further

findings from the empirical application (Appendix B) and additional simulation results (Ap-

pendix C).

2 Econometric Framework

2.1 SVAR

Consider a SVAR(p) model

A0yt = a+

p∑
j=1

Ajyt−j + ϵt (2.1)

for t = 1, . . . , T, where yt is an n× 1 vector of endogenous variables, ϵt an n× 1 vector white

noise process, normally distributed with mean zero and variance-covariance matrix In, Aj is

an n × n matrix of structural coefficient for j = 0, . . . , p. A0 has positive diagonal elements

(with sign normalisations), and is invertible. The initial conditions y1, . . . ,yp are given. Let

xt =
(
y′
t−1, . . . ,y

′
t−p

)′
and A+ = (A1, . . . ,Ap); we can write the SVAR(p) as

A0yt = a+A+xt + ϵt, (2.2)

with θ = (A0,A+) structural parameters. The reduced-form VAR is as follows:

yt = b+Bxt + ut, (2.3)

where b = A−1
0 a is an n× 1 vector of constants, Bj = A−1

0 Aj , ut = A−1
0 ϵt denotes the n× 1

vector of reduced-form errors. var(ut) = E(utu
′
t) = Σ = A−1

0 (A−1
0 )′ is the n × n variance-

covariance matrix of reduced-form errors. Assume that the reduced-form VAR is invertible into

an infinite-order moving average (VMA(∞)) process.

4The same critique applies to usage of the toolkit in Granziera et al. (2018) for estimation of the FEVD.
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We can reparameterize the VAR and write

yt = b+Bxt +ΣtrQεt, (2.4)

where Σtr denotes the lower triangular Cholesky matrix with non-negative diagonal coefficients

of Σ, Q ∈ Θ(n) is an n × n matrix and Θ(n) characterises the set of all orthonormal such

matrices. The mapping is the following: B = A−1
0 A+, Σ = A−1

0 (A−1
0 )′, and Q = Σ−1

tr A−1
0 ;

alternatively, A0 = Q′Σ−1
tr and A+ = Q′Σ−1

tr B. Sign normalisations on A0 correspond to

diag(Q′Σ−1
tr ) ≥ 0n×1. Thus, the VMA(∞) is

yt = b+

∞∑
h=0

Ch(B)ut−h = b+

∞∑
h=0

Ch(B)ΣtrQεt, (2.5)

with Ch(B) being the h-th term of (In −
∑p

h=1BhL
h)−1. The impulse response function of

variable i to the j-th shock at horizon h is

rijh = e′iCh(B)ΣtrQej = c′ih(ϕ)qj , (2.6)

where ei is the i-th column vector of In, qj is the j-th column of Q, c′ih(ϕ) represents the i-th

row vector ofCh(B)Σtr and ϕ collects the reduced-form parameters: ϕ ≡ (b′, vec(B)′, vech(Σ)′) ∈
Ξ ⊂ Rd. Note that vec(•) stacks the columns of any n × z matrix • to form a nz × 1 vector

(we sometimes use vech(•), vectorizing a n × n symmetric matrix • into a n(n+1)
2 × 1 vector)

and ⊗ is the Kronecker product. Finally, in this paper the notation “−1” refers to the inverse

for square matrices and the pseudo-inverse for non-square and/or reduced-rank matrices.

2.2 Forecast Error Variance Decomposition

The h-step ahead Forecast Error (FE) for a SVAR, as in equation (2.1), given all the data up

to t− 1, is FE(h) ≡ yt+h − yt+h|t−1. Thus, the FEV at horizon h is

FEV (h) ≡ E
[
(yt+h − yt+h|t−1)(yt+h − yt+h|t−1)

′] . (2.7)

As a result, the contribution of shock j to the FEV of variable i at horizon h is

FEV Dijh ≡
FEV i

j (h)

FEV i(h)
=

∑h
h̃=0

r2
ijh̃∑n

j=1

∑h
h̃=0

r2
ijh̃

, (2.8)

where FEV i
j (h) is the FEV of variable i due to shock j at horizon h, FEV i(h) denotes the

total FEV of variable i at horizon h, and 0 ≤ FEV Di
j(h) ≤ 1 by definition. Faust (1998) and

Uhlig (2004) showed that equation (2.8) can be written as

FEV Dijh = (Qej)
′Υi

h(ϕ)(Qej) = q′jΥ
i
h(ϕ)qj , (2.9)
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where Υi
h(ϕ) =

∑h
h̃=0

cih̃(ϕ)c′
ih̃
(ϕ)∑h

h̃=0
c′
ih̃
(ϕ)cih̃(ϕ)

is a symmetric positive semidefinite n× n real matrix.

The FEVD represents the contribution of the identified shock to explain the fluctuations

of the variables of interest over time. It is reported in any empirical application along with

IRFs and provides important economic information and can be also employed for identification

(Max Share approach). For local projections, the measure of shock importance is typically

the Forecast Variance Ratio (FVR) (Gorodnichenko and Lee, 2020; Plagborg-Møller and Wolf,

2022). While the two measures usually diverge (the FVR is based on the observables, while

the FEVD relies on all structural shocks), they are equivalent if all SVAR shocks are invertible,

e.g. there is no information asymmetry between agent and econometrician.5 This is why

the macroeconometric literature has mostly ignored the discrepancy between the two concepts.

Furthermore, while we impose stationarity, if the deviations from some equilibrium relationship

are stationary, e.g. Engle and Granger (1987), results of this paper apply to the FEVD of target

variables to the disturbances of the equilibrium.

Standard econometric literature mostly focuses on estimation and inference for IRFs; on

the other hand, this paper provides a toolkit targeting set-identified FEVD.

2.3 Set-Identification

Set-identification for structural parameters and their functions, such as FEV Dijh, arises when

reduced-form parameters ϕ cannot pin down a unique A0. Any A0 = Q′Σ−1
tr satisfies Σ =

A−1
0 (A−1

0 )′, so the identified set for A0 is {A0 = Q′Σ−1
tr : Q ∈ Θ(n)}, where Θ(n) is the set

of n× n orthonormal matrices. Identification therefore requires to placing a set of restrictions

on Q, i.e. reducing the set of feasible Qs to a subspace Q ∈ Θ(n). The identified set for the

FEVD would be

ISFEV D(ϕ) = {FEV Dijh : Q ∈ Q}. (2.10)

The following subsections describe the common identifying restrictions used for set-identification.

2.3.1 Zero Restrictions

Set-identifying zero restrictions include constraints on some off-diagonal elements of A0, on

the lagged coefficients Al for l = 1, . . . , p, on the contemporaneous responses A−1
0 , and on the

long-run responses (LIR =
∑∞

h=0Ch(B)ΣtrQ). All these constraints are linear restrictions

5For the formal definition of invertibility and related concepts, see Chapter 17 in Kilian and Lütkepohl (2017).
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on the columns of Q:

(i, j)th element of A0 = 0 ⇔ (Σ−1
tr ej)

′qi = 0 (2.11)

(i, j)th element of Al = 0 ⇔ (Σ−1
tr Blej)

′qi = 0 (2.12)

(i, j)th element of A−1
0 = 0 ⇔ (e′iΣ

−1
tr )qj = 0 (2.13)

(i, j)th element of LIR = 0 ⇔

[
e′i

∞∑
h=0

Ch(B)Σtr

]
qj = 0. (2.14)

Also, exogeneity conditions in Proxy SVARs can be characterized as exclusion restrictions on

the columns of the orthonormal matrix: E(mtε
′
t) = DΣtrQ =

[
0k×(n−k),Ψ

]
, where mt is

the k × 1 vector containing k instruments, D is a reduced-form k × n matrix coming from

the regression of mt on yt (first-stage regression) and Ψ is the k × k matrix representing the

strength of the instruments, i.e. the correlation between mt and the k instrumented shocks.6

7 The exogeneity restrictions between mt and a shock j can be expressed as

(1 : k, j)th elements of E(mtε
′
t) = 0 ⇔ DΣtrqj = 0. (2.15)

Thus, we can collect the zero restrictions as follows:

F (ϕ,Q) ≡


F1(ϕ)q1

...

Fn(ϕ)qn

 = 0(
∑n

i=1 fi)×1, Fi(ϕ): fi × n, (2.16)

where fi denotes the number of zero restrictions on shock i. In other words, each row of Fi(ϕ)

collects the coefficient vector of an exclusion constraints that restricts qi as in (2.11)-(2.15). If

fi = 0, there are no zero restrictions on qi and Fi(ϕ) does not exist.

2.3.2 Sign Restrictions

Sign constraints can be imposed alone or in addition to zero restrictions. Let shj denote the

number of sign restrictions on impulse responses at horizon h. The sign restrictions on shock

j are Shj(ϕ)qj ≥ 0, where Shj(ϕ) ≡ D̃hjCh(B)Σtr is a shj × n matrix and D̃hj is the

shj×n selection matrix that selects the sign-restricted responses from the n×1 response vector

Ch(B)Σtrqj . The nonzero elements of D̃hj can be equal to 1 or to -1 depending on the sign

of the restriction on the impulse response of interest. By considering multiple horizons, the

whole set of sign restrictions placed on the j−th shock is Sj(ϕ)qj ≥ 0. Specifically, Sj is a(
sj =

∑h̄j

h=0 shj

)
×n matrix defined by Sj(ϕ) =

[
S′
0j(ϕ), . . . ,S

′
h̄jj

(ϕ)
]′
. Let IS ⊂ {1, 2, . . . , n}

6The instruments are relevant if and only if rank(Ψ) = k.
7With instruments, ϕ includes the reduced-form parameters from the first-stage regression. We do not

formalize this to avoid heavier notation.

8



be the set of indices such that j ∈ IS if some of the impulse responses to the j-th structural

shock are sign-constrained. Thus, the set of sign restrictions on the shock j is

Sj(ϕ)qj ≥ 0, for j ∈ IS . (2.17)

With abuse of notation, let

S(ϕ,Q) ≥ 0 (2.18)

collect all sign restrictions Sj(ϕ)qj ≥ 0 for any j ∈ IS . Equation (2.18) also nests sign

constraints on structural objects other than impulse responses, e.g. Arias et al. (2019), ranking

restrictions in Amir-Ahmadi and Drautzburg (2021) and sign-restricted factor models (Amir-

Ahmadi and Uhlig, 2015; Korobilis, 2022; Stock and Watson, 2016).

2.3.3 The Identified Set for the FEVD

The identified set for the FEVD is

ISFEV D(ϕ) = {FEV Dijh : Q ∈ Q(ϕ|F ,S)}, (2.19)

where Q(ϕ|F ,S) is the set of Qs that satisfy the zero restrictions (2.16), sign restrictions (2.18)

and sign normalizations:

Q(ϕ|F ,S) = {Q ∈ θ(n) : S(ϕ,Q) ≥ 0,F (ϕ,Q) = 0, diag(Q′Σ−1
tr ) ≥ 0}. (2.20)

Definition of the endpoints for ISFEV D(ϕ) follows.

Definition 2.1 Given a vector of the reduced-form parameters ϕ, a shock of interest j∗,

lij∗h(ϕ) and uij∗h(ϕ) are the lower- and upper-bound of ISFEV D(ϕ), respectively:

lij∗h(ϕ) ≡ minQ(Qej)
′Υi

h(ϕ)(Qej) s.t. S(ϕ,Q) ≥ 0, F (ϕ,Q) = 0, diag(Q′Σ−1
tr ) ≥ 0

(2.21)

and

uij∗h(ϕ) ≡ maxQ(Qej)
′Υi

h(ϕ)(Qej) s.t. S(ϕ,Q) ≥ 0, F (ϕ,Q) = 0, diag(Q′Σ−1
tr ) ≥ 0,

(2.22)

where Q
′
Q = In. Recall that qj = Qej. From now on, q

j∗
and q̄j∗ denote the optimizers

corresponding to lij∗h(ϕ) and uij∗h(ϕ), respectively.

In this article, we consider constraints that make the model set-identified:

9



Assumption A1 (Set-Identification) Without loss of generality, order the variables such that

f1 ≥ . . . fn ≥ 0. In case of ties, order the shock of interest first. Condition fi ≤ n − i for all

i = 1, . . . , n with strict inequality for at least one i ∈ {1, . . . , n} must hold (Rubio-Ramirez

et al., 2010).

This assumption guarantees the set-identification of any structural object and its functions, e.g.

IRFs and FEVD. In a Proxy SVAR setting, with a single instrument (dim(mt) = 1) for a single

shock, set-identification for the whole Q arises when the instrument is free to be correlated with

two shocks at least for n ≥ 3 (plausibly exogenous instrument).8 With multiple instruments

for multiple shocks, for n ≥ 3 and 1 < k < n − 1 set-identification naturally arises for all

the columns of Q unless additional zero restrictions are imposed.9 Set-identification through

plausibly exogenous instruments, often combined with sign restrictions, is increasingly getting

common (Piffer and Podstawski, 2018; Braun and Brüggemann, 2022; Jarociński and Karadi,

2020; Ludvigson et al., 2021; Fusari, 2023; Caggiano et al., 2021; Caggiano and Castelnuovo,

2023).

The following assumption allows to derive the Karush-Kuhn-Tucker conditions when zero

restrictions are imposed on more shocks. If the assumption failed, the results of this paper

would still hold for settings where a single shock is zero-constrained.

Assumption A2 (Zero Restrictions) Assume the order of variable in Assumption A1 and let

j∗ denote the shock of interest. j∗ ≥ 2 and fi < n− 1 for all i = 1, . . . , j∗ − 1 must hold.

Lemma 2.1 technically proves why, under the previous assumption, we can use the Karush-

Kuhn-Tucker conditions; the intuition being that, if we are interested in shock j∗, Assumption

A2 guarantees that the set of FEV Dij∗h is affected by restrictions on qj∗ only, i.e. the Karush-

Kuhn-Tucker conditions are a function of the constraints on j∗ only.

Lemma 2.1 Suppose that Assumption A2 holds. Then zero restrictions on shocks 1, . . . , j∗ −
1, j∗ + 1, . . . , n− 1 leave the set of FEV Dij∗h unchanged for i = 1, . . . , n and h = 0, . . . .

Zero constraints on more shocks are typically imposed in Proxy SVARs. Let us focus on the

single instrument case -k = 1 for shock j∗-. Here, set-identification for the shock would imply

that the instrument is correlated with two shocks at least (including j∗): recalling restrictions

(2.15) delivers f1 = f2 = · · · = fj∗−1 = 1, fj∗ = fn = 0. Assumption A2 is satisfied for

n ≥ 3. Other than Proxy SVARs, it is hard to find applications with set-identification where

more shocks are zero-restricted; for example, the popular exercise in Arias et al. (2019) zero-

restricts monetary policy shock only. Thus, we believe that Assumption A2 covers most of the

8For k = 1 and exogenous instrument, fi = 1 for i = 1, . . . , n − 1 and fn = 0: columns q1, . . . , qn−1 are

set-identified, while qn is point-identified.
9For k = n− 1, f1 = n− 1 and fi = 0 for i = 2, . . . , n. As a result, q1 is point-identified; the other columns

are set-identified.
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empirically relevant cases. A by-product of Lemma 2.1 is that the toolkit in Gafarov et al.

(2018) can be employed with zero constraints on more shocks under Assumption A2.

Given a reduced-form parameters vector ϕ, we also assume that the identified set of the

FEVD is non-empty, i.e. identifying assumptions do not contradict each other and are not

rejected at ϕ.

Assumption A3 (Non-Emptiness) ISFEV D(ϕ) as defined in equation (2.19) is non-empty

at ϕ.

Relevant literature provides several frameworks to check for non-emptiness (Giacomini and

Kitagawa, 2021; Giacomini et al., 2022b; Amir-Ahmadi and Drautzburg, 2021; Uhlig, 2005;

Granziera et al., 2018; Arias et al., 2018).

Our characterization of the endpoints relies on using the Karush-Kuhn-Tucker conditions.

The following assumption is therefore needed:

Assumption A4 (Linear Independence) Given a constrained shock j∗, Fj∗(ϕ) and Sj∗(ϕ)

are linearly independent at ϕ.

This assumption is common in the relevant literature, e.g. Gafarov et al. (2018) and Giacomini

and Kitagawa (2021). To the best of our knowledge, Proxy SVARs with weak instruments

is the only empirically relevant setting where the assumption is not satisfied. The following

example illustrates our reasoning.

Example 2.1 (Weak Proxy) Suppose that there are no sign restrictions and the only zero

restrictions come from set-identifying exogeneity constraints. In this case, we would have

Fj∗(ϕ) = DΣtr, (2.23)

where Fj∗(ϕ) is a k × n matrix. The relevance condition rank(Ψ) = k holds if and only if

rank(D) = k. Suppose that the instrument is weak. This leads to

rank(Ψ) < k ⇒ rank(D) < k ⇒ rank(DΣtr) < k. (2.24)

because rank(DΣtr) ≤ min{rank(D), rank(Σtr)}. This implies that Fj∗(ϕ) is rank deficient

and Assumption A4 fails.

3 Estimation and Inference for Set-Identified FEVD

This section describes the main results. Section 3.1 provides the characterization of the FEVD

endpoints and proposes a consistent estimator. Section 3.2 proves the differentiability of the

endpoints. Section 3.3 (i) constructs a set-length adjusted delta-method confidence interval

that is both uniformly consistent in level and has asymptotic Bayesian interpretation and (ii)

proposes a further confidence interval for users mostly interested in the inference over the set

of the FEVD (rather than the FEVD itself).
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3.1 Estimation

Proposition 3.1 characterizes the set of the FEVD up to a set of active, i.e. binding, constraints.

To put it another way, if we knew the active constraints, we would be able to characterize the

set of the FEVD. As a result, evaluating the set at different active constraints and checking

the primal feasibility leads to the optimizers and endpoints of the FEVD for problems in (2.21)

and (2.22) (Theorem 3.1).

First, let us introduce some more definitions. Let r(ϕ) be the m× n matrix collecting the

gradient vectors of the m constraints that are active at an optimizer of problem (2.21)-(2.22).

The m rows of r(ϕ) consist of the fj∗ rows of the matrix Fj∗(ϕ) and srj∗ out of the sj∗ rows

from Sj∗(ϕ), i.e. m = fj∗ + srj∗ . In particular, there are
∑min(n−1−fj∗ ,sj∗ )

i=0
sj∗ !

i!(sj∗−i)! possible

combinations of active constraints, i.e. possible ways to construct r(ϕ).

Definition 3.1 Assume that a single shock j∗ is sign-constrained and r(ϕ) collects the gradient

vectors of the active constraints. lij∗h(ϕ, r) and uij∗h(ϕ, r) are defined as follows:

lij∗h(ϕ, r) ≡ minqj∗q
′
j∗Υ

i
h(ϕ)qj∗ s.t. r(ϕ)qj∗ = 0, (3.1)

and

uij∗h(ϕ, r) ≡ maxqj∗q
′
j∗Υ

i
h(ϕ)qj∗ s.t. r(ϕ)qj∗ = 0, (3.2)

where q′j∗qj∗ = 1. Let q
j∗
(r) and q̄j∗(r) denote the optimizer of problem (3.1) and (3.2),

respectively.

The next Proposition solves the quadratic programming in (3.1) and (3.2).

Proposition 3.1 Suppose that Assumptions A1-A4 hold and a single shock j∗ is sign-constrained.

Then

uij∗h(ϕ, r) = λmax(ϕ, r) = max{λ1(ϕ, r), . . . , λn(ϕ, r)}, (3.3)

with

det [Z(ϕ, r)− λτ (ϕ, r)In] = 0 for all τ = 1, . . . , n (3.4)

and

q̄j∗(r) = ±eignvct(λmax(ϕ, r),Z(ϕ, r)), (3.5)

where Z(ϕ, r) = [In − P (ϕ, r)]Υi
h(ϕ), P (ϕ, r) = r(ϕ)′ [r(ϕ)r(ϕ)′]−1 r(ϕ) and q̄j∗(r) is the

eigenvector associated to λmax(ϕ, r). We can obtain the minimum as follows:

lij∗h(ϕ, r) = λmin(ϕ, r) = min{λ1(ϕ, r), . . . , λn(ϕ, r)} for λmin(ϕ, r) ̸= 0.

12



For λmin(ϕ, r) = 0:

lij∗h(ϕ, r) =

0 if ∃qj∗ |FEV Dij∗h = 0

λ+
min(ϕ, r) otherwise,

(3.6)

where λ+
min(ϕ, r) is the smallest non-zero eigenvalue.

In other words, the bounds of the FEVD subject to active constraints are given by the

maximum and minimum eigenvalues of the n × n matrix Z(ϕ, r). Note that, in absence of

constraints, Z(ϕ, r) ≡ Υi
h(ϕ). Given the characterization of the bounds as eigenvalues, an

associated feasible eigenvector can be found, i.e. both eignvct(λmax(ϕ, r),Z(ϕ, r)) and

−eignvct(λmax(ϕ, r),Z(ϕ, r)) are associated to the same eigenvalue. For λmin(ϕ, r) = 0, the

Karush-Kuhn-Tucker conditions are not always satisfied. As a result, if a column vector qj

delivering FEV Dij∗h = 0 does not exist, the lower bound is given by the smallest non-zero

eigenvalue. On the other hand, λmax(ϕ, r) ̸= 0 from Assumption A1.

In the technical proof, we rely on Rao (1964) to show that the eigenvalues of Z(ϕ, r) are

equivalent to those of the symmetric matrix

Z̃(ϕ, r) = Υi
h(ϕ)

1
2 [In − P (ϕ, r)]Υi

h(ϕ)
1
2

′
. (3.7)

In practice, we can use Z̃(ϕ, r) for the calculation of the eigenvalues of Z(ϕ, r). On top of

obvious computational gains, this will allow us to derive the differentiability of the endpoints

(Section 3.2). The relationship between the optimizer q̄j∗(r) and the eigenvector ¯̃qj∗(r) of

Z̃(ϕ) is the following:

q̄j∗(r) ={¯̃q′j∗(r)
[
Υi

h(ϕ
)
]−1¯̃qj∗(r)}

[
Υi

h(ϕ)
]− 1

2 ¯̃qj∗(r). (3.8)

For n ≤ 4, the extreme eigenvalues are analytically available by solving the characteristic

polynomial for Z̃(ϕ, r). For n > 4, generally this is not the case; we can use the hypergeometric

functions10 to get an analytical solution or, more conveniently, we can approximate it by using

well-established numerical methods for eigenvalues.

Given the Proposition 3.1, we can obtain the solution to the full problems (2.21) and (2.22)

as follows: compute the maximum and minimum eigenvalues (and the associated eigenvectors)

for all possible P (ϕ, r) matrices, i.e. for all possible combination of active constraints. The

endpoints of the FEVD are the largest and smallest eigenvalues,11 while the associated eigen-

vector satisfying the inactive constraints is the optimizer. The next Theorem formalizes this

result.

10See the survey in Erdélyi et al. (1953) and Daalhuis (2010).
11For λmin(ϕ, r) = 0, condition in (3.6) applies.
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Theorem 3.1 Suppose that Assumptions A1-A4 hold and a single shock j∗ is sign-constrained.

Then

uij∗h(ϕ) = maxr(ϕ)uij∗h(ϕ, r) (3.9)

and

q̄j∗ = eignvct(uij∗h(ϕ),Z(ϕ)), (3.10)

where q̄j∗ ∈ Q(ϕ|F ,S), Z(ϕ) ≡ Z(ϕ, r∗), r∗(ϕ) = argmaxr(ϕ)uij∗h(ϕ, r). lij∗h(ϕ) and q
j∗

can be obtained similarly.

Previous results are expressed in population values, e.g. ϕ. We now turn our attention to the

estimation. Let→p denote the standard convergence in probability; let̂represent the estimated

values; let P denote a data-generating process (DGP).

Assumption A5 (Simple eigenvalues) The algebraic multiplicity of the eigenvalues delivering

uij∗h(ϕ) and lij∗h(ϕ) is equal to 1.

The assumption above guarantees that uij∗h(ϕ) is a simple, i.e. unique, eigenvalue. The same

applies to lij∗h(ϕ). Finding non-simple eigenvalues is usually very uncommon. Let us stress

that we require the simplicity of the extreme eigenvalues only, without excluding the possibility

of multiplicities for the n−2 eigenvalues of each of all the other possible combinations of active

constraints.

Proposition 3.2 If Assumptions A1-A5 hold, a single shock j∗ is sign-constrained and ϕ̂ →p

ϕ(P ), then

uij∗h(ϕ̂) →p uij∗h(ϕ(P )). (3.11)

The same applies to lij∗h(ϕ̂).

The proof in the Appendix A relies on basic statistics as long as the reduced-form estimator is

consistent and T ≫ n. The latter is fairly uncontroversial in SVARs, so we did not explicit it as

a formal assumption. Should not this be the case, results from Principal Component Analysis

literature can be evoked to get consistency. It is also possible to show that, if Assumption A5

failed, Proposition 3.2 would still hold.12 However, that assumption simplifies the proof and is

needed for the differentiability result.

12We would like to thank Henrique Castro-Pires for pointing that out.
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3.2 Differentiability

This section presents the differentiability of the FEVD endpoints. It is a novel result in the

literature; it is interesting per se and instrumental to construct a delta-method confidence

interval. Also, a by-product of this finding is that the robust Bayesian approach in GK21 has

frequentist validity when applied to the FEVD. In order to derive the differentiability of FEVD

endpoints, we require one more condition.

Assumption A6 (Differentiability) Fj∗(ϕ) and Sj∗(ϕ) are differentiable at ϕ.

This is a very standard smoothness assumption we share with, among others, Gafarov et al.

(2018) and GK21. We are unaware of any identifying constraints that do not meet this condi-

tion.

Our differentiability result is based on the intuition of Magnus (1985): under uniqueness

of eigenvalues, the implicit function theorem states that there is a neighborhood of ϕ where

uij∗h(ϕ) and lij∗h(ϕ) and the associated optimizers exist and are continuously differentiable.

This consideration, combined with the application of the chain rule, delivers the result in

Theorem 3.2, which holds for FEV Dij∗h ∈ (0, 1).

Theorem 3.2 Suppose that the Assumptions A1-A6 hold and a single shock j∗ is sign-constrained.

Then uij∗h(ϕ) is differentiable, with

∂uij∗h(ϕ)

∂ϕ
= ¯̃q

′
j∗ ⊗ ¯̃q

′
j∗
∂vec(Z̃(ϕ))

∂ϕ
, (3.12)

where Z̃(ϕ) ≡ Z̃(ϕ, r∗).

Section 3.3 builds upon Theorem 3.2 to present a confidence interval for FEV Dij∗h. Also,

the theorem above leads to prove that the robust Bayesian approach in GK21 has frequentist

validity when applied to the FEVD.

Giacomini and Kitagawa (2021). Under some regularity conditions, frequentist validity

of the robust Bayesian toolkit in GK21 requires ISFEV D(ϕ) to be convex, continuous and

differentiable (at ϕ). Under the restrictions considered in this paper, ISFEV D(ϕ) is convex as

long as is non-empty, i.e. ISFEV D(ϕ) is convex whenever the set for rij∗h, i.e. IRF, is convex

(formally, see Section 3.1 in Giacomini et al. (2022a)). Continuity requires mild and easily

verifiable conditions on the reduced-form matrix of zero and sign restrictions (Proposition B2 in

the Appendix of GK21 and the consideration that, given ϕ, the set for FEV Dij∗h is continuous

whenever the set for rij∗h is continuous). We provide the missing piece, i.e. differentiability,

under which the robust credible interval in GK21 is an asymptotically valid confidence set for the

true identified set. The next corollary formalizes the result. Let →as and →d denote the almost

sure convergence and convergence in distribution; CIGK
α is the credible region with credibility

α proposed in GK21.
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Corollary 3.1 Suppose that Assumptions A1-A6 hold,
∂uij∗h(ϕ)

∂ϕ and
∂lij∗h(ϕ)

∂ϕ are different

from zero, a single shock j∗ is sign-constrained, ϕ̂ →as ϕ(P ), and the posterior of ϕ and the

sampling distribution of ϕ̂ are
√
T -asymptotically normal with an identical covariance matrix

Ω:
√
T (ϕ(P )− ϕ̂)|y1, . . . ,yT →d N(0,Ω(P )) as T → ∞,

√
T (ϕ̂− ϕ(P ))|ϕ(P ) →d N(0,Ω(P )) as T → ∞.

Then CIGK
α is an asymptotically valid frequentist confidence set for ISFEV D(ϕ(P )):

limT→∞Pr(ISFEV D(ϕ(P )) ⊂ CIGK
α ) = 1− α. (3.13)

Unlike Imbens and Manski (2004), Stoye (2009), Gafarov et al. (2018), Gafarov et al. (2016),

Granziera et al. (2018) and this paper, the frequentist coverage in the approach of GK21 is

for the true identified set rather than for the true value of the parameter, i.e. FEV Dij∗h.

This implies that CIGK
α is asymptotically wider than our proposal of confidence interval for

FEV Dij∗h. Also, Corollary 3.1 shows point-wise coverage for CIGK
α , while the next section

establishes uniform coverage for our confidence interval.

3.3 Inference

This section proposes a delta-method interval for FEV Dij∗h, showing that it has asymptotically

frequentist validity and Bayesian equivalence:

CIα ≡
[
lij∗h(ϕ̂OLS)− cασ̂lij∗h/

√
T , uij∗h(ϕ̂OLS) + cασ̂uij∗h/

√
T
]
, (3.14)

where ϕ̂OLS ≡ (b̂′OLS , vec(B̂OLS)
′, vech(Σ̂OLS)

′) is the OLS estimator of ϕ. In particular,

B̂OLS ≡
(

1
T

∑T
t=1 ytx

′
t

)(
1
T

∑T
t=1 xtx

′
t

)−1
, Σ̂OLS ≡ 1

T−np−1

∑T
t=1 ûtû

′
t, b̂OLS = ȳt − B̂OLSx̄t,

with ût ≡ yt − b̂OLS − B̂OLSxt, and ȳt and x̄t being the sample means. Our formula for the

standard errors is the following:

σ̂uij∗h =

[(
∂uij∗h(ϕ̂OLS)

∂ϕ̂OLS

)
Ω̂

(
∂uij∗h(ϕ̂OLS)

∂ϕ̂OLS

)′] 1
2

, (3.15)

where Ω̂ is the estimated variance-covariance matrix of ϕ13 and σ̂lij∗h is defined similarly. We

propose cα solving the following:

Φ

(
cα +

√
T ∆̂ij∗h

max{σ̂lij∗h, σ̂uij∗h}

)
− Φ (−cα) = 1− α, (3.17)

13A formula for Ω̂ under non-serial correlation (but heteroskedasticity) of ut is

Ω̂ ≡ 1

T

T∑
t=1

[
vec(ûtx

′
t)

′, vech(ûtû
′
t − Σ̂)′

]′ [
vec(ûtx

′
t)

′, vech(ûtû
′
t − Σ̂)′

]
. (3.16)

The formula above can be adjusted to take into account serial correlation.
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where Φ(•) is the standard normal cumulative distribution evaluated at • and ∆̂ij∗h = uij∗h(ϕ̂OLS)−
lij∗h(ϕ̂OLS) is the estimated length of the identified set.

In studying the asymptotic properties of the confidence interval (Section 3.3.1 and 3.3.2),

we rule out the case where the partial derivatives are zero. This corresponds to degenerate

zero-covariance Normal distribution, e.g. bounds of the set, where the coverage can be non-

optimal. This is common for any interval-based inference rather than being a specific feature

of our toolkit.

3.3.1 Frequentist Coverage

Frequentist coverage result requires the asymptotic normality of ϕ̂OLS and the consistency of

its variance-covariance matrix.

Assumption A7 (Asymptotic Normality) OLS estimators uniformly satisfy

√
T (ϕ̂OLS − ϕ(P )) →d N(0,Ω(P )), (3.18)

Ω̂ →p Ω(P ). (3.19)

In practice, we are proposing an adjusted (by the length of the set) delta-method interval

for a parameter bounded by extreme eigenvalues.14 Given the arguments in Imbens and Manski

(2004) and Stoye (2009), the identified set length adjustment is the key to show that, under some

conditions, CIα is uniformly consistent, i.e. limT→∞ inf infFEV Dij∗h(P )∈IS(ϕ(P ))Pr(FEV Dij∗h(P ) ∈
CIα) = 1− α.

We focus on the structural object (parameter) of interest, i.e. FEV Dij∗h, not its set. GK21

derived asymptotic point-wise coverage for the identified set rather than for the structural

object. As a result, their frequentist coverage is asymptotically more conservative for the

FEVD than our confidence interval. On the other hand, in finite samples, the Monte-Carlo

exercise shows the coverage of their approach for the FEVD is problematic.

For set-identified impulse responses, Gafarov et al. (2018) generated delta-method point-

wise consistent confidence intervals. In principle, users could take advantage of the relationship

between IRFs and FEVD, e.g. equation (2.8), and construct a plug-in estimator and confidence

interval for the FEVD from Gafarov et al. (2018). However, this is not to recommend: the

FEVD at a given horizon is a non-linear function of IRFs in previous periods. For each

horizon, Gafarov et al. (2018) characterize the endpoints of the IRFs by finding the optimal

rotation matrix, i.e. structural model. The plug-in estimator for the FEVD would come from

14Rao (1973) was the first one to present the delta-method for eigenvalues analysis. Further references include

Carter et al. (1986), who produced a conservative Scheffé-type interval; Carter et al. (1990) introduced the

delta-method for stationary points of a quadratic response surface; Peterson (1993) discussed the inference for

eigenvalues subject to constraints; Bisgaard and Ankenman (1996) introduced a 2-regression approach delivering

confidence intervals asymptotically equivalent to the delta-method inference proposed by Carter et al. (1990).
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a multiplicity of structural models (rotation matrices), resulting in a loss of interpretability.

The same would apply to the usage of the toolkit in Granziera et al. (2018) for estimation of

the FEVD.

The following theorem formalizes the uniform consistency of CIα:

Theorem 3.3 In a compact subset of Ξ, suppose that Assumptions A1-A7 hold and
∂uij∗h(ϕ̂OLS)

∂ϕ̂OLS

and
∂lij∗h(ϕ̂OLS)

∂ϕ̂OLS
are different from zero. We obtain

limT→∞ inf infFEV Dij∗h(P )∈IS(ϕ(P ))Pr(FEV Dij∗h(P ) ∈ CIα) = 1− α. (3.20)

The proof builds upon the uniform convergence in distribution of the delta-method under the

conditions in Kasy (2018) and the arguments in Imbens and Manski (2004) and Stoye (2009).

Our toolkit focuses on inference over single scalars. However, Inoue and Kilian (2022)

stressed that this approach can be invalid because it ignores the mutual dependence of the

structural object of interest (in this case, FEVD) across variables and horizons. Applying a

standard Bonferroni correction, e.g. Bisgaard and Ankenman (1996), would easily provide joint

inference.

Gafarov et al. (2018). While Gafarov et al. (2018) showed that a standard delta-method con-

fidence interval for response functions rijh is point-wise consistent, we argue that the following

adjusted delta-method confidence interval for response functions is uniformly consistent:

CIrα ≡
[
lrij∗h(ϕ̂OLS)− crασ̂l

r
ij∗h/

√
T , urij∗h(ϕ̂OLS) + crασ̂u

r
ij∗h/

√
T
]
, (3.21)

where lrij∗h(ϕ̂OLS), urij∗h(ϕ̂OLS), σ̂l
r
ij∗h, and σ̂u

r
ij∗h are the bounds of rijh and the standard

errors as derived in Gafarov et al. (2018). While they consider a standard critical value, we

propose to take set-length into account:

Φ

(
crα +

√
T ∆̂r

ij∗h

max{σ̂r
lij∗h, σ̂

r
uij∗h}

)
− Φ (−crα) = 1− α, (3.22)

where ∆̂r
ij∗h is the estimated length of the identified set for the impulse response function rij∗h.

Under a standard critical value, the confidence interval is point-wise consistent. The next

corollary formalizes that the adjusted critical value delivers a uniformly consistent CIrα.

Corollary 3.2 In a compact subset of Ξ, suppose that Assumptions A1, A2, A3, A4, A6, A7

hold and the derivatives of the endpoints of rij∗h are non-zero. We obtain

limT→∞ inf infrij∗h(P )∈ISr(ϕ(P ))Pr(rij∗h(P ) ∈ CIα) = 1− α, (3.23)

where ISr(ϕ(P )) is the identified set for rij∗h(P ).
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3.3.2 Bayesian Interpretation

We now turn our attention to the Bayesian interpretation of the proposed confidence interval:

under some conditions over the prior distribution of the reduced-form VAR, the posterior

bounds of the FEVD are asymptotically centered at uij∗h(ϕ̂OLS) and lij∗h(ϕ̂OLS). Empirical

macroeconomists usually employ Bayesian methods, so we believe that a Bayesian reading of

our toolkit can be useful to practitioners.

Let P ∗
θ denote a prior distribution for the structural parameters θ. It is well-established

that P ∗
θ ≡ P ∗

ϕP
∗
Q|ϕ, where P ∗

ϕ and P ∗
Q|ϕ are the prior specification for ϕ and Q|ϕ, respectively.

P(P ∗
ϕ) represents the class of prior distributions such that ϕ∗ ∼ P ∗

ϕ.

We assume that P ∗
ϕ and the DGP P satisfy the Bernstein-von Mises Theorem in probability

(Ghosal et al., 1995).

Assumption A8 (Bernstein-von Mises Theorem)

supBO∈BO(Rd)

{
P ∗
ϕ

(√
T (ϕ∗ − ϕ̂OLS) ∈ BO|y1, . . . ,yT

)
− P(ξ(P ) ∈ BO)

}
→p 0,

(3.24)

where ξ(P ) ∼ N(0,Ω(P )) and BO(Rd) is the set of all Borel measurable sets in Rd.

This assumption is fairly unrestrictive: in a VAR setting, if the reduced-form errors are i.i.d.

Gaussian and P ∗
ϕ is continuous at ϕ, Assumption A8 is met.15 For example, researchers often

use a Normal-Inverse Wishart prior on ϕ with Gaussian i.i.d. errors. While we fully recognize

that non-Gaussian SVAR is an interesting literature, that is mostly employed for achieving

point-identification.

The next Theorem formally establishes the asymptotic equivalence between our frequentist

setting and a Bayesian framework:

Theorem 3.4 Suppose that Assumptions A1-A8 hold. Then

supBO∈BO(Rd)

{
P ∗
ϕ

(
√
T

([
lij∗h(ϕ

∗)

uij∗h(ϕ
∗)

]
−

[
lij∗h(ϕ̂OLS)

uij∗h(ϕ̂OLS)

])
∈ BO|y1, . . . ,yT

)
−P(ξ̃(P ) ∈ BO)

}
→p 0,

(3.25)

where ξ̃(P ) ∼ N

(
0,

[
σ2
lij∗h(P ) 0

0 σ2
uij∗h(P )

])
.

3.3.3 Inference Over the Identified Set

Note that the confidence interval (3.14) is not necessarily valid if the user is interested in

inference over the set. As a result, this section proposes an alternative confidence interval,

15See Theorem 1 and 2 in Ghosal et al. (1995).
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which is asymptotically valid for the set of FEVD (but conservative for the FEVD itself). This

naively corresponds to consider the critical value from a standard Normal distribution, i.e.

critical value without any adjustment:

CI∗α ≡
[
lij∗h(ϕ̂OLS)− c∗ασ̂lij∗h/

√
T , uij∗h(ϕ̂OLS) + c∗ασ̂uij∗h/

√
T
]
, (3.26)

where Φ (c∗α) − Φ (−c∗α) = 1 − α. A simple Bonferroni argument shows that the confidence

interval in (3.26) (i) is asymptotically valid for the set, i.e. it has asymptotic coverage of at

least 1 − α, and (ii) is conservative for the parameter. We refer the technical reader to the

argument in Imbens and Manski (2004) and Stoye (2009) for the formal statement of the result.

The Monte-Carlo simulation provides some evidence that those features tend to hold in finite

samples as well.

4 Empirical Application

We illustrate our toolkit with an empirical application based on a combination of sign and zero

restrictions on the IRFs. In particular, we identify an expansionary unconventional monetary

policy (QE, Quantitative Easing) shock in the US following the application in Gafarov et al.

(2018), based on monthly data sourced from Gertler and Karadi (2015) that span the period

July 1979 until August 2008. The variables included in the model, along with the identifying

restrictions, are listed in Table 1. All variables are in first-differences, and Consumer Price

Index and Industrial Production are included in logs.16

Variable Impact Restrictions Notation

Consumer Price Index (CPIt) ≥ 0 (e′
1Σ

−1
tr )q1 ≥ 0

Industrial Production (IPt) ≥ 0 (e′
2Σ

−1
tr )q1 ≥ 0

Fed Funds Rate (FFt) = 0 (e′
3Σ

−1
tr )q1 = 0

2 Year Treasury Yield (2Y Tt) ≤ 0 (e′
4Σ

−1
tr )q1 ≤ 0

Table 1: Set-Identification of an Unconventional Monetary Policy Shock

We impose that an expansionary QE shock generates a non-positive response for 2 year Treasury

yields. On the contrary, CPI inflation and Industrial production are assumed to respond

non-negatively, while the Fed Funds rate is assumed to not respond at all on impact. This

identification scheme yields 7 different possible combinations of binding restrictions. Using

these to derive Z(ϕ, r) never results in an empty set when taking the eigen-decomposition,

satisfying Assumption A3. Additionally, the matrices P (ϕ, r) are found to always be full

16The data can be obtained from the Gertler and Karadi (2015) replication package, available online. As in

Gertler and Karadi (2015) and Gafarov et al. (2018), the number of lags is set equal to p = 12.

20



rank, implying that the binding restrictions are always linearly independent at ϕ. As a result,

Assumption A4 also holds.

Figure 1: Estimated Bounds vs. Mean Under Uniform Prior on Q.

Figure 1 compares our approach with the standard Bayesian method, i.e. uniform prior on

the rotation matrices Q.17 Overall, under our tooklit the estimated intervals are quite large

and range from 0 to almost 1 on impact, with the exception of for the Fed Funds rate, which

is zero by assumption. While the lower bounds remain close to zero for all horizons, the upper

bounds decrease over time in most cases. After 40 periods, an unconventional monetary policy

shock explains between 0% and 90% of the FEVD of industrial production and prices, while

its contribution to the FEVD of financial variables is in general smaller.

As stressed by Baumeister and Hamilton (2015), the use of a uniform prior on Q does not

imply that its elements are uniformly distributed over the identified set. The likelihood does

not in fact depend on Q and this prior is thus not updated by the data. Although uniform, it

might be informative for objects of interest as FEVD, even asymptotically. Unsurprisingly, our

confidence intervals (Figure 2) are significantly larger. To put it another way, the gap between

the confidence sets of the two approaches in Figure 2 can be viewed as a way of quantifying the

sensitivity of the standard Bayesian inference to the choice of unrevisable prior. We therefore

conclude that, under the standard Bayesian approach, the estimation of the FEVD is mostly

driven by the unrevisable prior on Q rather than identifying constraints.

17For the reduced-form parameters, an uninformative Normal-Inverse Wishart prior is used.
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Figure 2: 68% Delta-Method Confidence Interval vs 68% Highest Posterior Density Region

Under Uniform Prior on Q.

In Table 2, we present the precise estimates of the objects plotted in Figure 1 and 2, for

selected horizons. In particular, the left panel shows the estimated bounds, while the right

panel shows the 68% delta-method interval.

Estimated Bounds Delta-Method 68% CI

h = 0 h = 12 h = 40 h = 0 h = 12 h = 40

CPIt [0.00,0.95] [0.00,0.81] [0.00,0.78] [0.00,0.96] [0.00,0.85] [0.00,0.83]

IPt [0.00,1.00] [0.00,0.85] [0.00,0.85] [0.00,1.00] [0.00,0.88] [0.00,0.90]

FFt [0.00,0.82] [0.00,0.57] [0.00,0.51] [0.00,0.84] [0.00,0.64] [0.00,0.60]

2Y Tt [0.00,0.00] [0.00,0.14] [0.00,0.25] [0.00,0.00] [0.00,0.18] [0.00,0.33]

Table 2: Estimated Bounds and Delta-Method 68% Confidence Interval.

When comparing our framework with the robust Bayesian approach in GK21, the results

become relatively more similar as we increase the number of draws of Q for the framework in

GK21. This is expected as our toolkit has an asymptotic Bayesian interpretation. However, in

order to reduce the high computational costs of the procedure in GK21, in practice researchers

tend to limit significantly the number of draws, introducing substantial bias. Constructing the

bounds using the delta-method approach outlined in this paper takes 19s, in comparison to

4, 086s for the GK21 algorithm with 10, 000 draws for the rotation matrix, and 375s for 1, 000

draws.18 We stressed that using a plug-in estimator for the FEVD from Gafarov et al. (2018)

18We implement it by using 1, 000 draws from the reduced-form posterior. Computational times are measured
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is unwise; Figure B.10 in the Appendix shows the dramatic difference with our approach.

Finally, the large identification uncertainty implied by the identification strategy in this

application is confirmed by the identified sets for the IRFs, reported in Figure B.11 in the

Appendix.

5 Monte-Carlo Evidence

We conduct a Monte-Carlo exercise to illustrate the coverage of our delta-method interval in

finite samples. We draw ϕ directly from a multivariate normal distribution when assessing fre-

quentist coverage, which has the advantage of directly enforcing Assumption A7. The moments

of the distribution are set at their estimated values from the empirical application, which is

our DGP. T is set to be 341 to mirror the number of periods (months) in the application. For

the robust Bayesian credibility, we use an uninformative Normal-Inverse Wishart prior for ϕ,

and draw from the posterior distribution. In both cases, we set 1 − α = 0.68, and compute

10,000 draws of ϕ̂. In addition, to account for any small sample bias, we implement the bias

correction used in Gorodnichenko and Lee (2020).19

Figure 3: Monte-Carlo Exercise: Frequentist Coverage.

For each draw of ϕ̂, the delta-method interval is constructed as detailed in equation (3.14).

by running Matlab R2023b on a standard quad-core laptop @2.40GHz IntelCore i5. Also, GK21 provide two

algorithms for their approach; we rely on the quicker of the two, so it provides a fairer comparison.
19Accounting for the small sample bias helps illustrate the coverage properties of our approach. However, as

shown in Figure B.9 in the Appendix, this only marginally alters the estimated bounds. For this reason, in

Section 4, we use the non-bias corrected bounds when comparing them with alternative approaches.
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Coverage is then assessed to be the proportion of these intervals which contain the estimated

bounds from the empirical application. In the main text we focus on the coverage of the

estimated upper bound. As the FEVD is bounded between zero and one, the distribution is

truncated. Given that in the DGP (the application in Section 4) the lower bound is always very

close to zero, its coverage is less interesting. Also, the coverage at the boundaries is expected

to be affected by this truncation. It is well-known in the literature about interval-defined

parameters that the coverage close to the boundaries should be interpreted with a pinch of salt

(see, for example, Gorodnichenko and Lee (2020)). Thus, we store illustration of coverage for

the lower bound in Appendix C.

Frequentist coverage, reported in Figure 3, is shown to be correct. The exception is for the

Federal Funds Rate on impact, where the imposed zero restriction ensures a coverage of one by

definition. Note that in the very few periods where the coverage is slightly below the nominal

level, the bounds in the DGP are extremely close to the boundaries. Figure 4 shows that the

set-length correction is the key to obtain the correct non-conservative coverage.

Figure 4: Monte-Carlo Exercise: Frequentist Coverage With and Without Set-Length Correction to

the Critical Value (FEVD).

In addition, for the upper bound of the IRFs, Figure 5 demonstrates that the set-length

correction is also the key to obtaining good coverage for IRFs by adjusting the confidence

interval in Gafarov et al.’s (2018). The red line represents the coverage for the IRFs induced

by the confidence interval in Gafarov et al.’s (2018); the blue line displays the coverage of

our proposed interval for the IRFs (equation 3.21). Figure C.14 in the Appendix reports the

coverage for the lower bound of the IRFs.

24



Figure 5: Monte-Carlo Exercise: Frequentist Coverage With and Without (Gafarov et al.’s (2018))

Set-Length Correction to the Critical Value (IRFs).

For those readers interested in the inference over the identified set, Figure 6 confirms the

discussion in Section 3.3.3: i) our proposed confidence interval for the inference over the set

(equation 3.26, red line in Figure 6) is valid and ii) confidence intervals targeting parameters

are likely to be invalid for the set (blue line).

Figure 6: Monte-Carlo Exercise: Frequentist Coverage over the set With and Without Set-Length

Correction to the Critical Value (FEVD).
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Furthermore, Figure 7 displays that the frequentist coverage for the upper bound of the

Robust Bayesian interval in GK21, which is valid for the set of FEVD (see Corollary 3.1 above),

is mostly invalid when the object of interest is the FEVD itself. Appendix C i) provides details

about the computation of the coverage for the approach in GK21 and ii) shows the coverage

for the lower bound (Figure C.15).

Figure 7: Monte Carlo Exercise: Coverage of GK’s Robust Credible Interval.

Finally, we compute the robust Bayesian credibility of our delta-method interval based on

an uninformative Normal-Inverse Wishart prior (Figure 8). The former is shown to be larger

than the nominal level in most of the cases. Thus, Theorem 3.4, which states the asymptotic

equivalence between our method and a Bayesian approach, also has some validity in finite

samples.
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Figure 8: Monte-Carlo Exercise: Robust Bayesian Credibility.

6 Conclusion

This paper provides a toolkit for estimation and inference of the FEVD for set-identified SVARs,

while the literature mostly focuses on IRFs. It overcomes the well-known problem of having a

prior distribution that cannot be updated in the standard Bayesian approach. We derive the

bounds as the extreme eigenvalues of a symmetric reduced-form matrix coming from quadratic

programming. We prove the differentiability of the endpoints and construct a delta-method

confidence interval adjusted by the length of the identified set. This is uniformly consistent

in level and recovers asymptotic Bayesian credibility. We also provide conditions under which

a similar adjustment can be applied to the IRFs. In finite samples, a Monte-Carlo exercise

demonstrates that our approach has good coverage and outperforms alternatives. An applica-

tion based on the identification of unconventional monetary policy shocks illustrates our toolkit

and its computational convenience.
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Appendix to: “Estimation and Inference of the Forecast Error

Variance Decomposition for set-identified SVARs”

The Appendix contains omitted proofs (Appendix A), further findings from the empirical ap-

plication (Appendix B) and additional simulation results (Appendix C).

A Omitted Proofs

Proof of Lemma 2.1.

Conditions of Proposition 2.1 are equivalent to the assumptions of Proposition B1, (ii) in the

Appendix of GK21. In turn, this implies that restrictions on shocks 1, . . . , j∗−1, j∗+1, . . . , n−1

leave the set of rij∗h unchanged for i = 1, . . . , n and h = 0, . . . (Corollary B2 in the Appendix

of GK21). Since FEV Dij∗h is a continuous function of q∗j , its set is unaffected by constraints

on shocks 1, . . . , j∗ − 1, j∗ + 1, . . . , n− 1.

Proof of Proposition 3.1.

This proof builds upon Faust (1998) and Rao (1964). While Uhlig (2004) provides a solution

to a quadratic unconstrained problem, this proof can be seen as a generalization to a quadratic

constrained problem.

The maximization problem is provided by (3.2). r(ϕ) is of full rank by Assumption A4; as

a result, there are between 0 and n− 1 active constraints (0 ≤ m ≤ n− 1) at a maximum.

By employing the Karush-Kuhn-Tucker theory, we obtain the following first order conditions

(FOCs):

Υi
h(ϕ)q̄j∗(r)− πq̄j∗(r)− r(ϕ)′µ = 0 (A.1)

r(ϕ)q̄j∗(r) = 0 (A.2)

q̄′j∗(r)q̄j∗(r) = 1, (A.3)

where π and µ are positive Lagrange multipliers. We are going to show that uij∗h(ϕ, r) and

q̄j∗(r) are the maximum eigenvalue and the associated eigenvector of the matrix Z(ϕ, r) =

[In − P (ϕ, r)]Υi
h(ϕ), where P (ϕ, r) = r(ϕ)′ [r(ϕ)r(ϕ)′]−1 r(ϕ). Pre-multiplying the FOCs

by In − P (ϕ, r) yields

[In − P (ϕ, r)]Υi
h(ϕ)q̄j∗(r)− πq̄j∗(r) = 0. (A.4)

This is satisfied if and only if q̄j∗(r) is an eigenvector of [In − P (ϕ, r)]Υi
h(ϕ). We need to show

that q̄j∗(r) is the eigenvector associated with the largest eigenvalue. Rao (1964) (Section 2, part

iii) observes that the eigenvalues of [In − P (ϕ, r)]Υi
h(ϕ) are equivalent to the eigenvalues of

Z̃(ϕ, r) = Υi
h(ϕ)

1
2 {In−r(ϕ)′ [r(ϕ)r(ϕ)′]−1 r(ϕ)}Υi

h(ϕ)
1
2

′
. This provides some computational

gains, since symmetric eigenvalue problems are well-understood. Also, Rao (1964) derives the
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following relationship between the eigenvector of Z(ϕ, r) (among others, q̄j∗(r)) and Z̃(ϕ, r)

(say ¯̃qj∗(r)):

q̄j∗(r) = {¯̃q′j∗(r)
[
Υi

h(ϕ
]−1 ¯̃qj∗(r)}

[
Υi

h(ϕ)
]− 1

2 ¯̃qj∗(r). (A.5)

This applies to any eigenvector of Z(ϕ, r) and Z̃(ϕ, r).

Note thatΥi
h(ϕ)

1
2 {In−r(ϕ)′ [r(ϕ)r(ϕ)′]−1 r(ϕ)}Υi

h(ϕ)
1
2

′
is positive semidefinite, since [In − P (ϕ, r)]

is idempotent and
[
Υi

h(ϕ)
1
2

]
is full rank. [In − P (ϕ, r)]Υi

h(ϕ) is therefore positive semi-

definite and the eigenvectors can be selected to be orthogonal. Let us prove the result by

contradiction and assume that q̄j∗(r) is not the eigenvecor associated with the largest eigen-

value:

q̄j∗(r) = ωq1j∗(r) +
√
(1− ω2)q̃j∗(r), (A.6)

where q1j∗(r) and q̃j∗(r) satisfy the FOCs, are orthogonal and q1j∗(r) is associated to the

largest eigenvalue. Let us parametrize q̄j∗(r) as follows:

q̄j∗(r, δ) = (1 + δ)ωq1j∗(r) +
√

(1− (1 + δ)2ω2)q̃j∗(r), (A.7)

which is q̄j∗(r) for δ = 0 and satisfies the active constraints for small δ. The eigenvectors are

orthogonal, so the value of the criterion function can expressed as

q̄′j∗(r, δ)Υ
i
h(ϕ)q̄j∗(r, δ) = (1+δ)2ω2q′1j∗(r)Υ

i
h(ϕ)q1j∗(r)+(1−(1+δ)2ω2)q̃′j∗(r)Υ

i
h(ϕ)q̃j∗(r).

(A.8)

The first derivative of the right hand side of the equation above with respect to δ is 2(1 +

δ)ω2
[
q′1j∗(r)Υ

i
h(ϕ)q1j∗(r)− q̃′j∗(r)Υ

i
h(ϕ)q̃j∗(r)

]
. It is positive for small δ because q′1j∗(r)Υ

i
h(ϕ)q1j∗(r)

maximizes the objective function. Let us conclude the proof: i) since all the constraints holding

with equality at q̄j∗(r, 0) are also satisfied (with equality) for small δ; ii) since q̄j∗(r, 0) satisfies

the inactive constraints by definition ⇒ by continuity there must be some small δ > 0 such

that the restrictions are satisfied at q̄j∗(r, δ).

For λmin(ϕ, r) ̸= 0, we can obtain the minimum analogously. For λmin(ϕ, r) = 0, the

Karush-Kuhn-Tucker conditions are not always satisfied. In that case, there are two possibili-

ties: lij∗h(ϕ, r) = 0 or lij∗h(ϕ, r) = λ+
min(ϕ, r) ̸= 0, where λ+

min(ϕ, r) is the smallest non-zero

eigenvalue.

Proof of Theorem 3.1.

The maximization problem is provided by (2.22). First, we need to introduce an auxiliary

function ũij∗h(ϕ, r):

ũij∗h(ϕ, r) = uij∗h(ϕ, r)− c{1− 1
[
S̃j∗(ϕ)qj∗ ≥ 0

]
}, (A.9)
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with c > 1 and where 1(•) denotes the indicator function. S̃j∗(ϕ)qj∗ ≥ 0 is the set of inactive

constraints, with S̃j∗(ϕ) being a (sj∗ − srj∗)× n matrix.

Given a set of active constraints r(ϕ), if the optimizer satisfies the inactive constraints

characterized by S̃j∗(ϕ), then 1
[
S̃j∗(ϕ)qj∗ ≥ 0

]
= 1 and ũij∗h(ϕ, r) = uij∗h(ϕ, r); otherwise,

1
[
S̃j∗(ϕ)qj∗ ≥ 0

]
= 0 and the auxiliary function is negative (recall that c > 1) and, as

such, cannot be considered an endpoint for the FEVD. In other words, we are making explicit

that, if some constraints are not satisfied, the FEVD cannot be defined. Proving the theorem

corresponds to show the following

uij∗h(ϕ) = maxr(ϕ)ũij∗h(ϕ, r). (A.10)

• CASE 1: consider any r(ϕ).

CASE 1.1 Suppose that the inactive constraints are not satisfied, i.e. ũij∗h(ϕ, r) < 0.

This implies that uij∗h(ϕ) > ũij∗h(ϕ, r).

CASE 1.2 Suppose that the active constraints are satisfied, i.e. 1
[
S̃j∗(ϕ)qj∗ ≥ 0

]
= 1.

As a result, uij∗h(ϕ) ≥ ũij∗h(ϕ, r). Case 1 therefore delivers

uij∗h(ϕ) ≥ maxr(ϕ)ũij∗h(ϕ, r). (A.11)

• CASE 2: consider r∗(ϕ) as the set of active constraints at the optimizer of the problem

(2.22). As such, inactive constraints are satisfied. Proof of Proposition 3.1 yields:

ũij∗h(ϕ, r
∗) = uij∗h(ϕ) ≤ maxr(ϕ)ũij∗h(ϕ, r). (A.12)

Equations (A.11) and (A.12) deliver the desired result.

Proof of Proposition 3.2.

If the reduced-form estimator is consistent, i.e ϕ̂ →p ϕ(P ), then we obtain

r∗(ϕ̂) →p r
∗(ϕ(P )) (A.13)

and

P (ϕ̂, r∗) →p P (ϕ(P ), r∗(P )). (A.14)

. This implies that

Z(ϕ̂, r∗) →p Z(ϕ(P ), r∗(P )). (A.15)

Since uij∗h(ϕ) = uij∗h(ϕ, r
∗), if uij∗h(ϕ) is simple and T ≫ n, it is suffice to recall basic

statistics to obtain uij∗h(ϕ̂) →p uij∗h(ϕ(P )). Proof for lij∗h(ϕ̂) →p lij∗h(ϕ(P )) is obtained

similarly.
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Proof of Theorem 3.2.

From the chain rule, we obtain:

∂uij∗h(ϕ)

∂ϕ
=

∂uij∗h(ϕ)

∂vec(Z̃(ϕ))

∂vec(Z̃(ϕ))

∂ϕ
. (A.16)

Recall that Z(ϕ) ≡ Z(ϕ, r∗) = [In − P (ϕ, r∗)]Υi
h(ϕ),

Z̃(ϕ) ≡ Z̃(ϕ, r∗) = Υi
h(ϕ)

1
2 [In − P (ϕ, r∗)]Υi

h(ϕ)
1
2

′
,

P (ϕ, r∗) = r∗(ϕ)′ [r∗(ϕ)r∗(ϕ)′]−1 r∗(ϕ) and Υi
h(ϕ) =

∑h
h̃=0

cih̃(ϕ)c′
ih̃
(ϕ)∑h

h̃=0
c′
ih̃
(ϕ)cih̃(ϕ)

; as a result, ∂vec(Z̃(ϕ))
∂ϕ

exists because of Assumption A6 (that makes r∗(ϕ) and In −P (ϕ, r∗) differentiable) and the

fact that cih̃(ϕ) and c′
ih̃
(ϕ) are differentiable with respect to ϕ.

We now need to show that uij∗h(ϕ) is differentiable with respect to Z̃(ϕ). Let λ and q

be a real-valued function and a vector function (respectively) defined for all Γ(ϕ) in some

neighborhood of N(Z̃(ϕ)). Consider the vector function g : Rn+1 ×Rn×n → Rn+1 defined as

follows

g(q, λ;Γ(ϕ)) =

[
(λIn − Γ(ϕ))q

q′q − 1

]
. (A.17)

Note that g is differentiable on Rn+1 ×Rn×n.
(
¯̃qj∗ , uij∗h(ϕ); Z̃(ϕ)

)
in Rn+1 ×Rn×n satisfies

the following conditions:

g(¯̃qj∗ , uij∗h(ϕ); Z̃(ϕ)) = 0 (A.18)

and

det

[
uij∗h(ϕ)In − Z̃(ϕ) ¯̃qj∗

2¯̃q
′
j∗ 0

]
̸= 0. (A.19)

The determinant above is non-singular if and only if the eigenvalue uij∗h(ϕ) is simple. The

implicit function theorem is therefore satisfied; there must exist a neighborhood N(Z̃(ϕ)) ∈
Rn×n of Z̃(ϕ), a unique real-valued function λ : N(Z̃(ϕ)) → R, and vector function (defined

up to a sign) q : N(Z̃(ϕ)) → Rn, such that

• λ and q are differentiable on N(Z̃(ϕ)),

• λ(Z̃(ϕ)) = uij∗h(ϕ), q(Z̃(ϕ)) = ¯̃qj∗ ,

• Γ(ϕ)q = λq, q′q = 1 for every Γ(ϕ) ∈ N(Z̃(ϕ)).

This completes the proof about the differentiability of
∂uij∗h(ϕ)

∂ϕ . We now derive an explicit

equation for
∂uij∗h(ϕ)

∂ϕ . We start from Γ(ϕ)q = λq:

(dΓ(ϕ))¯̃qj∗ + Z̃(ϕ)(dq) = (dλ)¯̃qj∗ + uij∗h(ϕ)(dq), (A.20)
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with dq and dλ being the differentials defined at Z̃(ϕ). Let us pre-multiply the equation above

by ¯̃q
′
j∗ :

¯̃q
′
j∗(dΓ(ϕ))¯̃qj∗ + ¯̃q

′
j∗Z̃(ϕ)(d¯̃qj∗) = (dλ)¯̃q

′
j∗
¯̃qj∗ + uij∗h(ϕ)¯̃q

′
j∗(dq). (A.21)

Recall that Z̃(ϕ) is symmetric, i.e. ¯̃q
′
j∗Z̃(ϕ) = uij∗h(ϕ)¯̃q

′
j∗ , and ¯̃q

′
j∗
¯̃qj∗ = 1:

(dλ) = ¯̃q
′
j∗(dΓ(ϕ))¯̃qj∗ . (A.22)

The equation above can be written as

(dλ) = (¯̃q
′
j∗ ⊗ ¯̃q

′
j∗)vec(dΓ(ϕ)). (A.23)

Recalling that dλ is evaluated at Z̃(ϕ), λ(Z̃(ϕ)) = uij∗h(ϕ) and q(Z̃(ϕ)) = ¯̃qj∗ yields

(duij∗h(ϕ)) = (¯̃q
′
j∗ ⊗ ¯̃q

′
j∗)vec(dZ̃(ϕ)). (A.24)

Thus, we obtain

∂uij∗h(ϕ)

∂vec(Z̃(ϕ))
= ¯̃q

′
j∗ ⊗ ¯̃q

′
j∗ . (A.25)

Combining the equation above with (A.16) delivers

∂uij∗h(ϕ)

∂ϕ
= ¯̃q

′
j∗ ⊗ ¯̃q

′
j∗
∂vec(Z̃(ϕ))

∂ϕ
. (A.26)

Proof of Corollary 3.1.

Note that ISFEV D(ϕ) is closed and bounded. The former comes from the continuity of the

map between ϕ and FEV D; the latter is due to the restriction on ϕ such that the reduced-

form VAR is invertible into VMA(∞). Thus, closedness and boundedness make sure that

Assumption 3 in GK21 is met. On the other hand, the conditions in the corollary are consistent

with Assumption 5 in GK21. Thus, we can apply Proposition 2 in GK21 to ISFEV D(ϕ).

Proof of Theorem 3.3.

We introduce the following notation. P identifies a DGP, e.g. ∆(P ) = uij∗h(ϕ(P )) −
lij∗h(ϕ(P )), FEV Dij∗h(P ). For ease of notation, we suppress P from estimators •̂. aT indicates

a sequence.

This proof shows point-wise limits; however, they imply uniformity because they are taken

over sequences. Specifically, they apply along least favorable sequences. Proof presents two

arguments: one for the case that ∆(P ) is “small” and one for the case that it is “large” in

a sense that will be delimited. Any sequence P can be decomposed into one “large” and one

“small” subsequence.

Let ∆(P ) ≤ aT . Note the following.

5



(i) Given Assumption A7, the delta-method delivers a Normal distribution for uij∗h(ϕ̂OLS)

and lij∗h(ϕ̂OLS):

√
T

[
lij∗h(ϕ̂OLS)

uij∗h(ϕ̂OLS)

]
→d N

([
lij∗h(ϕ(P ))

uij∗h(ϕ(P ))

]
,

[
σ2
lij∗h(P ) 0

0 σ2
uij∗h(P )

])
, (A.27)

where we recall that lij∗h(ϕ̂OLS) and lij∗h(ϕ̂OLS) are independent eigenvalues because they

come from a symmetric matrix. The convergence in distribution is uniform (formally, see

Theorem 3 in Kasy (2018)).

(ii) For any P , σ2
lij∗h(P ) and σ2

uij∗h(P ) are positive (recall the non-zero condition) and finite

and, by definition, uij∗h(ϕ(P ))− lij∗h(ϕ(P )) < ∞.

(iii) Since uij∗h(ϕ̂OLS) and lij∗h(ϕ̂OLS) are the extreme eigenvalues from a real symmetric

matrix, they can be ordered such that uij∗h(ϕ̂OLS) ≥ lij∗h(ϕ̂OLS) for all P .

We therefore obtain
√
T (∆̂−∆(P )) →p 0 for all P by Lemma 3 in Stoye (2009). As a result,

we get

√
T
(
uij∗h(ϕ̂OLS)− uij∗h(ϕ(P ))

)
=

√
T
(
lij∗h(ϕ̂OLS) + ∆̂− lij∗h(ϕ(P ))−∆(P )

)
(A.28)

→p

√
T
(
lij∗h(ϕ̂OLS)− lij∗h(ϕ(P ))

)
. (A.29)

Relationship above in combination with (i) and (ii) yields σlij∗h(P ) = σuij∗h(P ), implying that

σ̂uij∗h − σ̂lij∗h →p 0. Employing Lemma 3 in Stoye (2009) delivers

Φ

(
cα +

√
T

∆̂

max{σ̂uij∗h, σ̂lij∗h}

)
→p Φ

(
cα +

√
T
∆(P )

σ̂lij∗h

)
. (A.30)

We obtain uniform consistency by invoking the same argument as in the proof of Lemma 2 in

Stoye (2009).

Let ∆(P ) > aT . This leads to
√
T∆(P ) → ∞; in turn, this yields

lim supT→∞
√
T (FEV Dij∗h(P )− lij∗h(ϕ(P ))) = ∞

and lim supT→∞
√
T (uij∗h(ϕ(P ))− FEV Dij∗h(P )) = ∞. Further steps get us to

Pr(FEV Dij∗h(P ) ∈ CI(α)) (A.31)

= Pr{−cασ̂lij∗h ≤
√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))] +

√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)] ≤

√
T ∆̂ + cασ̂uij∗h}

(A.32)

= Pr{−cασ̂lij∗h ≤
√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))] +

√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)]}

(A.33)

− Pr{
√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))] +

√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)] >

√
T ∆̂ + cασ̂uij∗h}.

(A.34)
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Suppose that lim supT→∞
√
T (FEV Dij∗h − lij∗h(ϕ(P ))) < ∞. Given the consistency of ∆̂,

divergence of
√
T∆(P ) implies divergence (in probability) of

√
T ∆̂. As a result,

Pr{
√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))] +

√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)] >

√
T ∆̂ + cασ̂uij∗h} ≤

(A.35)

Pr{
√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)] >

√
T ∆̂−

√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))]} → 0,

(A.36)

where cασ̂uij∗h ≥ 0 by construction and
√
T [lij∗h(ϕ(P )) − lij∗h(ϕ̂OLS)] converges by previous

results in this paper. We therefore derive the following

limT→∞Pr(FEV Dij∗h(P ) ∈ CI(α)) (A.37)

= limT→∞Pr{−cασ̂lij∗h ≤
√
T [FEV Dij∗h(P )− lij∗h(ϕ(P ))] +

√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)]}

(A.38)

≥ limT→∞Pr{−cασ̂lij∗h ≤
√
T [lij∗h(ϕ(P ))− lij∗h(ϕ̂OLS)]} = 1− Φ(cα) ≥ 1− α. (A.39)

Note that the first inequality comes from
√
T (FEV Dij∗h− lij∗h(ϕ(P ))) ≥ 0; the last inequality

relies on the definition of cα and convergence of σ̂lij∗h and
√
T

lij∗h(ϕ(P ))−lij∗h(ϕ̂OLS)

σlij∗h(P ) . For any

subsequence of P where
√
T (FEV Dij∗h − uij∗h(ϕ(P ))) does not diverge, the same argument

applies. If both diverge, coverage probability converges to 1. To see that we can obtain a

coverage probability of 1− α, consider ∆(P ) = 0.

Proof of Corollary 3.2.

For notation, see the previous theorem. Here we show that CIrα satisfies the conditions (i)

to (iii) in the proof of Theorem 3.3; the result follows.

Let ∆(P ) ≤ aT . Note the following.

(i) Given Assumption A7, the delta-method delivers a Normal distribution for urij∗h(ϕ̂OLS)

and lrij∗h(ϕ̂OLS)

√
T

[
lrij∗h(ϕ̂OLS)

urij∗h(ϕ̂OLS)

]
→d N (A.40)

centered at

[
lrij∗h(ϕ(P ))

urij∗h(ϕ(P ))

]
. The convergence in distribution is uniform (formally, see

Theorem 3 in Kasy (2018)).

(ii) For any P , σr2
lij∗h(P ) and σr2

uij∗h(P ) are positive (recall the non-zero condition) and fi-

nite and urij∗h(ϕ(P )) − lrij∗h(ϕ(P )) < ∞. The latter comes from the fact that |rij∗h| ≤
||cih(ϕ)|| < ∞ for any i ∈ 1, . . . , n, j∗ ∈ 1, . . . , n and h = 0, 1, . . . , where ||cih(ϕ)||
is bounded to the restriction on ϕ such that the reduced-form VAR is invertible into

VMA(∞).
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(iii) Since urij∗h(ϕ̂OLS) and lrij∗h(ϕ̂OLS) are the bounds, they can be ordered such that urij∗h(ϕ̂OLS) ≥
lrij∗h(ϕ̂OLS) for all P .

The argument in Theorem 3.3 delivers the result.

Proof of Theorem 3.4.

This comes from applying the delta-method to the posterior distribution of ϕ subject to

the class of priors ϕ∗ ∼ P ∗
ϕ in Assumption A8. The posterior distribution for ϕ∗ is

√
T (ϕ∗|y1, . . . ,yT ) →d N(ϕ̂OLS ,Ω(P )). (A.41)

We apply the delta-method to the distribution above:

√
T

[
lij∗h(ϕ̂

∗)

uij∗h(ϕ̂
∗)

] ∣∣∣∣y1, . . . ,yT →d N

([
lij∗h(ϕ̂OLS)

uij∗h(ϕ̂OLS)

]
,

[
σ2
lij∗h(P ) 0

0 σ2
uij∗h(P )

])
. (A.42)

Applying the result above to the class of priors ϕ∗ ∼ P ∗
ϕ disciplined by Assumption A8 (and

recalling the definition of a Borel set) yields

supBO∈BO(Rd)

{
P ∗
ϕ

(
√
T

([
lij∗h(ϕ

∗)

uij∗h(ϕ
∗)

]
−

[
lij∗h(ϕ̂OLS)

uij∗h(ϕ̂OLS)

])
∈ BO|y1, . . . ,yT

)
−P(ξ̃(P ) ∈ BO)

}
→p 0,

(A.43)

where ξ̃(P ) ∼ N

(
0,

[
σ2
lij∗h(P ) 0

0 σ2
uij∗h(P )

])
.
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B Empirical Appendix

In Figure B.9 and B.10, we compare the estimated bounds with the bias-corrected ones and

with those obtained by using Gafarov et al.’s (2018) IRFs as a plug-in, respectively. Figure

B.11, which is instrumental to confirm the large identification uncertainty implied by the iden-

tification scheme in the main text, shows the dynamics of the IRFs by using the delta-method

in Gafarov et al. (2018) and the classical Bayesian approach.

Figure B.9: Estimated Bounds vs Bias-Corrected Estimated Bounds.
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Figure B.10: Estimated Bounds vs Plug-In Estimated Bounds

(based on Gafarov et al.’s (2018) IRFs).

Figure B.11: 68% Delta-Method Confidence Interval vs 68% Highest Posterior Density Region

Under Uniform Prior on Q.

C Further Simulation Results

Figure C.12 displays the frequentist coverage for the lower bound. As discussed in the main

text, in the DGP the lower bound is often close to 0.
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Figure C.12: Monte-Carlo Exercise: Frequentist Coverage (Lower Bound).

Figure C.13 shows how the set-length correction to the critical value is paramount to obtain

less conservative intervals for the lower bound. In Figure C.14, we show how the same result

for the lower bound also applies to the IRFs. In Figure C.15, we instead assess the coverage of

GK21’s robust credible interval with respect to the lower bound.

Figure C.13: Monte-Carlo Exercise: Lower Bound Frequentist Coverage With and Without

Set-Length Correction to the Critical Value (FEVD).
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Figure C.14: Monte-Carlo Exercise: Lower Bound Frequentist Coverage With and Without (Gafarov

et al.’s (2018)) Set-Length Correction to the Critical Value (IRFs).
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In order to evaluate the coverage of GK21’s robust credible interval, we proceed as follows:

1. Generate a random sample by keeping the VAR coefficients fixed at BOLS , and drawing

the reduced-form errors ut from ut ∼ N (0,ΣOLS).

2. Compute the robust credible interval based on the sample obtained in step 1.20

3. Repeat step 1 and 2 M times.21

4. Compute coverage as the percentage of the M robust credible intervals that contain the

estimated mean upper and lower bounds.

As shown below, and similarly to what we discussed in Section 4, the coverage for the lower

bound is close to 1 for all variables and across all horizons.

Figure C.15: Monte Carlo Exercise: Coverage of GK’s Robust Credible Interval (Lower Bound).

Finally, Figure C.16 displays the Bayesian coverage of our confidence inteval for the lower

bound.

20Bayesian estimation is performed by using a Normal-Inverse-Wishart prior with 1000 draws for the reduced-

form coefficients and 1000 draws for Q.
21To limit the computational burden, M is set equal to 500.
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Figure C.16: Monte-Carlo Exercise: Robust Bayesian Credibility (Lower Bound).

14


