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Abstract

In this paper, we revisit the question of how to manage financial crises using the
framework proposed by Bianchi and Mendoza (2018). We show that this model econ-
omy exhibits a multiplicity of constrained-efficient equilibria, which arises because the
private shadow value of collateral influences the forward-looking asset price. Among
these equilibria, the specific one studied by Bianchi and Mendoza (2018) can be im-
plemented using a tax/subsidy on debt alone. In that case, both the ex ante tax
and ex post subsidy are quantitatively important for welfare under the optimal time-
consistent policy. Limiting either component can lead to a welfare loss relative to the
unregulated competitive equilibrium, highlighting the complementarity between crisis
prevention and crisis resolution tools. We also show that, under certain conditions,
all Pareto-dominant constrained-efficient equilibria entail the unconstrained allocation
chosen by a social planner subject to the country budget constraint, and this allocation
can be implemented with purely ex post policies.
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1 Introduction

How to manage financial crises remains one of the central questions for policymakers and
scholars. A time-honored perspective, dating back to Bagehot (1873), argues that crises
can be entirely managed ex post by providing liquidity to solvent institutions against good
collateral and at penalty rates. The experience of the global financial crisis, however, showed
that crisis resolution ex post can be extremely costly and that bailouts raise concerns about
moral hazard and time inconsistency. In response, both policy and research shifted towards
preventing crises ex ante, giving rise to a large literature on macroprudential regulation.
While the case for ex ante policies is now well established, less is known about how they
interact with ex post crisis management policies.

In this paper, we address this question within the workhorse model of financial crises
developed by Bianchi and Mendoza (2018), building on Mendoza (2010). In this environment,
crises are triggered by an occasionally binding collateral constraint that amplifies shocks
through asset prices and borrowing capacity. Our focus is normative. What should a time-
consistent planner do in such an environment? And what set of policies can implement the
optimal allocation?

Our first contribution is to show that multiple constrained-efficient Markov perfect equi-
libria (MPE) can exist, and they are ranked by welfare. The source of the multiplicity is
the forward-looking nature of the asset price, which depends on the private agents’ future
shadow value of collateral. We show that the current planner, taking the next-period decision
rules as given, is indifferent between choosing any nonnegative private shadow value when
the constraint binds. In an MPE, however, the current planner’s choice must be consistent
with the decision rule of the future planner, and different rules for the private Lagrange mul-
tiplier imply different equilibrium asset prices and constrained-efficient allocations. Among
these, we identify a welfare-dominant MPE that entails the “unconstrained allocation”—the
allocation a social planner would choose if the collateral constraint did not exist. In this
case, the only remaining friction is market incompleteness, so the unconstrained allocation
is first-best given the financial structure. From a policy perspective, this result highlights
the importance of striving to eliminate crises altogether.

The MPE multiplicity we identify is related to the problem of determining prices in
planning problems with financial constraints. Kehoe and Levine (1993) showed that con-
ditional efficiency and constrained efficiency—that differ in whether spot prices are held
fixed when considering deviations from a given allocation—are, in general, neither necessary
nor sufficient for each other. Following Lorenzoni (2008), the literature on economies with
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planner selects allocations and prices subject to the requirement that prices satisfy the op-
timality conditions of the competitive equilibrium. In line with this approach, we also focus
on constrained-efficient allocations.

Earlier studies do not find the MPE multiplicity because prices are determined by static
optimality conditions (Lorenzoni, 2008; Bianchi, 2011; Benigno et al., 2013; Dévila and Ko-
rinek, 2018; Ottonello et al., 2022), private borrowing is constrained by aggregate collateral
(Jeanne and Korinek, 2019), or an additional constraint is imposed on the planning problem
that makes the equilibrium unique (Bianchi and Mendoza, 2018). Moreover, the MPE mul-
tiplicity is fundamentally different from the multiplicity of competitive equilibria that can
arise due to nonlinearities introduced by financial constraints (Bocola and Lorenzoni, 2020;
Jeanne and Korinek, 2020; Schmitt-Grohé and Uribe, 2021). The MPE multiplicity reflects
a policy implementation indeterminacy rather than an equilibrium selection problem in a
decentralized market.

After characterizing the set of constrained-efficient MPE, we show how these equilibria
can be implemented as regulated competitive equilibria. Specifically, we demonstrate that a
combination of taxes or subsidies on debt and intermediate inputs is sufficient to implement
the entire set of MPE. Furthermore, we show that the tax on debt has two components:
an ex ante component, which is active when the collateral constraint is slack and serves a
macroprudential role, and an ex post component, which becomes active when the constraint
binds and supports crisis resolution. The tax on intermediate inputs is required only in the
presence of a working capital constraint, and only when the collateral constraint binds.

Within the set of constrained-efficient MPE, there is one particular equilibrium—the one
studied by Bianchi and Mendoza (2018)—that can be implemented using only the tax or
subsidy on debt. In this case, the planner imposes an additional restriction on the agent’s
shadow value of collateral, ensuring it satisfies the private optimality condition for the choice
of intermediate inputs. This leaves the planner with a single degree of freedom to improve
upon the competitive allocation, namely the choice of bond holdings. As a result, a tax
or subsidy on debt alone is sufficient to implement this specific MPE, although it is not
welfare-dominant within the constrained-efficient set.

Quantitatively, implementing this particular MPE entails a nonnegative debt tax levied in
normal times (ex ante component) and a subsidy provided in bad times (ex post component).
The magnitude of the ex post debt subsidy provided during a typical financial crisis is more
than four times larger than the magnitude of the macroprudential tax levied before the
crisis. However, both components are essential for welfare gains from the optimal policy.
To demonstrate the latter point, we compute restricted optimal time-consistent policies

subject to a lower and/or upper bound on the debt tax and show that restricting either



component can lead to welfare losses of comparable magnitude. In particular, a purely
macroprudential time-consistent policy that discourages borrowing in good times but lacks
ex post interventions during financial crises generates welfare losses. The two components
of the optimal policy are thus complementary to each other.

The complementarity between the ex ante and ex post components of the debt tax is
consistent with previous findings that emphasize the joint use of ex ante and ex post tools,
including Benigno et al. (2016) on the optimality of combining prudential capital controls
with ex post exchange rate interventions during crises, Jeanne and Korinek (2020) on macro-
prudential bank regulation paired with crisis-time liquidity provision, and lacoviello et al.
(2025) on Pareto improvements from policy rules that tax housing investment in good times
and subsidize it in bad times. The novelty of our contribution lies in retrieving this result
for the same instrument (i.e., tax on debt) used optimally both ex ante and ex post, which
is important for the design of the appropriate regulatory framework in practice.

Finally, we compute the optimal time-consistent policy that implements the welfare-
dominant unconstrained allocation. This policy includes taxes on both debt and intermediate
inputs. In this case, the ex ante component of the debt tax is zero, and the optimal debt
market intervention consists solely of an ex post debt subsidy—a result we also establish
analytically. The debt subsidy adjusts in response to the agent’s shadow value of collateral,
offsetting the distortion introduced by the collateral constraint. At the same time, the
subsidy on intermediate inputs addresses the inefficiency in input choices caused by the
working capital constraint. As a result, agents accumulate significantly more debt in the
regulated competitive equilibrium than in the unregulated equilibrium, indicating that the
unregulated equilibrium features underborrowing.

The result that, in the absence of the working capital constraint, an ex post debt subsidy
alone is sufficient to implement the welfare-dominant allocation is consistent with findings
in Benigno et al. (2016), Jeanne and Korinek (2020), and Benigno et al. (2023), who show
that if ex post interventions are available and costless, there is no need for ex ante (macro-
prudential) regulation. Similarly, Bocola and Lorenzoni (2020) demonstrate that ex post
support for banks in a financially dollarized economy can eliminate self-fulfilling financial
crises. The critical novelty of our result lies in deriving it in a setting with an individual,
asset-price-based collateral constraint. In contrast to existing work that focuses on income-
based constraints, aggregate constraints, or nominal rigidities, our framework shows that
even when borrowing is limited by individual collateral positions—tied directly to market-
determined asset prices—a purely ex post policy can be sufficient to fully restore efficiency.
This extends the policy insight to a broader class of financial frictions and planning problems.

Returning to Bagehot’s dictum of the late 19th century and the macroprudential policy



revolution of the early 21st century, our analysis underscores that effective financial crisis
management requires macroprudential regulation and crisis resolution to be designed jointly,
rather than in isolation. The key policy message of our analysis is to emphasize the role of
lender-of-last-resort interventions as crucial not only for managing crises ex post but also for
enabling effective macroprudential policy. Indeed, in the absence of ex post interventions,
preventive tools alone can be costly and may even reduce welfare. The right balance between
crisis prevention and crisis resolution cannot be determined independently of the institutional
and economic structure. Instead, it must reflect the specific constraints and feedback effects
that shape the dynamics of the financial crisis.

The rest of the paper is structured as follows. Section 2 presents the model economy and
its competitive equilibrium. Section 3 discusses efficiency in this model environment. Section
4 characterizes the optimal time-consistent policies that implement the constrained-efficient
equilibria. Section 5 quantitatively assesses the sources of welfare gains from the optimal

policy. Section 6 concludes. Appendices comprise proofs and computational details.

2 Model

In this section, we briefly describe the model economy and define its decentralized compet-
itive equilibrium. We refer the reader to Bianchi and Mendoza (2018) for a comprehensive
description.

Consider an infinite-horizon small open economy in discrete time. The economy’s ex-
ogenous state is s; = (2, Ry, kt), where z; € [z,Z] is the total factor productivity (TFP),
R; € [R, R] is the gross interest rate, and s; € [k, %] is the credit regime specified below.
Let S = [2,%] x [R, R] x [k, %]. We assume that S C R, is finite and {s,}2°, is a station-
ary Markov process. We denote the histories of states as s* = (sg, s1,...,5,) € S, where
St = 81 x S for all t > 0 with S® = {so}. The conditional expectation operator given a
specific s' is E;. To simplify notation, whenever possible, the history dependence is implicit.

There is a unit measure of domestic agents that are firm-households.® The representative
agent’s preferences over history-contingent sequences of consumption ¢; and labor h; are

described by the utility function
Eq Z Brulcr — g(he)), (1)
t=0

where 5 € (0,1) is the discount factor, u : R, — R is a twice continuously differentiable,

IBianchi and Mendoza (2018, Appendix C) show that there exists an equivalent environment with separate
households and firms.



strictly increasing, and strictly concave period utility function that satisfies lim, o u'(x) = oo,
and g : R, — R, is a twice continuously differentiable, strictly increasing, and convex labor
disutility function. We assume SR < 1, so that the equilibria we consider have well-defined
stationary distributions. The GHH (Greenwood et al., 1988) preferences over a composite
good ¢ = ¢, — g(hy) eliminate the impact of the variations in marginal utility of consumption
on the labor supply. Although this assumption can be relaxed, it significantly simplifies the
theoretical analysis.

The agent produces the final good from capital k;, labor, and intermediate inputs v; using
a concave Cobb—Douglas production function F : R? — R.. The initial level of capital is
ko = 1. The price of capital is ¢;, while the price of internationally traded inputs is fixed at
py > 0. The agent can invest in a one-period bond b;,; traded internationally at the price

1/Ry, with by € B = [b,b] C R given. The agent’s budget constraint is thus

b1
¢+ qikisr + % < 2 F(Kt,y heyvy) — povr + gk + by (2)
t
The agent can issue debt (b;1; < 0) and must finance a fraction 6 € [0, 1] of intermediate
inputs in advance with an intraperiod loan at a zero interest rate. Borrowing requires
collateral in the form of the capital stock, but only a fraction k; of the value of capital is

pledgeable. Consequently, the agent faces a collateral constraint?

bit

_E + Opyvr < Keqike. (3)

The agent’s problem is to choose {(cq, hy, ve, biy1, k1) }52o to maximize (1) subject to (2)
and (3) for all (¢,s"). The first-order conditions for this problem are

g'(ht) = Zch(kt, D, Ut)u (4)
(1 + eullg/;t ) p'U = Zth(kta ht; Ut); (5)
Ul(ét) = 5RtEtU/(5t+1) + pe, (6)
qu'(¢) = PE, [Ul(étﬂ) (Zt+1Fk(kt+17 hig1,vi41) + Qt+1> + Her1Re+1Ge+1 | (7)
b
0= pu (Httht + %1 - 9%%) ) pe = 0, (8)
t

where p; is the Lagrange multiplier on the collateral constraint (3). The equation (4) equates

the marginal rate of substitution of leisure for consumption with the marginal product of

2Bianchi and Mendoza (2018, Appendix A.5) provide a microfoundation through a limited enforcement
problem.



labor. According to (5), the working capital and collateral constraints introduce a wedge
between the marginal product of intermediate inputs and their price. When the collateral
constraint binds, and as long as # > 0, an increase in inputs must be compensated by a
decrease in borrowing, thus raising the marginal cost of inputs compared to the case of
no working capital constraint (¢ = 0). (6) is a standard bond Euler equation: when the
borrowing constraint binds, other things equal, the agent’s marginal utility of consumption
today is greater than in the unconstrained case. At the same time, the collateral constraint
introduces an additional marginal benefit of capital, since greater capital allows to borrow
more when the constraint binds. This is captured in the asset pricing condition (7): if we
solve it forward, we can express the asset price ¢; as an expected discounted sum of dividends,
where the discounting is adjusted to include the collateral value. Finally, (8) comprises the
complementary slackness conditions associated with the collateral constraint (3).

The capital stock is in fixed supply normalized to one. We define a decentralized com-

petitive equilibrium (DE) as follows.

Definition 1 (Competitive equilibrium). A decentralized competitive equilibrium is an allo-
cation {(ct, hey vy, besr, kiy1) 320, prices {qi}e2,, and Lagrange multipliers {u:}:°,, such that
the following holds.

1. Given prices, the allocation solves the agent’s problem: that is, together with Lagrange
multipliers, it satisfies (2) holding with equality and (3)—(8) for allt > 0 and s* € S°.

2. Prices are such that the capital market clears: ki 1(s') =1 for allt >0 and s* € S°.

Going forward, it will be useful to represent the DE using the recursive notation. We
denote the aggregate state as x = (b,s) € X = B x S, where b € B is aggregate bond
holdings, and s = (z, R, k) € S is the exogenous state. We denote the conditional expectation
operator given s € S as E; and use y(z) interchangeably with y, to denote the value of a
variable y at the state z € X. Let int Y and clY denote the interior and closure, respectively,
of a generic set Y. Clearly, B = [b,b] needs to be large enough, so that b, (s") € int B for
all t > 0 and s* € S, although b cannot be too low due to the collateral constraint. An
admissible B can be found numerically, given a specific model calibration.

Let F(X) denote the set of all real-valued functions on X. Imposing the capital market

clearing condition in (2)—(8), we obtain the following recursive representation of the DE.

Remark 1 (Recursive equilibrium). A DE of Definition 1 is, equivalently, a set of allocation

functions {¢,h,v,b'} C F(X), an asset price function ¢ € F(X), and a Lagrange multiplier



function p € F(X) that satisfy

b/
¢y + Ef = 2F (1, hy,vy) — pove — g(hs) + b, (9)
b/

2+ 0pv. < g (10)
g/(hx) - ZFh(lvhmavm)7 (11>

Ha
(140205 ) = 2t ), (12)
W(¢,) = BREW (Gy) + py  if V. € int B, (13)
g (¢,) = BE, [u’(éx/) <z’Fk(1, har,var) + qm,) 4 px//i’qx/} , (14)

b/

0= M (FGQ:E + ﬁ - epv%n) , Mz = 07 (15>

with o’ = (b, (2/, R, k")), for all x = (b,s) = (b, (2, R, K)) € X.

3 Efficiency Analysis

This section explores the properties of efficient and constrained-efficient allocations in the
model environment described in Section 2.

We begin by defining the “unconstrained allocation” chosen by a benevolent social planner
subject to the country budget constraint. This allocation is the first best given the existing
financial markets. We show that the DE has two distortions relative to the unconstrained
allocation that arise due to the collateral constraint. First, provided the collateral constraint
may bind in some states, the DE features inferior consumption smoothing. Second, under the
working capital constraint, the DE entails an inefficiently low level of intermediate inputs.

We then define a time-consistent constrained-efficient allocation as part of a Markov per-
fect equilibrium of a noncooperative game between successive benevolent social planners who
face the same constraints as the representative agent but internalize the impact of allocations
on the market price of capital. We argue that constrained-efficient equilibria are generally
not unique in this model economy, and there may exist a Markov perfect equilibrium that
entails the unconstrained allocation. Finally, if we drop the Markov perfection requirement
and allow the planner’s decisions to be history-contingent, we find that, under certain con-
ditions, the unconstrained allocation is the unique constrained-efficient allocation, and any

constrained-efficient plan is time consistent.



3.1 Unconstrained allocation

In this economy, the efficient allocation is the allocation chosen by a benevolent social plan-
ner subject to the country budget constraint (9). Since international financial markets are
incomplete, the efficient allocation may be considered a constrained optimum (Diamond,
1967).> On the other hand, this allocation is the first best conditional on the existing fi-
nancial markets—that is, the market for a one-period noncontingent bond (Itskhoki and
Mukhin, 2023). We call this allocation the “unconstrained allocation” to emphasize that the
planner is not subject to the collateral constraint. We define the unconstrained allocation

in recursive form as follows.

Definition 2 (Unconstrained allocation). The unconstrained allocation is a set of functions
{¢,h,v,b'} C F(X) generated by the solution to the Bellman equation

V (b, s) = max |u(¢) + SE,V (b, s') |,
&b,

subject to

~

b .
é+}—% < z2F(1,h,0) — p,o — g(h) + b,
for all (b,s) = (b, (z,R,k)) € X.

Note that since the unconstrained problem in Definition 2 is not affected by the collateral
constraint, x is a redundant exogenous state, but we keep it as an element of s for consistency

with other sections. We obtain the following characterization of the unconstrained allocation.

Proposition 1 (Unconstrained allocation). Let f(z) = max; ,{2F(1, h,0) — pyd — g(h)}.

Suppose b > —%f(g) if R>1and b < %f{g) if R < 1. Then there exists a unique

solution to the Bellman equation in Definition 2. The allocation functions {¢, h,v,b'} C
F(X) are continuous and satisfy (9), (11),

Py = ZFv(lahx7Ux)7 (16)
u'(¢;) = BRE (Cp) if b, € int B, (17)

with ' = (b, (2/, R\, k), for all x = (b,s) = (b,(z,R,k)) € X. The function ¢ is strictly
increasing in b, and V' is strictly increasing in b whenever b, € int B. The functions h and

v depend on z only, and h, v, and f are strictly increasing in z.

Proof. See Appendix A.1. [ |

3If the domestic economy had access to a complete set of Arrow securities, the efficient allocation would
entail the perfect consumption risk sharing between the domestic economy and the rest of the world.



Proposition 1 first provides restrictions on the admissible set of bond holdings B = [b, b].
In particular, if R > 1, the lower bound b cannot be below than minus the natural borrowing
limit % f(2). Since the choice of labor and intermediate inputs is static, the planner’s
problem is similar to an income fluctuation problem (Schechtman and Escudero, 1977) with
a stochastic endowment f(z), where f is strictly increasing, and a stochastic interest rate
R. Our assumption SR < 1 ensures the existence of a well-defined ergodic distribution of
bond holdings, which can be shown analytically under further assumptions on u, R, and z,
or otherwise verified numerically.* This means that the bond holdings upper bound b can
be set to a sufficiently big number, such that it never binds.

According to Proposition 1, the unconstrained labor h and intermediate inputs v are
jointly defined by (11) and (16). Hence, h and v are independent of bond holdings b and
only vary with the TFP z. Moreover, both h and v, and thus output zF (1, h(z),v(z)), are
strictly increasing in z. Unconstrained next-period bond holdings ¢’ are pinned down by
the Euler equation (17) whenever b, > b, in which case b’ is strictly increasing in current
bond holdings b.> (The absence of the collateral constraint is crucial for this fact.) The net
consumption function ¢ is also strictly increasing in b.

Proposition 1 implies that the DE of Remark 1 has two distortions, both due to the
collateral constraint. Both the DE and unconstrained allocations share the same labor
optimality condition (11). Comparing (12) and (16), we observe that, if there is a working
capital constraint (0 > 0), intermediate inputs are inefficiently low in the DE whenever the
collateral constraint is strictly binding (y, > 0). In turn, lower inputs lead to lower labor
and output. At the same time, if the collateral constraint is slack, labor and inputs in the
DE are efficient, since they are jointly defined by (11) and (16), as in the unconstrained
allocation. Moreover, (13) and (17) imply that net consumption is inefficiently low in the
DE whenever p, > 0, indicating inferior consumption smoothing. If the collateral constraint
is never binding in the DE, its allocation is efficient, since in that case (12) is equivalent to
(16) and (13) is equivalent to (17).

Remark 2 (Unconstrained equilibrium). Consider a DE of Remark 1. If u, = 0 for all
x € X, the DE entails the unconstrained allocation of Definition 2.

41f u has constant relative risk aversion form and R is deterministic, a sufficient condition is that z
is either independent and identically distributed (Schechtman and Escudero, 1977) or z € {z,z} with
Pr(z=%|2=2%) > Pr(z =% | z = z) (Huggett, 1993).

®Numerically, if b is sufficiently close to minus the natural borrowing limit, we have b/, > b for all x € X
except © = (b, (2, R,)), given an arbitrarily fine grid for B. Moreover, b; > b for all ¢ over a 100,000-period
stochastic simulation after a 1,000-period burn-in.
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3.2 Constrained-efficient equilibria

In general, policy constraints may prevent the possibility of implementing the efficient allo-
cation in a competitive equilibrium. For this reason, an alternative concept of constrained
efficiency has received significant attention. Constrained efficiency in environments with
price-dependent borrowing constraints has been studied, for instance, by Kehoe and Levine
(1993), Caballero and Krishnamurthy (2001), Lorenzoni (2008), and Dévila and Korinek
(2018). In turn, this theory is related to the earlier analysis of constrained efficiency in
incomplete-market economies by Diamond (1967), Hart (1975), Stiglitz (1982), and Geanako-
plos and Polemarchakis (1985). A unified treatment was given by Farhi and Werning (2016).

A constrained-efficient allocation is an allocation chosen by a social planner (SP) that
faces the same constraints as the representative agent but internalizes the impact of allo-
cations on the market price of capital. Hence, such a social planner maximizes the agent’s
utility subject to the country budget constraint (9), collateral constraint (10), and asset pric-
ing constraint (14). In addition, since the planner faces the same collateral constraint as the
agent, and the market price of capital depends on whether the collateral constraint is binding
in the future, as reflected by the Lagrange multiplier u, affecting the next-period payoff on
capital in (14), any SP allocation that can be implemented in a competitive equilibrium with
some government policies must satisfy the agent’s complementary slackness conditions (15).

Since the asset pricing constraint (14) is forward-looking, the constrained-efficient allo-
cation under commitment is generally time inconsistent. For example, by committing to a
higher future marginal utility of consumption (lower future consumption), the planner can
increase the current asset price through the stochastic discount factor (SDF) and relax the
collateral constraint in the binding state. When future arrives, however, a higher current
marginal utility (lower current consumption) implies a lower current asset price, once again
through the SDF, and thus the collateral constraint may bind or become more binding,
which is suboptimal if the past promises need not be kept. Our focus is going to be on
time-consistent equilibria.

We next define a constrained-efficient allocation as part of a Markov perfect equilib-
rium (MPE) of a noncooperative policy game between successive benevolent social planners
(Maskin and Tirole, 1988, 2001; Krusell et al., 1996; Klein et al., 2008).

Definition 3 (Constrained-efficient MPE). A constrained-efficient MPE is a set of allocation
functions {¢, h,v,0'} C F(X), an asset price function ¢ € F(X), and a Lagrange multiplier
function p € F(X) that satisfy the following.

11



1. Given a value function V € F(X),

(G Py Vs b;, Qs ) € arg max [u(é> + ﬁEsV@? 5/)]

&h,0,b,d,u
subject to
b - s
¢+ - < z2F(1,h,0) — p,o — g(h) + b,
B 4+ 0p,0 < Kq
—— w0 < KQ,
R P q
gu'(¢) = BE, [u’(ép/) (z’Fk(l, B, 0r) + qw,) + u,p,,aqm,] ,
(b A A
O:/'L Hq—i_ﬁ_epvv ) :U’Zoa

with ' = (b, (', R',K')), for all z = (b, s) = (b, (2, R, K)) € X.
2. The value function satisfies V (b, s) = u(é;) + PEV (b, s") for all x = (b,s) € X.

The two conditions in Definition 3 jointly define an MPE in {¢ h,v, V', q,u} C F(X)
with the associated value V' € F(X). The first condition postulates that it is suboptimal to
deviate from {¢, h, v, V', q, n}—the functions used to evaluate the conditional expectation in
the asset pricing constraint (14)—in any state z € X. The second condition postulates that
the value function V' solves the Bellman equation.

A brief inspection of the planner’s constraints suggests that a time-consistent SP alloca-
tion need not be unique. When the collateral constraint is binding, any i > 0 is a feasible
choice for the current planner because i affects only the agent’s complementary slackness
conditions. Since i does not affect the planner’s payoff, the planner is indifferent between
any f > 0. However, in an MPE, i must be consistent with the next-period planner’s de-
cision rule pu. The multiplicity of ji thus generates a multiplicity of p. In turn, p affects
the MPE asset price function ¢, the value of collateral, and thus the allocation functions

{¢, h,v,V'}. Consequently, there generally exist multiple welfare-ranked MPE.

Remark 3 (MPE multiplicity). There generally exist multiple welfare-ranked constrained-
efficient MPE of Definition 3.

Bianchi and Mendoza (2018) studied an MPE of Definition 3 under the assumption that
the Lagrange multiplier function p is restricted to satisfy the DE input optimality condition

(12). If 6 > 0, (12) selects a specific MPE by leaving the social planner with a single degree

12



of freedom relative to the DE outcome—namely, improving the allocation of bond holdings.%
We refer the reader to their in-depth analysis of the resulting constrained-efficient allocation.
As we show next, however, there may exist a constrained-efficient MPE that entails the

unconstrained allocation. This MPE welfare dominates any other constrained-efficient MPE.

3.3 Unconstrained allocation as a constrained-efficient plan

In this subsection, we identify the necessary conditions for the existence of a constrained-
efficient MPE that entails the unconstrained allocation and characterize a candidate MPE
with this property. Obtaining the sufficient conditions for the existence of such an MPE
turns out difficult. However, after dropping the Markov perfection requirement, we derive
the necessary and sufficient conditions for the existence of a constrained-efficient plan that
entails the unconstrained allocation. Although such a plan is not Markovian, it is time
consistent because there is no incentive to deviate from this plan.

Let {EUE, hVE yUE bUE} C F(X) denote the unconstrained allocation functions of Defi-
nition 2. According to Remark 2, these functions are part of the “unconstrained equilibrium”
(UE)—the DE in the economy in which the agent’s borrowing is not restricted by the col-
lateral constraint. We are interested in a constrained-efficient MPE that entails the UE

allocation functions.

Definition 4 (Unconstrained MPE). A constrained-efficient MPE of Definition 3 is an
“unconstrained MPE” if {¢, h,v,b'} = {6UE, hUE,UUE,bUE}.

It will be useful to define the UE asset price function ¢"¥ € F(X). We obtain it by
evaluating (14) at the UE allocation and imposing p, = 0 for all z € X:

— BE,

' (9F) (zF (1, hUE, ;JE) +ng>]

u' (")
= v (CU<Et>>
_ *s UE UE
= Z Z t ‘ S Wthk (1 h (st)> x(st)) > (18)
=1  stest @
where z(s') = (bVE(z(s'™1)),s;) for all t > 1 and s' € S*, with z(s”) = 2 = (b,s) € X.

Hence, ¢YF is the present discounted value of dividends evaluated at the UE allocation.

6In the analysis of Bianchi and Mendoza (2018), the planner is, moreover, subject to the DE labor
optimality condition (11). They show in Appendix A.1 (Proposition II) that (11), (12), and (15) are slack
constraints in the sense that (11) is satisfied at the SP allocation and, if @ > 0, (12) can be used to construct
w that satisfies (15) at the SP allocation. This construction selects a specific MPE of Definition 3, since, for
a given allocation, many functions p satisfy (15), but only one of them satisfies (12) if § > 0.
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Let us also define the set of states A C X at which the collateral constraint would be
violated if it were imposed in the UE:

A:{xeX‘qSE<q‘4}, (19)

T

where ¢4 € F(X) is the asset price at which the collateral constraint would bind:

g2 = 1 (—% +0p UUE) . (20)
K R v

Let A¢ = X\ A denote the complement of A. If A = (equivalently, A° = X), the collateral

constraint is irrelevant in the DE, and the DE allocation coincides with the UE allocation

(Remark 2). Of course, the interesting (and empirically relevant) case is A # ().

Let 1y denote the indicator function of a generic set Y. If the social planner could
control the asset price directly, it would be sufficient to set ¢, = 14(2)q? + 1ac(2)qVE to
satisfy the collateral constraint for all x € X at the UE allocation. (One could interpret the
planner’s problem in Definition 2 as precisely this planning arrangement.) A constrained-
efficient social planner of Definition 3, however, does not have such powers, and must abide
by the asset pricing constraint (14). Inspecting the latter, we obtain the following necessary

conditions for the existence of an unconstrained MPE.

Proposition 2 (Unconstrained MPE existence). There exists an unconstrained MPE of
Definition 4 only if q. > max{ng, q;‘} and fiy (qx — qf) =0 for all x € X, and for all
x = (b, s) € A, there exist t > 1 and s' € S* such that x(s") € cl A, with x(s") defined as in

(18).
Proof. See Appendix A.2. [ |

The first set of necessary conditions restricts an MPE asset price ¢ in a rather intuitive
way. The additional collateral value component implies that ¢ is greater than or equal to the
UE asset price ¢VF. Moreover, since the collateral constraint evaluated at the UE allocation
binds when the asset price is ¢, the MPE asset price ¢ cannot be lower than the former.
In fact, the MPE collateral constraint is equivalent to the condition ¢, > ¢Z for all x € X.
The final necessary condition in Proposition 2 is more subtle and requires the following: if
the MPE visits the set A in which the collateral constraint is violated in the UE, then the
closure of A must be visited at some point in the future. If x € A, the UE asset price is
too low. Since the UE allocation is given, the MPE asset price can be high enough only if

the agent’s Lagrange multipliers in the next periods are high enough. Hence, the collateral
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constraint must bind at some point in the future, which can happen only if the constraint
will bind or will be violated in the UE in the next periods.
If A is in the ergodic set defined by the UE allocation, the last necessary condition in

Proposition 2 will be satisfied. We assume that there exists a unique ergodic set.

Assumption 1 (Unconstrained ergodic set). Define the transition function P : X x B(X) —
0,1] as P((b,s), BxS) =15 (bUE(b, s)) Pr <s’ eS| s), where B(X) is the Borel o-algebra on
X. Then P generates a unique invariant probability measure A : B(X) — [0, 1] that satisfies
AX) = Ix P(z, X)\(dz) for all X € B(X), with the associated ergodic set X VP C X

As discussed previously, as long as SR < 1, Assumption 1 will be satisfied and can be
verified numerically. If A(A) = 0, the collateral constraint is irrelevant almost everywhere
(a.e.) on the UE ergodic set XVE and there exists an unconstrained MPE a.e. on XU
with ¢ = ¢VF and p, = 0 for all z € XUE. A more interesting case is A(A) > 0, so that the
constraint would be violated in the UE on an infinite subset of the ergodic set. The next
proposition suggests that one can generally construct a candidate MPE that satisfies almost

all conditions of an unconstrained MPE.

Proposition 3 (Unconstrained MPE candidate). Suppose Assumption 1 holds and \(A) >
0. There generally exist {q, p} C F(X) such that {¢V, RV vVE bUF g, pu} satisfy all con-
ditions of Definition 3, except (14), possibly, holds approzimately on A. If AN(A) = 1, then
q = q* and p, = max{p?,0} for allz € X, where p? € F(X) is defined such that it satisfies

¢! (eVF) = BE, [u (eLE) (z’Fk (1, hUE v UF) + qf,) + Mg,ﬁqu,} , (21)

with ' = (ng, (7, R, /{’)), for all x = (b,s) € XVE, and pi(-) = 0 otherwise. If ud >0 on

XUE then {6UE, hUE UE pUE ¢ ,u} is an unconstrained MPE of Definition 4 a.e. on X YE.
Proof. See Appendix A.3. [ |

The proof of Proposition 3 essentially describes a numerical strategy for constructing an
unconstrained MPE of Definition 4. If A\(A) € (0, 1), the construction involves finding a fixed
point in the asset price function ¢ € F(X) and, at each iteration and for all x € A, solving
a system of linear equations in next-period Lagrange multipliers, defining p € F(X). The
solution to the linear system may or may not involve nonnegative multipliers. If it always
does, the construction results in an unconstrained MPE.

A significant simplification is achieved if A\(A) = 1, so that the collateral constraint is
violated in the UE a.e. on XVE. We find this to be true numerically under the baseline

calibration. In this case, we don’t need to find a fixed point in the asset price, rather we
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can simply set ¢ = ¢*, which ensures that the collateral constraint holds with equality at
the UE allocation. We do need to solve for the multipliers such that (21) holds on XVE. A

necessary condition for the multipliers to be nonnegative follows from (21).

Corollary 1. Suppose Assumption 1 holds and N(A) = 1. There exists an unconstrained
MPE of Definition 4 a.e. on XYF only if

g (eVF) > BE, [u/ (&%) (z'Fk (1,07 0 5") + qﬁ)} , (22)
with ' = (bY%, (2, R, K)), for all x = (b, s) € X V7.

The condition (22) can be verified numerically based on the UE allocation. This condition
is necessary but not sufficient because for each x € A, there may be several states z € A
that imply identical next-period bond holdings, i.e., bYE(2) = bYE(x). Solving the system of
equations composed of (21) for each # € {# € A | bVE(2) = bV (z)} for {u?,} may result in
e (ng, s ) being negative for some s’ € S. The difficulty in providing sufficient conditions
for the existence of an unconstrained MPE is related to the essence of the Markov perfection
requirement that forces the planner’s decision rules to be functions of the payoff-relevant
state variables only. The value of the Lagrange multiplier at a state (bYF, s') € X must be
the same independently of the possible previous states {i" € A|VE®R) = bUE(a:)}.

If we drop the Markov perfection requirement, under Assumption 1 and A(A) = 1,
the condition (22) is both necessary and sufficient for the existence of a time-consistent
constrained-efficient plan that entails the UE allocation. Recall that the classical definition
of time consistency due to Strotz (1955), Kydland and Prescott (1977), and Calvo (1978) is
the following: a plan {{m;(s' | s%)}stes }52, is time consistent if for all 7 > 0 and s™ € S7, an
optimal plan chosen at s7, {{m(s" | s7)}stest|sr }i2,, satisfies m(s' | s°) = m(s' | s7) for all
t > 7 and s' € S'| s7, where S* | s7 is the set of all histories s' that continue from s™. Hence,
any future reoptimization results in following the original plan chosen at ¢ = 0. Such a plan
is an outcome of a subgame perfect equilibrium of a game played by successive planners, but
unlike in the case of an MPE, planners’ strategies are not restricted to be Markovian. There
is no incentive to deviate from a plan that entails the UE allocation, so any such plan is
going to be time consistent according to the definition above.

Consider a plan chosen by a benevolent social planner that makes decisions once and for

all at ¢ = 0 subject to the sequential versions of the constraints in Definition 3.

Definition 5 (Constrained-efficient plan). An allocation { (&, hi, vy, bii1) 1520, prices {q:}i2,,
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and Lagrange multipliers {u:}:°, are a constrained-efficient plan if they solve

max Eo Z ﬂt u(¢)

{(Ct,ht,0¢,be41,Gt,10t) } 52

subject to
b
Ct + %1 < ZtF(]., ht7 Ut) — PVt — g(ht) —+ bt, (23)
¢
b
t+1 + epvvt < Rt (24)
‘R,
qu'(G) = PE, [Ul(étﬂ) (ZtHFk(la his1,Vig1) + Qt—i-l) + e 1Ke41Ge+1 | (25)
by
0= g (’ft% + ? - 9]%%) ) pe = 0, (26)
t

for allt >0 and s* € S*, given (by, so) = (bo, (20, Ro, ko)) € X.

Let {(CUE hPE v E bfﬁ)} be generated by the UE allocation functions of Definition
2 and {th} o by qA defined in (20). We then have the following proposition.

Proposition 4 (Unconstrained allocation as constrained-efficient plan). Suppose Assump-
tion 1 holds, \(A) = 1, and (22) holds for all x € XVE. Let zg = (bo, s9) € X VE. Then any
constrained-efficient plan of Definition 5 entails the UE allocation {(EtUE, hYE Y bt+1) }zo
and is time consistent. An optimal {(q, i) }720 i {q:}20 = {qf}:io, po =0, and

i () (6V5(s1)) — BE: | (5) (201 o (1,5, 0lE) + ai ) |

t
W s, s = , (27
t+1((s", $e41)) BE: (rerad) (27)
forallt >0, st €S, and s, € S.
Proof. See Appendix A.4. [ |

Proposition 4 is a consequence of Proposition 3 and Corollary 1. A sequential planning
problem of Definition 5 involves (25) for each history s* € S*, and the simplest way to satisfy
the former given the UE allocation and {¢;}{2, = {qf}zo is making g4 1((s", $¢+1)) constant
over s;41 € S, which gives (27). Given (22), the multipliers are guaranteed to be nonnegative.
Note that {u}°, constructed according to (27) is not Markovian since p;41(s"*) depends
on the allocation and prices at st.

The possible existence of constrained-efficient equilibria that entail the UE allocation has

important implications for the design of optimal policy that we now explore.
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4 Optimal Policy

In this section, we characterize the policies that can implement constrained-efficient equilibria
as regulated competitive equilibria. As a policy tool, we focus on a tax on debt rebated
lump sum—the instrument suggested in the existing literature (Bianchi, 2011; Bianchi and
Mendoza, 2018; Jeanne and Korinek, 2019).

Although a positive debt tax generally discourages borrowing for given asset prices, the
tax tends to decrease asset prices, making the collateral constraint more likely to bind for
a given level of debt, and thus has an ambiguous effect on welfare and the probability of
financial crises. As a consequence of this tradeoff, in the presence of the working capital
constraint (6 > 0), the optimal time-consistent policy generally requires both taxing debt
when the collateral constraint is slack (good times) and subsidizing debt when the collateral
constraint binds (bad times). In this case, the optimal policy induces a constrained-efficient
MPE, but cannot achieve an unconstrained MPE. Implementing the latter requires, in ad-
dition, subsidizing intermediate inputs.

In the absence of the working capital constraint (f = 0), the tax on debt can induce
an unconstrained MPE. Under the premise of Proposition 4, the optimal time-consistent
policy requires only subsidizing (but not taxing) debt. Therefore, there is an important

discontinuity in the optimal time-consistent policy at 6 = 0.

4.1 Regulated competitive equilibrium

Suppose the government imposes a tax on debt 7; and provides a lump-sum transfer 7;. The

agent’s budget constraint (2) becomes

bt+1

¢ + qik + =
t T QeRe+1 Rt(1+7't)

< 2 F(ky, by, v) — povy + @ik + by + 1o

A positive 7; increases the effective interest rate, subsidizing saving and taxing borrowing.

Conversely, a negative 7; subsidizes borrowing. The government budget constraint is T; =

(1 JiT — 1) bgl, so the tax income is rebated back to the agent. Consequently, the role of 7
t t

is solely to affect the agent’s borrowing decision but not to distort the allocation otherwise.

Given Definition 1 and Remark 1, we define a regulated competitive equilibrium (CE)

in recursive form as follows.

Definition 6 (Regulated competitive equilibrium). Given a tazx function 7 € F(X), a
requlated competitive equilibrium is a set of allocation functions {¢, h,v,b'} C F(X), an

asset price function q € F(X), and a Lagrange multiplier function p € F(X) that satisfy
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(9)(12), (14), (15), and
W (E) = (14 7,) <ﬁR]ESu’(6x/) + M) if . € int B, (28)

with ' = (b, (2, R', k")), for all x = (b,s) = (b, (2, R,K)) € X.

Note that the only difference between the DE conditions in Remark 1 and the regulated
CE conditions in Definition 6 is the bond Euler equation (28) that has replaced (13). Since
u'(+) > 0, the regulated CE exists only if 7, > —1 for all z € X.

To develop the intuition on how this policy tool works, let us consider a one-shot change
d7, in the tax rate—that is, assuming that the initial tax function 7 is used again starting
from the next period. Let Xj = {z € X | u, = 0} denote the subset of the state space
in which the collateral constraint is weakly slack (“unconstrained region”) and let X7 =
X\ X7 denote the complement of X7 in X—the “constrained region” in which the collateral
constraint is strictly binding. Both X7 and X are conditional on the initial tax function, as
indicated by the superscript 7. The next proposition investigates the equilibrium adjustment
in response to a marginal one-shot tax change when the collateral constraint is initially either
strictly slack (z € int X)) or strictly binding (xz € X7 )—hence, the equilibrium outcome stays

in the same state-space region as before the tax change, and the differentials are well defined.

Proposition 5 (One-shot tax change). Consider a requlated CE of Definition 6 given T and
a one-shot tax change dt, at the state x € X. If v € int X, then dh, = dv, = du, =0,

) u'(E,) 1 L, 0e\1" W(E)
= |2/ 8RE i =) 2

. 1 1 19~ 0 1/~ / ! /
dq;ﬂ - Ul(éx) {quu (Cx) + ﬁ]Es (%; |:U (Cx’) (Z Fk(la hx’; Ux’) + qgc’> + Mo K QI/] dbx ) (30)

and d¢, = —+dbl,, provided the partial derivatives that appear in (29) and (30) ewist. If
r € X7 and 0 =0, then d¢, = dh, = dv, = dV, = dg, = 0 and dp, = —u'(¢,)(1 + 7,) 2 d7,.
If x € X7 and 0 > 0, the differentials are given by (A.13)-(A.18).

Proof. See Appendix A.5. [ |

If z € int X7, the tax on debt has an interpretation of a macroprudential tax—that
is, a tax applied in “good times.” In this case, du, = p, = 0, so that the equilibrium
labor h, and intermediate inputs v, are pinned down by (11) and (12) independently of 7
and remain constant. Consequently, the right-hand side in the country budget constraint
(9) also remains constant, and thus net consumption ¢, and next-period bond holdings b/,

adjust proportionally in the opposite directions. The response in b, given by (29), is then
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determined by the bond Euler equation (28): in particular, it depends on how the current and
future marginal utility of consumption adjust with b, . For a given future marginal utility, an
increase in 7, raises the current marginal utility, which requires a decrease in consumption
and an increase in saving. A change in ), however, affects the next-period state, and thus
future consumption and marginal utility. These two effects are captured in the two terms
involving «” in (29). If the equilibrium net consumption function ¢ is increasing in bond
holdings—a property that is true numerically in the DE under the baseline calibration—we
have 0¢, /o), > 0 in (29), which ensures that an increase in the tax rate raises saving. We

state this fact in Corollary 2.

Corollary 2. In the context of Proposition 5, if ¢ is increasing in b for all s € S, then
db,/dr, > 0 for all x € int X

The response in the asset price ¢, given by (30), is proportional to the response in ¥/,.
Like the latter, it has an intertemporal nature, depending on how the current and future
determinants of ¢, vary with b/, in the asset pricing condition (14). Since the collateral
constraint is strictly slack, an increase in b/, decreases consumption and raises the current
marginal utility, decreasing the asset price through the SDF—the term %qxu” (¢z) < 0in
(30). At the same time, an increase in b/, affects the expected next-period payoff on capital
in marginal utility units—the second term in (30)—and the overall response in the asset
price depends on the sign and magnitude of this second effect. We find that in the DE,
numerically, a fall in the future marginal utility due to an increase in future consumption
dominates the changes in the future marginal product of capital, asset price, and Lagrange
multiplier, so the partial derivative 9/0b, in (30) is nonpositive, and the asset price falls in

response to a macroprudential tax. Corollary 3 formalizes this statement.

Corollary 3. In the context of Proposition 5, if ¢ is increasing and u'(¢;)(2Fy(1, hy, v,) +
Qz) + Hakqy 18 decreasing in b for all s € S, then dq,/dr, <0 for all x € int X.

Corollaries 2 and 3 demonstrate a trade-off associated with macroprudential policy. On
the one hand, it discourages borrowing, making the collateral constraint less likely to bind.
On the other hand, it depresses asset prices, making the collateral constraint more likely to
bind. Hence, its welfare benefits are in general ambiguous.

If the collateral constraint is initially strictly binding (z € X7) and 6 = 0, the allocation
and asset price are pinned down by (9), (11), (12), (14), and (15) independently of 7, so the
change dr, affects only the Lagrange multiplier p, determined from (28), and dy,/dr, < 0.
If 6 > 0, the effects of a one-shot tax change are more complex. In this case, the adjustment

in b/ and ¢, causes a reallocation in intermediate inputs v,, consistent with the binding
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constraint in (15). In turn, the change in inputs leads to a change in labor A, in (11), net
consumption ¢, in (9), and the Lagrange multiplier u, in (12). These changes lead to further
adjustments in ¢/, and ¢, in (14) and (28), and so on. Our numerical analysis shows that

Corollaries 2 and 3 mostly continue to hold in the binding region as well.

4.2 Optimal time-consistent policy

We now characterize the optimal time-consistent tax on debt. We begin with a proposi-
tion that characterizes the optimal policy in relation to constrained-efficient equilibria of
Definition 3. The main result is that if § > 0—the case also analyzed by Bianchi and Men-
doza (2018)—the optimal policy implements a specific constrained-efficient MPE, but not
an unconstrained (welfare-dominant) MPE. However, if § = 0, we show that the tax on debt
can implement any constrained-efficient MPE, including an unconstrained MPE. We obtain a
general expression for the optimal tax rate in terms of the corresponding constrained-efficient
outcome (for any # > 0). We then provide several corollaries that explore the sign of the
optimal tax rate depending on whether the collateral constraint is slack or binding and show
that the optimal policy that implements an unconstrained MPE entails a debt subsidy. We
also show that if 6 > 0, an unconstrained MPE can be implemented with a debt subsidy

complemented by a subsidy to intermediate inputs.

Proposition 6 (Optimal time-consistent tax on debt). Consider an MPE of a game in which
successive policymakers choose the tax function T € F(X) to achieve the best requlated CE
of Definition 6, taking the next-period decision rules as given. If 0 = 0, the set of such MPE
18 equivalent to the set of constrained-efficient MPE of Definition 3. If 6 > 0, the equilibrium
T induces one specific constrained-efficient MPE corresponding to pu € F(X) defined as

[y s (31)

where St is the policymaker’s shadow value of collateral. If \(A) > 0, this MPE is not an
unconstrained MPE of Definition 4.

The taz function that induces a constrained-efficient MPE {¢, h,v,V/,q,u} C F(X) as a
requlated CFE satisfies

I N (32)
where
Ssp, s u’(¢y)
MP _ E, (Mf"" W U’(Ezf)>
T, =-— e e >0 (33)
sU (CCC/) + B_R
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risk sharing component

1 sp K qu//(éx) + ﬁRES% [ul(éaﬁ’) <Z/Fk(1a hx’a U:c’) + Qx’) + VJ:C”{/Qz’}
e (@) BRE (¢01) + 1t ’

(. /

(34)

~
collateral externality component

provided the partial derivative 0/0b., that appears in (34) exists, and where p must be con-
sistent with (31) if 6 > 0.

Proof. See Appendix A.6. [ |

According to Proposition 6, in the absence of the working capital constraint (6 = 0),
the tax on debt can implement any constrained-efficient MPE of Definition 3, including an
unconstrained MPE of Definition 4 if it exists. In this case, the planner can vary the agent’s
shadow value of collateral  when the collateral constraint binds, affecting the equilibrium
asset price, and expanding the set of feasible allocations. (See the discussion preceding
Remark 3.) If 6 > 0, however, the tax on debt can implement only one specific constrained-
efficient MPE, and this MPE is not an unconstrained MPE, provided that the collateral
constraint is relevant on the UE ergodic set (i.e., A(A) > 0). This is because the working
capital constraint restricts the Lagrange multiplier function g to be consistent with the
DE optimal input condition (12), introducing a wedge relative to the UE condition (16)
and generating a one-to-one mapping between the planner’s and agent’s shadow values of
u'(Ez)
u/(Cz)

planner’s shadow values of income (Lagrange multipliers on the country budget constraint),

collateral given by (31). Note that u/(¢,) and u/(¢,) — S Kq,

are the agent’s and

so (31) requires the equality between the agent’s and planner’s shadow values of collateral
normalized by the corresponding shadow values of income.

It is important to emphasize that there is a single-valued mapping between a constrained-
efficient MPE and a tax function that induces that MPE as a regulated CE. The tax is
uniquely determined not only in the states in which the collateral constraint is slack but
also in the binding states, unlike in the analysis of Bianchi (2011), Schmitt-Grohé and Uribe
(2017), and Jeanne and Korinek (2019), who all find that the tax on debt cannot affect the
allocation in the binding state—it can only affect the agent’s shadow value of collateral. In
our environment, if § > 0, the agent’s shadow value of collateral u is linked to the input
allocation through (12), so when the collateral constraint binds, there is still room for optimal

reallocation between bond holdings and inputs in (15) by adjusting the tax rate. If 6 = 0,
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for given next-period decision rules, the current tax rate 7, maps to the current multiplier
i, in (28) in the binding state, and the allocation and asset price are pinned down by the
remaining constraints in the regulated CE of Definition 6. However, in an MPE, the current
1 must be consistent with the function p that affects the next-period payoff on capital in
(14). Hence, in a given MPE, the value of p, is given, and (28) provides a unique value of 7,
that maps to the former. This property of the optimal time-consistent policy arises because
the shadow value of collateral affects the equilibrium asset price, while there is no such effect
in the alternative environments mentioned above.

The tax function that implements a given constrained-efficient MPE is described by (32)—
(34), comprising two components. The first component is a “macroprudential component”
™P given by (33). This component reflects that greater current savings b, relax the next-
period country budget constraint, having a positive effect on future net consumption ¢,
and asset price ¢/, and thus relaxing the collateral constraint in the next-period states
2’ = (b.,s') in which the constraint is strictly binding (47 > 0). The macroprudential
component is nonnegative and captures the planner’s motive to subsidize savings (tax debt
issuance) today to prevent or mitigate financial crises in the future. If the collateral constraint
is slack in the current period, the agent’s and planner’s complementary slackness conditions
require g1, = p5F = 0 in any MPE. In this case, the macroprudential component is the only

component of the optimal tax.

Corollary 4. Consider the optimal time-consistent tax on debt described in (32)—(34). If

the collateral constraint is slack at x, then

E (,uS/PKJ'q /—“//(?I’)>
MP s z T (e
_— = — — . 35
Te =T, Eow (o) (35)

Given (A.22), TP in (35) is equivalent to the “macroprudential debt taxz” in Bianchi and
Mendoza (2018, eq. (17), p. 605).

The second component of the optimal time-consistent tax on debt is an “ex post com-
ponent” 7EF given by (34). By Corollary 4, the ex post component is active only if the
collateral constraint is binding. The ex post component is, in turn, a sum of two terms: a
“risk sharing component” and a “collateral externality component.”

The risk sharing component is proportional to the difference between the planner’s and

SP
T

agent’s shadow values of collateral (uSF — p,). If uSP > pu,, the representative agent un-
dervalues the utility benefit of increased consumption smoothing achieved by relaxing the
binding collateral constraint, and the planner has an incentive to subsidize savings in the

binding state. Conversely, if u5Y < p,, the representative agent overvalues savings in the
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binding state, and the negative risk sharing component provides an incentive to tax sav-
ings (subsidize debt) when the collateral constraint binds. If # > 0, (31) implies p5F > p,

whenever ;5 > 0.

Corollary 5. Consider the optimal time-consistent tax on debt described in (32)—(34). If u
is constrained by (31), the risk sharing component of T5F is positive in the states in which

the collateral constraint is strictly binding.

The collateral externality component arises due to the pecuniary externality (Davila and
Korinek, 2018) and reflects the effect of greater current savings b/, on the current asset
price q,. First, greater current savings crowd out current net consumption ¢, and have
a negative effect on the asset price through the current marginal utility of consumption,
which corresponds to g,u”(¢,) < 0 in the numerator in (34). Second, a change in b/, affects
the next-period state @’ = (¥, s’), and thus the next-period payoff on capital in marginal
utility units, i.e., u/(¢,) <z’ Fr(1, hyry ) + qx/) + pK'qe. The latter effect depends on the

monotonicity properties of the MPE decision rules.

Corollary 6. Consider the optimal time-consistent tax on debt described in (32)—(34). If the
MPE payoff on capital in marginal utility units is decreasing in b for all s € S, the collateral
externality component of 75 is negative in the states in which the collateral constraint is

strictly binding.

The sufficient condition for a negative collateral externality in Corollary 6 is similar to
the sufficient condition for a negative effect of a one-shot tax change on the the asset price
in Corollary 3. It is satisfied if an increase in future consumption (a decrease in the marginal
utility of consumption) dominates the effects through the changes in the future marginal
product of capital, asset price, and agent’s shadow value of collateral. If an increase in current
savings does decrease the current asset price, so that the collateral externality component is
negative, the planner has an incentive to tax savings (subsidize debt issuance) in order to
increase the current asset price and relax the binding collateral constraint.

A striking simplification of the optimal time-consistent tax on debt arises if it implements
an unconstrained MPE of Definition 4. In this case, the policymaker acts as if being subject to
the country budget constraint only, consistent with the unconstrained problem of Definition
2, while {q, u} are set to satisfy the collateral constraint, asset pricing constraint, and the
agent’s complementary slackness conditions at the UE allocation, as described in Proposition
3. Consequently, the collateral constraint can be dropped from the planner’s best response
problem, which implies ;5F = 0 for all # € X. Imposing the latter in (33) and (34), we
observe that both the macroprudential and collateral externality components become zero,

and the optimal tax is given by the nonpositive risk sharing component.
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Corollary 7. The optimal time-consistent tax on debt that implements an unconstrained

MPE of Definition 4 is given by

EP — Mz
T = — = ~1ron . G - 1, 0 ) 36
T. Ty u! (CgE) L ( ] ( )

where the denominator has been simplified with (17).

The optimal time-consistent policy given by (36) is a debt subsidy that responds to the
agent’s shadow value of collateral pu, closing the wedge in the DE Euler equation (13) intro-
duced by the Lagrange multiplier. The optimal policy thus ensures that the representative
agent can borrow as much as it is optimal to do at the UE allocation, counteracting the
distortion introduced by the collateral constraint.

By Proposition 6, the tax on debt can implement an unconstrained MPE only if § = 0.
If & > 0, a wedge in the input optimality condition (12) prevents the implementation of
an unconstrained MPE. Not surprisingly, if the planner can close that wedge by subsidizing

inputs, an unconstrained MPE, if it exists, can be implemented.

Proposition 7 (Optimal time-consistent policy). Suppose, in addition to a tax on debt, a

policymaker can tax intermediate inputs, so that the agent’s budget constraint (2) becomes

be+1

¢t + Gk + =
t T qtRiy1 Rt(l—l—Tt)

< 2 F(ky, hyyvy) — (14 70)pove + ok + by + 13,

and the government budget constraint is T, = <1jn — 1) bgl + 7pyve.  Then the set of
MPE of a game in which successive policymakers choose {r,7"} C F(X) to achieve the
best requlated CE, taking the next-period decision rules as given, is equivalent to the set
of constrained-efficient MPE of Definition 3. The policy that induces a given constrained-

efficient MPE as a requlated CE satisfies (32)(34) and

spP
=0 P Te ) (37)
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The policy that implements an unconstrained MPE of Definition 4 is given by (36) and

v eluﬂv

Proof. See Appendix A.7. [ |

By Proposition 7, taxes on debt and inputs jointly can implement the whole set of
constrained-efficient MPE of Definition 3. Consistent with Proposition 6, (37) implies that
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the tax on inputs is required only if # > 0 and only in the states in which the collateral
constraint binds. In this case, the tax is proportional to the difference between the planner’s
and agent’s shadow values of collateral normalized by the corresponding shadow values of
income. If the representative agent underestimates the normalized shadow value of collateral,
it is optimal to levy a positive input tax. Conversely, if the agent’s normalized shadow value
of collateral is greater than the planner’s, it is optimal to subsidize inputs in the binding
state. If the normalized shadow values are exactly equal, the optimal input tax is zero, and
the tax on debt induces the specific MPE that satisfies (31).

Note that the optimal tax on debt in Proposition 7 is characterized by the same conditions
(32)—(34) as in Proposition 6. In particular, Corollaries 4-7 continue to hold. However, if
6 > 0, to implement an unconstrained MPE of Definition 4, we need to augment the debt
subsidy given by (36) with an input subsidy given by (38) that equalizes the effective marginal
cost of inputs with its price, consistent with (16).

The tax rates in (36) and (38) have simple expressions, but they involve the agent’s
shadow value of collateral p that is part of an unconstrained MPE. Propositions 2 and 3
and Corollary 1 could go as far as providing the necessary conditions for the existence of an
unconstrained MPE and describing a candidate unconstrained MPE, lacking the sufficient
conditions. However, if we drop the Markov perfection requirement, under the premise
of Proposition 4, (27) provides a closed-form expression for a history-contingent {u;}5°,
that is part of a time-consistent constrained-efficient plan of Definition 5 that entails the
UE allocation. Using that expression together with (36) and (38), we can construct the
corresponding time-consistent policy {(7,7)}52, that implements the UE allocation in a

regulated CE. We state this formally in Proposition 8.

Proposition 8 (Implementing unconstrained allocation). Under the premise of Proposition
4, define {u:}22, by (27) with po = 0 and define a policy {(1:, 77) 2o by (36) and (38) stated
in sequential notation (i.e., replacing x with t). Then this policy implements the UE alloca-

tion { (¢, h7E v/E 0EE) Y, in a regulated CE, is Ramsey-optimal and time consistent.

Proof. See Appendix A.8. [

5 Quantitative Results

In this section, we discuss the quantitative properties of the optimal policies. We show
that, under the calibration of Bianchi and Mendoza (2018), the ex post component of the
optimal time-consistent tax on debt is a subsidy, and its magnitude can be larger than that

of the macroprudential component. In particular, we demonstrate that a significant subsidy
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must be provided during financial crisis events. We then show that both the ex post debt
subsidies and ex ante macroprudential taxes are essential for achieving welfare gains from
the time-consistent policy. If either component is restricted, a time-consistent policy can
lead to welfare losses. Finally, we compute the policy that implements the welfare-dominant
unconstrained allocation. We show that this policy entails debt and input subsidies (but not

taxes), and the resulting allocation features significantly more debt than the DE.

5.1 Calibration and computation

We calibrate the model identically to Bianchi and Mendoza (2018), extracting the exact
parameter values, Markov chain states, and the transition matrix from their replication
package. The model period is a year. The agent’s preferences and technology satisfy

61—& -1 h1+w
o g(h) =x

F(k, h,v) = k*hor (39)
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where o, x > 0, w > 0, ag, ap,a, > 0, and ay + ap, + o, < 1. The structural parameter

values are summarized in Table 1.7

Table 1: Parameter values

Parameter Value Description
Preferences
153 0.95 Discount factor
o 1.1 Inverse intertemporal elasticity of substitution
w 0.5 Inverse Frisch elasticity of labor supply
X 0.64 Labor disutility scale
Technology
Qg 0.01 Capital share in production
ap 0.352 Labor share in production
Qly 0.45 Input share in production
0 0.163 Input share financed in advance
Do 0.818 Input price

Notes: See Bianchi and Mendoza (2018, Section III.A) for calibration details. That section
reports 0 = 1 and x = 0.352. (We use the values from the replication package.)

Since 6 > 0, by Proposition 6, the tax on debt can implement a specific constrained-
efficient MPE of Definition 3 consistent with (31). We are going to refer to this MPE (its

allocation) as the SP equilibrium (SP allocation).

"Consistent with Bianchi and Mendoza (2018, footnote 16 on p. 611 and the replication package), we
subtract constant government spending of 0.13 from the right-hand side of the country budget constraint
(9). This lump-sum term does not affect the theoretical results.
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The Markov chain {s;} has three TFP states z; € {1.78,1.82,1.86}, three gross interest
rate states R, € {0.987,1.012,1.037}, and two credit regimes x; € {x”, k"} = {0.75,10}.%
The components of s; are mutually independent. The collateral constraint binds at the DE
or SP allocations only if K = k. Moreover, Pr(/{tﬂ =kl | Kk = /{L) = 0, which matches the
one-year duration of financial crises.

We develop an independent MATLAB code for our quantitative analysis. The details
are provided in Appendix B. We compute all equilibria using global nonlinear methods,
approximating the unknown functions with linear splines. We use the same grid for bond
holdings as in Bianchi and Mendoza (2018) except when computing the UE allocation,
which requires setting the lower bound b close to minus the natural borrowing limit. The
DE we obtain matches closely the DE in Bianchi and Mendoza (2018), but there are certain
differences between the SP allocations. In particular, we find less overborrowing by private
agents when the collateral constraint is slack, underborrowing when the constraint binds,
and greater welfare gains. These differences stem from the differences in addressing the
nonconvexities of the planner’s choice set.

When computing the SP equilibrium, we do not rely on any differentiability assumptions,
although, by construction, the piecewise linear decision rules we obtain are differentiable a.e.
To compute the optimal time-consistent tax on debt, we use the primal approach, backing out
7 from (28). To decompose T into its macroprudential and ex post components, we note that
the calibration of {x,} implies Pr(pu5" > 0] p5" > 0) = 0. Hence, (32)—(34) combined with

MP

Corollary 4 imply 7, = 7MF when u, = ¥ = 0 and 7, = 7°° when p, > 0 (equivalently,

pSP > 0 due to (31)), where p is backed out from (12).

5.2 Optimal financial crisis management

Figure 1 plots the optimal time-consistent tax on debt 7 of Proposition 6 as a function of
bond holdings b on the horizontal axis in the two exogenous states s that both have average
z and high R but differ in the value of k: k = k!l in the left panel (“good state”) and x = x*
in the right panel (“bad state”).

In the good state, the collateral constraint is slack for all b (see Figure 3). By Corollary
4, 7, = T™P > 0. For b < —0.2, the constraint may bind in the next period with a positive
probability, i.e., Pr(,ui}D > 0) > 0, in which case 7, = 7MP > 0, consistent with (35). In this

region, as b increases, next-period bond holdings ¥, slightly trend upwards (Figure 3), and

the marginal propensity to consume out of greater asset income is close to 1. By (28), a

8Unlike the replication package, Section IIL.A in Bianchi and Mendoza (2018) reports k7 = 0.9. We
verified that any xf > 0.91 (k¥ > 0.93) generates the same DE (SP) allocation. Hence, kI can be set
significantly lower than 10 without affecting the quantitative results.
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Figure 1: Optimal tax in good and bad state
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Notes: “good state” = (average z, high R, high ), “bad state” = (average z, high R, low k).

decrease in the marginal utility of consumption translates into a decrease in 7 from around
20% to zero when Pr(uS” > 0) = 0. This is consistent with (35), since an increase in b,
induces a fall in the planner’s next-period shadow value of collateral ;5F in the states in
which the constraint binds, implying a smaller tax.

In the bad state, the collateral constraint binds for b < —0.23 (see Figure 4). In this
region, the constraint is slack in the next period, which implies 7MP = 0. We observe
from Figure 1 that 7, = 777 < 0 when the constraint binds. This means that the (negative)
collateral externality component in (34) dominates the (positive, by Corollary 5) risk sharing
component of 75, As b increases from —0.3 to —0.255, an increase in the asset price and
greater borrowing capacity allows the planner to issue more debt (Figure 4), which is induced
in the regulated CE through a greater debt subsidy (i.e., db./d7, > 0 and dg,/d7, < 0 in
the context of Proposition 5) that reaches around 40% (7 falls to —40%). As b increases
further from —0.255 to —0.23, the optimal debt issuance starts to fall (o, increases), and so
does the optimal subsidy, reaching zero when the collateral constraint becomes slack.

Figure 2 illustrates how the optimal tax on debt and its macroprudential and ex post
components given by (32)—(34) are used around financial crisis episodes. Specifically, we
simulate the DE for 101,000 periods, drop the first 1,000, and identify the dates at which the
current account ca; = b1 — b exceeds its two standard deviations, i.e., ca; > ¢a = 26(cay),
which indicates a significant capital outflow (Bianchi and Mendoza, 2018). Each such date
t indicates a financial crisis event. We then extract the DE states x; = (b, s;) in a four-
year window around each crisis, evaluate the tax functions at these states, and compute an

average over all crises paths. Hence, the paths provide the values of the tax that would have

29



to be applied if the policymaker intervened under discretion at a specific date of the crisis

window, directly reflecting the policy functions in Figure 1.

Figure 2: Optimal tax around financial crises
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Notes: Each line is an average across all financial crisis events. The optimal tax function and its
“ex ante” (macroprudential) and ex post components given by (32)—(34) are evaluated at the DE
states observed during the crises.

As the economy gets closer to a financial crisis, the macroprudential component increases

by 2.3 percentage points, on average, from 7™ = 4.4% to ™F = 6.7%. When a financial

crisis occurs, 7Y = 0, and the policy response is driven by the ex-post intervention that
averages at 7 = —30%. Although a financial crisis occurs only if the collateral constraint

is binding, the converse is not true: the constraint may be binding, but the capital outflow is
not large enough to qualify as a crisis. Consequently, the ex post component can be slightly
negative before and after a crisis, which explains a slight discrepancy between 7 and 7™ at

the start and end of the crisis window.

5.3 Restricted optimal time-consistent policy

In this subsection, we compute a restricted optimal time-consistent tax on debt under the

additional constraint
T <7(x)<T, for all z € X, (40)

where 7 < 0 potentially restricts the ex post (subsidy) component, while 7 > 0 may restrict

the macroprudential (tax) component. We thus study the MPE of a policy game in Propo-
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sition 6 where policymakers are, in addition, constrained by (40). The latter implies that
the resulting MPE is not constrained efficient, provided (40) binds in some states. Since
6 > 0, the resulting MPE, if it exists, is generally unique. Numerically, we impose (40) in
the policymaker’s best response by backing out 7 from (28).

5.3.1 Policy functions and financial crises dynamics

First, we compare the policy functions for next-period bond holdings ¥, the asset price ¢,
agent’s Lagrange multiplier p, and tax on debt 7 in the good (Figure 3) and bad (Figure 4)
states (defined as in Figure 1) across the DE, baseline optimal time-consistent policy (“SP”),
the optimal policy that allows only a nonnegative tax 7, > 0 (“SP ex ante”), and optimal

policy that allows only a subsidy 7, < 0 (“SP ex post”).

Figure 3: Policy functions in the good state
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Notes: “good state” = (average z, high R, high k). “SP” corresponds to the unrestricted optimal
time-consistent policy (7 = —oo and T = +00), “SP ex ante” to 7 = 0 and 7 = +o00, and “SP ex

post” to 7 = —27% and 7 = 0, where —27% is the lowest 7 (up to 1%) such that the MPE exists.
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Figure 4: Policy functions in the bad state
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post” to 7 = —27% and 7 = 0, where —27% is the lowest 7 (up to 1%) such that the MPE exists.

Consider the good state (Figure 3). In all equilibria, the collateral constraint is slack
independently of the level of bond holdings. There is slightly more saving in the SP allocation
compared to the DE when current debt is sufficiently large, induced by the positive debt
tax. There is significantly more saving in the “SP ex ante” equilibrium, induced by a
broader application of the tax on debt in an effort to decrease the probability of a binding
constraint in the next period, reflecting the nonavailability of the debt subsidy in the bad
state. Conversely, there is more borrowing in the “SP ex post” equilibrium, induced by the
nonavailability of a (positive) debt tax in the current state and the use of debt subsidy in
the bad states that may occur in next periods. Corresponding to the differences in next-
period bond holdings &’ are the differences in the asset price functions: more saving in the

SP and “SP ex ante“ equilibria compared to the DE is associated with lower asset prices in
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the former compared to the latter. Conversely, asset prices are higher in the “SP ex post”
equilibrium compared to the DE. This is consistent with the discussion following Proposition
5, and in particular with Corollaries 2 and 3.

Consider now the bad state (Figure 4). The unconstrained policy (SP) subsidizes debt
issuance in the binding region, which is accompanied by higher asset prices due to lower
marginal utility of consumption. There is even more debt and higher asset prices in the “SP
ex post” equilibrium, but the debt subsidy has smaller magnitude than in the SP equilibrium.
The latter follows from the fact that positive taxes are not allowed in the good states, and
both debt and asset prices are high in those states. Due to higher asset prices, the binding
region is the smallest in the “SP ex post” equilibrium. Conversely, lack of debt subsidies in
the “SP ex ante” equilibrium leads to lower debt, lower asset prices, and a larger binding
region than in the DE.

Figure 5 compares the dynamics of the current account (in % of output), asset price,
agent’s Lagrange multiplier, and tax on debt across alternative equilibria around financial
crises. The ex post debt subsidy provided in the SP equilibrium mitigates financial crises by
significantly decreasing the capital outflow and the fall in the asset price compared to the
DE. The probability of a financial crisis decreases from 4.02% in the DE to 0.01% in the SP
equilibrium (see Table 2). Conversely, in the “SP ex ante” equilibrium, the nonavailability
of the debt subsidy exacerbates financial crises, leading to a larger capital outflow and
greater fall in the asset price compared to the DE. The financial crisis probability decreases,
but only to 0.25%. Interestingly, financial crises are almost nonexistent in the “SP ex post”
equilibrium at the DE crises states: the collateral constraint is rarely binding in those states,
consistent with the smaller binding region in Figure 4, there is virtually no fall in the asset
price, no capital outflow, and no need to subsidize debt. Financial crises do occur in the
“SP ex post” equilibrium but at greater levels of debt that are not commonly observed in
the DE. The financial crisis probability decreases to 1.88%.

5.3.2 Welfare gains

Table 2 reports the welfare gains from alternative equilibria relative to the DE in terms of
permanent changes in net consumption, provides selected moments of the corresponding tax
functions, and reports the financial crisis probabilities.

The unconstrained optimal time-consistent policy (“SP”) induces sizable average welfare
gains of more than 0.6%, both with respect to the DE and SP ergodic distributions. The
welfare gains are achieved by taxing debt in “good times” and subsidizing debt in “bad
times.” If either subsidies or (positive) taxes are not available to the policymaker, the

optimal time-consistent policy is counterproductive and leads to welfare losses: -0.14% in
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Figure 5: Financial crises
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Notes: Each line is an average across all financial crisis events. “SP” corresponds to the unrestricted
optimal time-consistent policy (1 = —oo and 7 = +00), “SP ex ante” to 7 = 0 and 7 = 400, and

“SP ex post” to T = —27% and 7 = 0, where —27% is the lowest 7 (up to 1%) such that the MPE
exists. The policy functions are evaluated at the DE states observed during the crises.

the “SP ex ante” equilibrium and -0.08% in the “SP ex post equilibrium” with respect to
the DE ergodic distribution. The welfare losses are smaller if computed with respect to the
ergodic distributions of the corresponding equilibria, and there is a marginal welfare gain of
0.01% from the “SP ex post equilibrium” in this case.

Figure 6 further illustrates the role of the ex post debt subsidy for welfare gains. In
this figure, we plot the welfare gains from the optimal time-consistent policy constrained by
7(z) > 7 for different values of T on the horizontal axis. Hence, only the subsidy component
is restricted, but taxes can be set as high as needed, i.e., 7 = 400 in (40). If 7 < —42.2% (i.e.,

min(7) for “SP” in Table 2), the constraint 7(x) > 7 is slack, and we obtain the unconstrained
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Table 2: Statistics

DE SP SP+ SP— SP+ best  SP— best

Average welfare gain, initial # 0 0.61 —-0.14  —-0.08 0.03 0.03
Average welfare gain, final @ 0 0.62 —0.03 0.01 0.04 0.03
min(7) 0 —42.2 0 —27 0 —6
max(7) 0 29.8 20.1 0 0.8 0

E(7) 0 2.4 2.7 —0.7 0.8 -0.3
Pr(r < 0) 0 8.1 0 30.4 0 5.1

Pr(ca, > ca") 402 001 025  1.88 3.7 3.57

Notes: All statistics are in %. “SP” corresponds to the unrestricted optimal time-consistent policy
(1 = —oc0and 7 = +00), “SP+” to 7 =0 and 7 = 400 (“SP ex ante”), “SP—" to 7 = —27% and
7 =0 (“SP ex post”), “SP+ best” to 7 = 0 and 7 = 0.8% (the maximum in the right panel of Figure
7), and “SP— best” to 7 = —6% and 7 = 0 (the maximum in the left panel of Figure 7). Welfare
gains are in permanent net consumption equivalents. “initial 7”7 is the DE ergodic distribution,
while “final 7” is the ergodic distribution under the corresponding alternative equilibrium. The
moments of 7 are with respect to the “final 7.” @P¥ is the DE financial crisis threshold.

Figure 6: Welfare gains from optimal time-consistent policy constrained by 7(z) > 7
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Notes: If 7 < —42.2%, the constraint 7(x) > 7 is slack, and we obtain the “SP” equilibrium.

“SP” equilibrium. As the tax lower bound 7 increases from —42.2%, welfare gains decrease
and become negative when 7 ~ —7.5%. Hence, substantial ex post interventions are essential
for welfare gains from a time-consistent policy.

Interestingly, we find that optimal time-consistent ex ante and ex post policies can be
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welfare enhancing if we restrict the magnitude of these policies. The left panel of Figure 7
Figure 7: Welfare gains from optimal time-consistent ex post and ex ante policies
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Notes: The left panel corresponds to optimal time-consistent policies constrained by 7 < 7(z) <0
for different values of 7. In the right panel, the constraint is 0 < 7(x) < 7 for different values of 7.

plots welfare gains from optimal time-consistent policies constrained by 7 < 7(z) < 0 for
different values of 7 on the horizontal axis. These policies do not allow positive taxes and
have an interpretation of “ex post” policies. For 7 > —15%, there is a welfare gain from an
ex post policy, with the maximum welfare gain of around 0.03% when 7 = —6% (“SP— best”
in Table 2). Symmetrically, the right panel of Figure 7 considers optimal time-consistent
policies constrained by 0 < 7(z) < 7 for different values of 7 on the horizontal axis. For
7 < 1.5%, there is a welfare gain from such “ex ante” policies, with the maximum of also
around 0.03% when 7 = 0.8% (“SP+ best” in Table 2). Hence, there is a wider range
of welfare-enhancing ex post policies, but welfare gains from such policies are significantly

smaller than from the unrestricted optimal time-consistent policy.

5.4 Implementing unconstrained allocation

In this subsection, we apply Proposition 8 to construct numerically the optimal time-
consistent policy {(7;, 7)} that implements the UE allocation in a regulated CE. Specifically,
we compute the UE allocation functions {EUE, hVE yVE bUE} of Definition 2 and the asset
price function ¢# given by (20), simulate a long sequence of shocks {s;}, use (27) to construct
a sequence of Lagrange multipliers {1} that are part of a constrained-efficient plan, and use
(36) and (38) to back out the corresponding optimal tax rates.

Under the baseline calibration, there is a well-defined stationary distribution correspond-

ing to the UE allocation, consistent with Assumption 1, and the collateral constraint is
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always violated in the UE, i.e., A(A) = 1. However, the condition (22) is not always satis-
fied. To obtain an example in which the condition (22) holds on X YE| we make two changes
relative to the baseline calibration. First, we fix R, = R. Hence, the natural borrowing
limit remains the same as under the stochastic {R;}. Second, we fix x; = . It is possible
to allow for a stochastic {k.}, but it does not affect the UE allocation. Therefore, in this
example, the TFP {z;} is the only source of uncertainty.

Figure 8 displays the empirical distributions of bond holdings, the agent’s Lagrange mul-
tiplier, and the optimal time-consistent tax rates on debt and inputs that implement the
UE allocation in a regulated CE. The distributions are based on a 100,000-period stochastic
simulation after a 1,000-period burn-in. The distribution of bond holdings is skewed to the

Figure 8: Unconstrained allocation and optimal time-consistent policy
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right, away from the natural borrowing limit. On average, the agent borrows about 46 times
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more than in the DE (44 times more if {R;} were stochastic). Hence, the DE features un-
derborrowing compared to the UE allocation. The condition (22) is always satisfied strictly,
so that yu; > 0, < 0, and 77 < 0 for all £ > 0. The distribution of x has a long right
tail, translating into the left tails for 7 and 7¥. Most of the mass of 7 is concentrated in the
[—7%, —3%)] interval, with three peaks corresponding to the three values of z;. The distribu-
tion of 7% is very similar to that of 7 but scaled down towards zero, with most of the mass of
7V in the [—1.3%, —0.3%)] interval. The debt and input subsidies successfully eliminate the

collateral and working capital constraint distortions.

6 Conclusion

This paper addressed how financial crises should be managed when prevention and resolution
policies interact. Using the workhorse collateral-constraint model of Bianchi and Mendoza
(2018), we studied the normative problem of a time-consistent planner and showed that
multiple constrained-efficient equilibria can arise in this setting. Among them, we identified
a welfare-dominant equilibrium that entails the unconstrained allocation, highlighting that
eliminating crises should be the benchmark policy objective.

We also demonstrated that the full set of constrained-efficient equilibria can be imple-
mented by combining ex ante macroprudential tools with ex post interventions. Quan-
titatively, both elements are essential: preventive measures alone can be costly without
complementary crisis resolution policies and vice versa.

Returning to Bagehot’s classic dictum, our findings suggest that lender-of-last-resort in-
terventions are not merely tools for managing crises after they erupt. They are also integral
to making ex ante regulation effective. Effective crisis management, therefore, requires that
prevention and resolution be designed jointly, reflecting the institutional and economic struc-

ture that shapes financial fragility.
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Appendices

A  Proofs

A.1 Proposition 1

Define an operator T : F(X) — F(X) as

~

T(V)(b,s) = max |u <ZF(1, h,©) — pud — g(h) +b— %) + BE,V (b, s)

h,9,b

)

for all (b,s) = (b, (2, R,r)) € X. Since u is strictly increasing,

T(V)(b,s) = max [u (n@ax{zF(l, h, D) — pud — g(ﬁ)} +b— ﬁ) + BE,V (b, s)
b o R

Consider the inner maximization problem

f(z)= H;lﬂx{zF(l’ h, 0) — py0 — g(ﬁ)}
Since F' is concave and Cobb—Douglas, it is strictly concave in labor and inputs. Also,
g is convex. Hence, the unique maximum is described by the first-order conditions (11)
and (16). Clearly, the functions h and v depend on z only. To see that they are strictly
increasing, suppose for a moment that z can be varied continuously. Then, applying the
implicit function theorem,

dhy,  Fu(l he, ) — 200t B (1 Dy, 0,)

d - Fo(L,h N 0,
2 g () = 2 (Bl by, vy) — Helhelt)
dvx . Fv(lah$7vz) . Fhv(lahzuvw) dhx > 0’

dz _szv(l,hm,vx) Foo(1, hyyvy) dz

where the signs follow from our assumptions on F and ¢ that imply Fy, F,, Fy, > 0,

Fus Fop < 0, " > 0, and Fyy, —

F in the last two arguments and its Cobb—Douglas form. Note that f is also strictly

v < 0, where the latter is due to strict concavity of

increasing by the envelope theorem.
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The operator T' simplifies to

T(V)(b,s) = max
bET (b,s)

u (f(Z) + b— %) + /BESV(I;7 8/)] )

where T'(b, s) = (—oo, R(f(2) + b)] N B, so that ¢ > 0. We have T'(b, s) # 0 for all (b,s) € X
if and only if b < R(f(z)+b) for all R € [R, R|, which is if and only if b > ——f( Jif R>1
and b < —f( ) if R < 1. Let b satisfy these inequalities strictly, so that I'(b, s) is infinite
for all (b,s) € X. Clearly, I' is compact-valued and continuous. Since S is finite, X = B x S
is compact, so any continuous function on X is bounded by the extreme value theorem.
Since u is continuous, it then follows from the maximum theorem that 7' : C(X) — C(X),
where C(X) C F(X) is the set of all continuous (and thus bounded) functions on X. Then
by Theorem 9.6 in Stokey et al. (1989), T" has a unique fixed point V—the solution to the
Bellman equation.

Since wu is strictly concave and continuously differentiable and I' is convex in b, it follows
that V is strictly concave in b, the policy function & is single-valued and continuous, and
V' is continuously differentiable in b at interior points whenever (b, s) is interior in I'(b, s)
(Stokey et al., 1989, Theorems 9.8 and 9.10). Specifically,

Vi (b, s) = u'(¢(b, s)), (A1)

where &(b, s) = f(z) + b — ¢ s) is the implied policy function for net consumption, and the

first-order condition for an 1nter10r maximum is
u'(¢(b, s)) = BREG V(' (b, s), 5. (A.2)

The Euler equation (17) is obtained by substituting (A.1) into (A.2). Note that ¢/(b,s) =
R(f(z) + b) cannot be optimal since it implies u'(¢(b, s)) = co. Hence, if ¥/(b, s) is at the
boundary of T'(b, s), then it must be at the boundary of B.

Clearly, ¢ is strictly increasing in b if b/(b, s) is at the boundary of B. Since V' is strictly
concave in b and w is strictly concave, (A.1l) implies that ¢ is strictly increasing in b if
b'(b,s) € int B, and then (A.2) implies that 0 is injective in b in the same region. Since V' is
continuous, it then must be strictly monotone in b whenever (b, s) € int B. It is clear from

(A.2) that b’ cannot be strictly decreasing in b, hence it is strictly increasing in b.
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A.2 Proposition 2

In an MPE, u, > 0 for all z € X. Hence, given the UE allocation, (14) and (18) imply
¢z > qU¥ for all z € X. Substituting (20) into the collateral constraint (10) evaluated at the
UE allocation, we obtain —bY®/R + 0p,vVE = kg < kq,, which is equivalent to ¢, > ¢
Hence, the complementary slackness condition in (15) evaluated at the UE allocation is
equivalent to i, (qx — q;j‘) = 0. Now let x € A and suppose z(s") € int A° for all t > 1
and st € St. Then due to (19), we have ¢*(x(s')) < qVE(x(s')) < q(x(s')), which implies
pu(x(sh)) = 0 for all t > 1 and s € S?, and thus ¢, = ¢V¥. But since x € A, we have

¢ = qUF < ¢!, which is a contradiction.

A.3 Proposition 3

Since {EUE,hUE,UUE,bUE} satisfy (9), {6UE,hUE,vUE,bUE,q,u} C F(X) is a constrained-

efficient MPE of Definition 3 if and only if

bUE
— 4 0p < g, (A.3)
g1’ (EEE) = BE, [u’ (65,E) (z’Fk (1, hE,E,ng) - qu> + uxrﬁ’qxx] : (A4)
by" UE
0=, | Kgs + = Op,v, ™~ ), e >0, (A.5)

with 2/ = (bYF, (2/, R\, k'), for all z = (b,s) = (b,(z, R,k)) € X. The “only if” is by
definition, while “if” is since {¢U®, RU¥ vVE pUE} is optimal in the less constrained problem
of Definition 2.

Proposition 2 requires q, > ¢2 > ¢JF for all z € A, which requires u(z(s?)) > 0 for some
t > 1 and s' € S'. In turn, by Proposition 2, u(x(s')) > 0 implies q(z(s)) = ¢ (x(s!)). We
can, therefore, set q, = ¢2 for all z € A, which makes (A.3) hold with equality for all x € A.
Let Fa(X)={q€ F(X) | q =q} forallz € A}. If u, > 0 for all x € X, any fixed point
q € Fa(X) of (A.4) makes (A.3) hold for all z € A°, which follows from ¢, > ¢V > ¢ for
all x € A° by Proposition 2 and (19). We are left to construct u € F(X) consistent with
(A.5) for all x € X and (A.4) for all x € A.

44



Given q € Fa(X), define u? € F(X) such that {{Mi(st)} . }” satisfies
steStJ =

U, 6UE
t ¢ (s')
Zﬁ Z Pr | s H 14c(x —((GEEP

steSt

Ng(st)/‘it A

—7 N | Tt
~UE
u' (Cx(st))

o (&8,
_|_ﬁn Z PI‘ n | S H].Ac WQZ’(sn)a (AG)

sresSn

X | zeFy (1, hyiy, vglen) + La(z(sh)) | 1+

for all z = (b,s) € A, where n € [1,00) is such that
Z\{s €S| x(s') € Aand x(s') € A° for all i € [1,1)}| > [{z € A| b"E(2) = b"E(2)}],

where || denotes the cardinality of a set, and p?(-) = 0 otherwise. Note that (A.6) is (A.4)
iterated forward.

Several comments are in order. First, since A\(A) > 0, we are guaranteed to have an
infinite number of ¢ > 1 and s' € S* such that x(s') € A. Therefore, we can indeed affect
the right-hand side of (A.6) by varying u?. Second, for each = € A, there may be several
% € A such that bYF(2) = bYE(x). Therefore, making u? consistent with (A.6) at z € A
requires solving a system of equations corresponding to {# € A | bVE(2) = bVE(x)}. Since
bUE is strictly increasing in b by Proposition 1, [{Z € A | b"(2) = bVE(z)}| < [S] < oo,
so there is a finite number of equations. The system is linear in M?c(st)}' For this linear
system to have a solution, n needs to be large enough. Due to ergodicity (Assumption 1) and
continuity of {¢"F, hUE vUE pUEL (Proposition 1), we can choose n such that the number
of variables { Mi(st)} is at least as great as the number of equations and the rank condition
of Rouché—Capelli theorem holds. Third, since b is strictly increasing in b, as we vary
x € A, the set { ,ug(st)} will vary as well, allowing to construct a function u? € F(X). By
imposing p9(+) = 0 at all other points unrestricted by the construction above, we ensure that
(A.5) holds at all x € A°.
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Define an operator T : Fu(X) — Fa(X) as

T(q)(z) = La(z)q

! (~UE q l
/ 7y 0
+ 14 (2)E, { i <C;§E) |:Z/Fk (1, hUE, UE) + (1 1 sty O3 ) qx/] } ,

u' (&FF) (&)

with 2/ = (bJF, (2/, R,&")), for all z = (b,;s) € X. Let ¢ = T(q) € Fa(X) with the
corresponding ¢ € F(X) and define p € F(X) as p, = max{u?,0}. Such {q¢, pu} make
(A.3) and (A.5) hold on X and (A.4) on A° If ug > 0 for all z € A, then (A.4) holds on

A, otherwise holding approximately on A. Hence, {c"F, AV, vUE pUE

,q,u} is a candidate
unconstrained MPE of Definition 4, and it is an unconstrained MPE if pg > 0 for all x € A.

If A\(A) = 1, a significant simplification is achieved if we restrict attention to X = XE,
In this case, there is no need to find a fixed point ¢ of T', since \(A¢) = 0, so that (A.6)

simplifies to (21), and ¢ = ¢* on XVE.

A.4 Proposition 4

The UE allocation { (¢, ", vf™ bF)} " satisfies (23) with equality. Since zo € XV,
z(st) € XUP for all t > 0 and s* € S* due to Assumption 1. Since \(A) = 1, (24) is violated
at the UE allocation when prices are {¢’®}~ a.c. on XY Setting {¢}32, = {4/},
makes (24) hold with equality on XVE. Setting {u}:2, according to (27) makes (25) hold
given the allocation and prices. Finally, go = 0 and (22) imply g (s*) > 0 for all ¢ > 0 and
st € St satisfying (26). Therefore, the proposed plan is feasible in the planning problem of
Definition 5. Since the proposed plan entails the UE allocation, it is optimal. Proposition
1 implies that the UE allocation is unique, so any constrained-efficient plan entails the UE
allocation.

Consider restarting the planning problem of Definition 5 at some 7 > 0 and s™ € S™. The
continuation of the original plan is feasible, and it is optimal to choose a plan that entails
the UE allocation. There is no incentive to deviate from {{(qg“(st),,ut(st))}stestly}oo

tZT.
Consequently, any constrained-efficient plan is time consistent.
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A.5 Proposition 5

For any z € int X7 U X7, (9), (11), and (12) imply

Opu fie

dé, + = B db' = v dv, , (A7)

9" (he) dhy = 2Fpp(1, he,y v) dhy + 2Fpy (1, he, va) dvg (A.8)

Op, (% dp, — /LIM déx) = 2Fh (1, hyyvy) dhy + 2F (1, by, v,) do, (A.9)
u'(¢,) u'(C;)?

Moreover, (14) and (28) imply

G () A6 + () da = FB [ ' /)<2/Fk(1,hx/,vm/)+qx/>+ /Lm//i/qwf] db. . (A.10)

Vs
W'(E) dé, = (1+ 1) [BR]ES (u (& )ZZ ) v, + du ] ffT) dr,, (A.11)
provided all partial derivatives exist.
If x € int X7, we have du, = p, = 0, (A.8) and (A.9) imply dh, = dv, = 0, and (A.7)
implies d¢, = —+ db),. Hence, (A.11) implies (29) and (A.10) implies (30).
If x € X7, (15) implies

1
0=rdg, + = db, — 0p, dv, . (A.12)

If =0, (A.8) and (A.9) imply dh, = dv, = 0 and (A.7) implies dé, = — db,. Hence,
(A.10) and (A.12) imply db), = dg, = 0, and thus dé, = 0, and (A.11) implies

If 6 >0, (A.12), (A.8), (A.7), and (A.9) imply

dv, = o (/{ dg, + }%db’m) : (A.13)
e = i e (A14)
dé, = u’(‘c ) (n dg, + %db;> - %db;, (A.15)

= 2@ (Cx 1 [g zF;i, ij:7f$]ii,vz) —i—sz(l,hx,vx)} (/<;dqz + %db;)
+p Zl,léz)) (A.16)
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Consequently, (A.10) implies

dg, = W4T 4y, (A.17)
where
alr) — }%qaﬁu//(éﬂi) <1 - u’%t%)) + BES% [u/(éx’) <Z/Fk(1a hx’a UJ:’) + Qw’> + /j%"%/(_&’]
- W (E0) + 1o e |
and (A.11) implies
Vs
a, = — &) (A.18)

where

/ "(e 1 OCy 1
\I/b (1) = _U (CCE) o Ha _ meE 2o q(t) . —
g R \ian w@y) PEE (g, ) TR

() (L) @) CRnp])

Ce) \14+7 w(é) (0py)2 | 9" (he) — 2Fun(1, by, vy)

A.6 Proposition 6

The regulated CE of Definition 6 is described by (9)—(12), (14), (15), and (28). Clearly, (28)
can be used to back out 7 given the other functions. We will show that (11), (12), and (15)
are slack as constraints in the current policymaker’s best response to the future policymaker’s
decision rules. Similar to Bianchi and Mendoza (2018, Appendix A.1, Proposition IT), who

assume 6 > 0, consider the best response in a relaxed problem given by

V(b,s) = max |u(¢) + SEV (b, s')]

¢,h,0,b,q

subject to

[N
+
| <

>
VAN

+ 0p,0 < Kq,

Cju/(é) - BES |:U,/(Ex/) (Z/Fk(17 hx/a Ua:’) + (Jx’) + /’Lxlnqu/] )

=

48



with 2/ = (b, (2, R,&)), for all z = (b,s) = (b, (z,R,k)) € X. The corresponding La-

grangian is

The first-order conditions for ¢, iAz, v, ¢ and the complementary slackness conditions in an

MPE are, respectively,

Ao = U (Cp) — Eqou” (C), (A.19)
0=, (th<1, ha, v2) — g’(hx)), (A.20)
0=, (zﬂ(l, ha, vg) — pv) — 11 Opy, (A.21)

_ . sp_ R
0= puSF </iqx + % — Opvvx) , 1 > 0. (A.23)

Since 5F > 0 by (A.23), &, > 0 by (A.22), and A, > 0 by (A.19). Hence, (A.20) is equivalent
to (11).

If 6 =0, (A.21) is equivalent to (12), which means that the set of MPE in the optimal
policy problem is equivalent to the set of constrained-efficient MPE of Definition 3. Specifi-
cally, the current policymaker, taking as given the future policymaker’s decision rule p, can
set fi, = p, today to satisfy (15). There generally exist multiple such p, and thus multiple
MPE (Remark 3).

If 6 > 0, rearranging (A.21), we obtain

15P
(1 +0 ; )pv = zF,(1, hy,vy). (A.24)
If (o)
:U’ac - Aa; :um Y

(A.24) is equivalent to (12) and (A.23) is equivalent to (15). This selects a specific MPE of
Definition 3 that corresponds to p satisfying (31), having used (A.19) and (A.22). If it were
an unconstrained MPE of Definition 4, (16) would have to hold, requiring y5F = p, = 0 for
all z € X, and thus ¢ = ¢®, which could be consistent with (10) only if A(A) = 0.
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The first-order condition for b in an MPE is

A 5P 0
0= BEVi(t, ) = + i + GBBag [0(0) (Bl ot ) ) + o]
with o’ = (b, (¢/, R', k")), provided the partial derivative 0/0b, above exists. The envelope

condition in an MPE is V4 (b, s) = A(b, s). Combining this with (A.19) and (A.22), we obtain

u'(¢;) = BRE, (ul(éx’) - Mi}j"f’%’ :i/((g::)))

(= R a
SP 1 xu (CZ‘) K}/B ES_
T { TR TG o,

() (2Bl b ) + 02 ) + } C(A25)

The tax 7, that makes (A.25) equivalent to (28) is given by (32)—(34).

A.7 Proposition 7

The corresponding regulated CE is described by the same conditions as in Definition 6,

except (12) is replaced by

(1 Y4 eu‘(‘c)> Py = 2F,(1, hy,v,). (A.26)
The policymaker’s best response is characterized by exactly the same relaxed problem as
in Appendix A.6. Indeed, the solution to that problem implies that (11) holds in an MPE,
(A.26) can be used to back out 7" given the other functions, and p can be chosen to satisfy
(15) as explained in Appendix A.6 for the case # = 0 (in the current problem, the argument
applies to any 6 > 0). The latter implies that the set of MPE in the current optimal policy
problem is equivalent to the set of constrained-efficient MPE of Definition 3.

Since the relaxed policy problem is equivalent to that in Appendix A.6, so is the gener-
alized Euler equation (A.25) that describes the MPE allocation of bond holdings, and thus
(32)—(34) continue to hold. The tax 77 that makes (A.24) equivalent to (A.26) is given by
(37), having used (A.19) and (A.22). The policy that implements an unconstrained MPE
of Definition 4 is obtained by imposing p5F = 0 for all z € X in (32)-(34) and (37), which
gives (36) and (38).

A.8 Proposition 8

A Ramsey-optimal policy {(7,7/)}2, and the associated allocation { (&, h¢, vt bi11)}5%,

prices {q: }32,, and Lagrange multipliers { . }3°, solve the problem in Definition 5 modified by
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adding {(7, 77) }22, to the set of controls and adding the additional constraints (11), (28), and
(A.26) stated in sequential notation. The augmented set of constraints describes a regulated
sequential competitive equilibrium given {(7,7)}°,. Applying the primal approach, we

can use (28) and (A.26) to back out 7 and 7, respectively, as

u'(6;) — BRE (Cep1) — e

BRE W/ (Con) + 1

o 2Py (L hey o) —po O ' (A.28)
P u'(¢)

(A.27)

Tt =

Since (7, 7}) do not appear in the remaining constraints, the simplified Ramsey problem has
the same set of controls as the problem in Definition 5 but has an additional constraint (11).

Guess that (11) is slack in the Ramsey problem. If the guess is true, the Ramsey problem
is equivalent to the constrained-efficient problem in Definition 5. By Proposition 4, any
constrained-efficient plan of Definition 5 is time consistent and entails the UE allocation.
By Proposition 1, the UE allocation satisfies (11). Hence, the guess is verified, and the set
of Ramsey plans is equivalent to the set of constrained-efficient plans. Consequently, any
Ramsey plan entails the UE allocation, and the corresponding Ramsey policy {(7,7/)}:%,
defined by (A.27) and (A.28) is time consistent.

By Proposition 4, {u:}:°, defined by (27) with g = 0 is part of a constrained-efficient
(and thus, Ramsey) plan. By Proposition 1, the UE allocation satisfies (16) and (17).
Evaluating (A.27) and (A.28) at the Ramsey plan and imposing (17) in (A.27) and (16) in

(A.28), we obtain
—H v Ot

CEEE e e @

which are (36) and (38) in sequential notation.
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B Computation

We approximate all functions with linear splines with knots in a grid B = [b,b] C B for
each s € S. In all cases, b = 0.15. When we compute the UE allocation described in
Section 5.4, B has 1000 logarithmically spaced points with b ~ —11.23. In this case, the
lower bound b is approximately 10™* above minus the natural borrowing limit, and the
logarithmic spacing helps to account for the greater curvature in the policy functions close
to the natural borrowing limit. For all other equilibria, B has 60 linearly spaced points with
b = —0.3, which is the same grid as in Bianchi and Mendoza (2018). Let X = B x S.

B.1 Decentralized competitive equilibrium

The DE of Remark 1 is a set of functions {¢, h,v, ¥, q, u} that satisfy (9)—(15). It will be
useful to note that if p, = 0, (11) and (12), given the functional forms (39), imply

1
on 1—o+w o) d-av)-ay
« (07
__ UE _ h v 14w
e Zl(;) G) ] / Y
v

where vU¥ is the UE level of inputs. Moreover, (11) and (39) imply

T

_ (+w)(1—ay)—ay,
1—ap +w
Fv(Lh:puUz) X Vg " 9

which is strictly decreasing in v, since (1 +w)(1 —ay,) —ap > 1 —a, —ap, > o > 0 and
l—ap+w > 1—ap > ap+a, > 0. Therefore, (12) implies that p, = 0 if and only if v, = vJF

T
UE

., and thus the complementary slackness conditions (10)

and p, > 0 if and only if v, < v

and (15) are equivalent to

b b
0= (v;" — ;) (qux 5 9%%) A —3 0o < K. (B.2)

It follows that the equilibrium system (9), (11)—(14), and (B.2) simplifies to a bivariate
system (13) and (14) in {¥', ¢}, with (B.2), (11), (9), and (12) determining the remaining
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functions v, h, ¢, and p, respectively, conditional on {¥', ¢} as follows:

1 b
U, = min {U;JE, o (/ﬁqx + ﬁ) } , (B.3)

h, = (%ngv) T , (B.4)
X
b/
Co = 2F (1, hy,vy) — pyve — g(hy) + b — ﬁ’ (B.5)
_ u'(C,)
Mo = e—pv<ZFv<1,hx,UI) _pv> (BG)

To compute the fixed point {¥', ¢}, we use an algorithm that resembles both the time
iteration (Coleman, 1990) and fixed-point iteration (Judd, 1998, p. 599). Let {b", ¢"} denote
the guess for {i/, ¢} at iteration n > 1 and {v™, h", ", u"} the corresponding {v, h, ¢, u} given
by (B.3)—(B.6). Proceed as follows.

1. Choose € > 0, p € [0,1), and a metric d : RIEl « RIXI = R, over the vectors of spline
values at the knots. Set n = 1 and define the splines b' and ¢' by

bclc:ba qglc: 1552Fk (17th>UEE)>

for all = (b, (2, R, k)) € X, where hVE is given by (B.4) with v = vVE given by (B.1).
2. At iteration n > 1, do the following.

(a) For each 2 = (b, s) € X, find b, that solves a nonlinear equation

U (é(by, 7, ) = BRE W (E(by, ') + fibas ¢, ),

~ ~

where ¢(by, ¢, x) and fi(b,, ¢, x) are given by (B.5) and (B.6), respectively, with

~

V., qz) = (b, q") in (B.3)~(B.6).
(b) For each z = (b,s) € X, set

qA:B = A,\LES |:U/<62/) <Z/Fk(1, hZ/, 'Ug/) + q:/) + Mg/ﬁ/q‘g/} N
W (&(bas g1, )

with 2’ = (by, (2, R, &)).

3. If max{d(b”,f)),d(q",cj)} < e, set {0/, q} = {b",q"}, and stop. Otherwise, set b"*1 =
pb™ + (1 — p)l;, ¢ =pg" + (1 —p)G, n=n+1, and go to step 2.

We choose € = 1075, p = 0, and the maximum metric d = d.
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B.2 Unconstrained allocation

By Proposition 1, the UE allocation of Definition 2 is a set of functions {¢, h,v,0'} that
satisfy (9), (11), (16), and (17). The optimality conditions (11) and (16) determine v and
h, with closed-form solutions given by (B.1) and (B.4), respectively. The system reduces to
a functional equation (17) in ', with ¢ given by (B.5) conditional on . Let " denote the

guess for b’ at iteration n > 1 and ¢" the corresponding ¢ given by (B.5). Proceed as follows.

1. Choose € > 0, p € [0,1), and a metric d : RIX  RIXT R, over the vectors of spline
values at the knots. Set n = 1 and define the spline b! by b. = b for all z = (b, s) € X.

2. At iteration n > 1, for each x = (b, s) € X, find b, that solves a nonlinear equation
' (¢é(by, ) = BRE (& (bs, 8')),

where é(b,, ) is given by (B.5) with b/, = b,. If there is no solution in B, set b, to
the value in B that achieves the smallest residual (either b or b). If b is small enough
(but greater than minus the natural borrowing limit) and b is large enough, after a
few iterations, there will be exactly one x € X at which there is no interior solution:

specifically, b(b, (z, R, -)) = b. (Note that the UE allocation does not depend on .)

~

3. If d(b",IA)) < ¢, set b/ = b" and stop. Otherwise, set "™ = pb"™ + (1 — p)b, n = n + 1,
and go to step 2.

We choose € = 1075, p = 0, and the maximum metric d = d.

B.3 Optimal time-consistent policies

The optimal time-consistent policy that implements the UE allocation, described in Section
5.4, is obtained directly from Proposition 8 using the UE allocation functions. The optimal
time-consistent policies analyzed in Sections 5.2 and 5.3 are each part of an MPE that, given

7 <0 and 7 > 0, entails the best-response problem

V(b,s)= max [u(é)+5ESV(1§,s’)]

&,h,0,b,q,f1,7

o4



subject to

qul(é) - BES [U’/(ér’) <Z,Fk<17 hﬂc’a Um’) + QI’) + /vba:”f/qyi| )
b
0:ﬂ<ﬁqA+§_€pU@)7 ﬂZO’

W(E) = (1+7) <ﬁR]Esu’(Ez/) + ﬂ),
7€ [r,7],

~

with o' = (b, (2, R',)), for all z = (b,s) = (b,(2,R,k)) € X. An MPE is a set of
functions {¢, h, v,V q, i, 7, V} that satisfy (Gu, R, Vas U, Gos flas To) = (€as Pgs Oy Dy Qs fes )
and V' (b, s) = u(¢,) + PEV (¥, ') for all z = (b,s) € X.

Computing an MPE simplifies to finding the functions {¥', ¢, V'}, with {v, h, ¢, u, 7} given
by (B.3)-(B.6) and
. u'(C;)

BREW (Cy) + fa
respectively, given {V/, q}. Let {b",¢", V"} denote the guess for {V/,q,V'} at iteration n > 1
and {v™ h" " u"} the corresponding {v, h, ¢, u} given by (B.3)—(B.6). Proceed as follows.

1 (B.7)

T$ ?

1. Choose €,ey > 0, p, py € [0,1), and a metric d : RIX « RIXI - R, over the vectors of
normalized spline values at the knots, with the corresponding d defined by d(z,y) =
d(xz./(1+ |z|),y./(1+ |x|)), where ./ denotes the element-wise division. Set n = 1 and
the splines {b*, ¢*, V1} to those in the closest computed equilibrium, e.g., {b*, ¢*, V1} =
{bPE ¢PE VPEYif {17} = {—00, 00}

2. At iteration n > 1, for each z = (b, s) € X, solve

Vb, 5) = max|u(elby, G, 7)) + BEV" (b, )| (B.8)

bz,
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subject to

Gt (@lbr, o)) = BE, [o/(@) (#Fu(L Wb up) + a2 ) + 'l (BY)

%(biﬂ7qA$7x7n) e [17?]7 (B].O)

with 2/ = (l;x,(z’,R’,/{’)), where é(l;x,cjx,x) and /l(lax,(jx,x) are given by (B.5) and
(B.6), respectively, with (¥, ¢,) = (by, ) in (B.3)-(B.6), and

W(elbodna)

_ Gz
T(b$7Q$7x7n) - ~ ~
BREu/ (&%) + fu(by, Gu, )

based on (B.7). This bivariate constrained maximization problem can have a nonconvex
feasible set and multiple local maxima. (See also Appendix B.4.) To find the global
maximum, we transform the original problem into a set of bound-constrained univariate
maximization problems in by, with §, determined as the largest root of (B.9) given b,.
(See Figure B.6 for an example of multiple roots.) Note that, for a fixed Bx, and thus
E,V™(by, s'), the maximum in (B.8) is achieved at the greatest value of current net
consumption é(lsx, 4z, ), and (B.3)—(B.5) imply that net consumption is increasing in

the asset price. The maximization involves the following steps.

(a) Through a numerical investigation of the nonlinear equation (B.9), find B" ¢ B
such that (B.9) has a root in §, given b, € B". The set B" can be disconnected
(see Figure B.5), so B = Uz, B” for some m > 1.

(b) For each i € {1,2,...,m} and B"
(B.8) in terms of b,, with ¢, determined as the largest root of (B.9) given b,.

c Br

i ", solve the maximization problem in

Select the global maximum point 393, with the corresponding ¢, and V(b, s).

(¢) Check that (B.10) holds at (b,,q,). If not, through a numerical investigation
of (B.10), refine B" such that it is consistent with (B.10), which may entail
shrinking /removing/dividing some subsets of B”, and then go back to (b).

) < ey,set {0, q,V} ={b"¢" V"}, and stop.

3. If max{d(b",b),d(q", 4)} < e and d(V
p) e = pg" + (1= p)d, V'™ = py V" + (1= py)V,

Otherwise, set "™ = pb™ + (1 —
n=n-+ 1, and go to step 2.

(V"
b, q

We choose € = 1079, ¢, = 1078, p = 0.7, py = 0, and the maximum metric d = d.
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B.4 Replicating Bianchi and Mendoza (2018)

The DE allocation we computed is very similar to that in Bianchi and Mendoza (2018)
(henceforth “BM”), as illustrated in Figures B.1 and B.2. However, there are significant
differences between the SP allocations. Specifically, we find mostly underborrowing rather
than overborrowing when the collateral constraint is binding (top-left panel in Figure B.3),
and overborrowing is quantitatively smaller when the collateral constraint is slack (top-left
panel in Figure B.4), consistent with the fact that the ex post component of the optimal
time-consistent policy is critical in this economy. As a result, we obtain twice as large welfare
gains from the SP allocation (0.61% of permanent consumption, Table 2) compared to BM
(0.30%, as reported in Tables 2 and 3 and can be verified in the replication package).

In the correspondence with the authors, we confirmed that these numerical differences
can arise because the BM Fortran code does not fully account for the nonconvexities of
the planner’s feasible set. (See also Appendix B.3.) First, as illustrated in Figure B.5,
the current planner’s objective function in (B.8) can have multiple local maxima, and the
Fortran routine mnbrak, used by BM to bracket the maximum, can bracket a local but
not global optimum. This can happen when the planner’s feasible set is disconnected. In
such cases, the global optimum can have significantly more borrowing than a local optimum.
Second, as illustrated in Figure B.6, for a given level of next-period bond holdings, if the
collateral constraint is binding, there can be multiple pairs of intermediate inputs and the
asset price that satisfy (B.3) and (B.9), and the Fortran routine zbrac, used by BM to

bracket the root, can fail to bracket the welfare-maximizing (largest) root.
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Figure B.1: DE policy functions in the bad state
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Notes: “BRZ” is our computation, “BM” is the BM replication package, “bad state” = (average z,
high R, low k), as in Fig. 2 and Fig. 3 in BM.

58



next-period bond holdings (V')

intermediate inputs (v)

Figure B.2: DE policy functions in the good state
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Notes: “BRZ” is our computation, “BM” is the BM replication package, “good state” = (average
z, high R, high k), as in Fig. 5A in BM.
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Figure B.3: DE and SP policy functions in the bad state
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Notes: “DE” and “SP BRZ” is our computation, “SP BM” is the BM replication package, “bad
state” = (average z, high R, low k), as in Fig. 2 and Fig. 3 in BM.
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Figure B.4: DE and SP policy functions in the good state
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Notes: “DE” and “SP BRZ” is our computation, “SP BM” is the BM replication package, “good
state” = (average z, high R, high k), as in Fig. 5A in BM.
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Figure B.5: SP best response to DE with nonconvex feasible set and multiple local extrema
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Notes: The “unconstrained” and “constrained” values correspond to the planner’s objective func-
tion in (B.8) considered as a function of next-period bond holdings b,. (See Appendix B.3.) These
values are conditional on the state z = (b, (2, R, k)) = (—0.247,(1.78,0.99,0.75)) and next-period
policy functions being the DE policy functions. The “unconstrained value” ignores the collateral
constraint by setting ¢, = vY® in (B.3): in this case, any by € [—0.3,0], including the “uncon-

)

strained optimum,” violates the collateral constraint. The feasible set is nonconvex (disconnected):
if b, is between the two dashed gray vertical lines, (B.9) does not have a solution in ¢, given by. The
“constrained value” accounts for the binding collateral constraint. If one were to use the bracketing
routine mnbrak, starting from the neighborhood of the “DE outcome,” as in the BM code, it would

bracket the suboptimal “local constrained extremum” instead of the “constrained optimum.”
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Figure B.6: SP problem with multiple constrained intermediate inputs
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Notes: The “excess collateral value” kg, —HSZ /R — 0p,v; is the binding collateral constraint residual
as a function of inputs 0,, conditional on the state z = (b, (z, R, x)) = (—0.285, (1.78,0.99,0.75)),
next-period bond holdings by = 0.051, next-period policy functions being the DE policy functions,
and the asset price ¢, given by (B.9). If one were to use the bracketing routine zbrac, starting from
the neighborhood of the UE level of inputs vY* ~ 0.93, as in the BM code, it would fail to bracket
the roots. The largest root (“high v”) is welfare-maximizing. Note that here, to achieve a greater
similarity with the BM code, we are solving for inputs (instead of the asset price as in Appendix
B.3) conditional on next-period bond holdings. Given (bs,v,), (B.4) and (B.5) give é,, and (B.9)
gives ¢, in closed form, since the right-hand side depends only on by. These two approaches are
equivalent: conditional on next-period bond holdings, (B.3) implies a one-to-one correspondence
between inputs and asset prices when the collateral constraint is binding. When the collateral
constraint is slack, inputs are at the UE level, consumption does not depend on the asset price,
and the latter is pinned down uniquely by (B.9).

63



	Introduction
	Model
	Efficiency Analysis
	Unconstrained allocation
	Constrained-efficient equilibria
	Unconstrained allocation as a constrained-efficient plan

	Optimal Policy
	Regulated competitive equilibrium
	Optimal time-consistent policy

	Quantitative Results
	Calibration and computation
	Optimal financial crisis management
	Restricted optimal time-consistent policy
	Policy functions and financial crises dynamics
	Welfare gains

	Implementing unconstrained allocation

	Conclusion
	Appendices
	Proofs
	Proposition 1
	Proposition 2
	Proposition 3
	Proposition 4
	Proposition 5
	Proposition 6
	Proposition 7
	Proposition 8

	Computation
	Decentralized competitive equilibrium
	Unconstrained allocation
	Optimal time-consistent policies
	Replicating Bianchi and Mendoza (2018)


