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Abstract

We propose new bootstrap methods for the Barndorff-Nielsen and Shephard (2006)

and Andersen et al. (2012) tests for jumps, as well as for the realized bipower variation

and the median realized variation.1 Both the i.i.d. and the Wild bootstrap are considered.

We prove CLT-type results for the couples: realized volatility-realized bipower variation

and realized volatility-median realized variation. Based on these results, we build boot-

strapped tests for jumps.

We introduce a new jump-testing procedure that uses Fisher (1932)’s method to average

p-values from one/ different tests applied at different sampling frequencies. The procedure

is proven to be more efficient than applying the asymptotic tests, as we discard less data

and extract information from multiple frequencies and/ or procedures. We use a double

bootstrap procedure to control the overall size of the test.

Keywords: jumps, nonparametric tests, bootstrap, realized bipower variation, median realized

variation
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1Further versions of the paper will include consistency results for the realized bipower variation and the

median realized variation.
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1 Introduction

During the past decade, the increasing availability of high frequency data led to the develop-

ment of a new class of nonparametric estimators of volatility. The first and most popular such

estimator is the realized variance (volatility), introduced by Andersen and Bollerslev (1998).

Several other estimator were subsequently proposed to accommodate some other features of the

data. One key data characteristic that must be taken into account is the presence of jumps in

prices. Thus, several robust to jumps volatility estimators were proposed by Barndorff-Nielsen

and Shephard (2004); Mancini (2009); Corsi et al. (2010); Andersen et al. (2012). These con-

tributions led to further developments in the area of testing for jumps based on high frequency

data: Andersen et al. (2007), Andersen et al. (2012), Aı̈t-Sahalia and Jacod (2008), Barndorff-

Nielsen and Shephard (2006), Corsi et al. (2010), Jiang and Oomen (2008), Lee and Mykland

(2008), and Podolskij and Ziggel (2010).

Some of the latest advances in the field of high frequency econometrics concern the develop-

ment of bootstrap methods for some realized-type estimators. Thus, Gonçalves and Meddahi

(2009) propose bootstrap methods for the realized volatility and a class of nonlinear transfor-

mations of this estimator. Dovonon et al. (2013) propose bootstrap methods for functions of

multivariate high frequency returns such as realized regression coefficients and realized covari-

ances and correlations. Hounyo et al. (2011b) bootstrap estimators of the integrated volatility

based on the pre-averaging approach of Jacod et al. (2009). Hounyo et al. (2011a) propose

bootstrapping the pre-averaging realized volatility proposed by Podolskij and Vetter (2009).

The existing literature lacks in proposing bootstrap methods for robust to jumps volatility es-

timators and tests for jumps. Podolskij and Ziggel (2007) propose bootstrapping the realized

bipower variation by re-sampling the products of adjacent returns in absolute value, |rjrj−1|,
where j = 1 . . . n, with n the number of equidistant returns in a trading day. This procedure,

however, ignores the correlation between the above pairs of returns. Moreover, there are no

contributions in the literature on bootstrapping tests for jumps.

In this paper, we propose bootstrap methods for the Barndorff-Nielsen and Shephard (2006)

and Andersen et al. (2012)tests for jumps. Moreover, a future version of this paper will provide

consistency results for the bootstrapped realized bipower variation of Barndorff-Nielsen and

Shephard (2004) and the median realized variation of Andersen et al. (2012). We consider both

the i.i.d. and wild bootstrap techniques. These developments are meant to fill the gap in the

literature mentioned above and lead to accuracy improvements when applying these techniques

in finite sample. Moreover, the ability to bootstrap tests for jumps opens the possibility to

further improvements to the way these tests are applied based on combinations of tests and or

sampling frequencies. In fact, the second main contribution of this paper is to propose a test

1



averaging technique that requires bootstrap and substantially improves the performance of the

jump tests.

As showed above, the literature on tests for jumps is very rich. However, when applied

to real or simulated price data, the jump testing procedures tend to lead to different results.

Dumitru and Urga (2012); Theodosiou and Žikeš (2010) perform thorough comparisons between

various jump testing procedures and attempt to rank them considering both the power and

size criteria. This inconsistency of results is partly due to the way tests are built, leading

to different levels of size and power. Moreover, the inconsistency is deepened at very high

sampling frequencies, where securities prices are contaminated with microstructure noise. The

noise generates both size and power distortions for all jump tests. So far, the majority of the

existing literature unequivocally proposed sub-sampling as a unique solution to overcome the

problems generated by the presence of noise. As an exception, Dumitru and Urga (2012) point

out that sub-sampling leads to loss of power and inefficiency, by “throwing away” a lot of data.

They propose combining various tests and/ or sampling frequencies through both reunions and

intersections in order to extract more information on jump occurrence. However, this multiple

testing procedure, despite over-performing the existing single-testing procedures, lacks rigor,

by not providing a proper inference.

This paper proposes a new jump detection procedure, that manages to rigorously combine

results obtained at different sampling frequencies and from different jump tests.This new pro-

cedure is more efficient, by extracting information from multiple sampling frequencies and/or

multiple procedures. The use of different time scales in the high frequency literature is not

entirely new. Zhang et al. (2005) and Zhang (2006) use two or more time scales to estimate

volatility in the presence of microstructure noise. While in their case, the main purpose was to

extract noise from the final volatility estimate, here we attempt to extract more information on

the occurrence of jumps. We use Fisher’s method to average p-values obtained from applying

the same testing procedure at different frequencies. We use bootstrap to obtain the empirical

distribution of the Fisher statistic. In order to control the size of the test, a double bootstrap

procedure is required when combining different frequencies. We apply this new jump detection

procedure to the Barndorff-Nielsen and Shephard (2006) and Andersen et al. (2012) tests.

The rest of the paper is organized as follows. Section 2 explains the theoretical background

and past relevant contributions in the field of high frequency testing for jumps. Section 3

contains the new bootstrap methods for the tests for jumps. Section 4 covers all methodological

issues concerning jump identification based on averaging p-values. Section 5 contains simulation

results for the new procedure. Section 6 concludes the paper.

2



2 Setup, notation and existing theory

Following Barndorff-Nielsen and Shephard (2006), the logarithmic price process, Pt, is a

Brownian semimartingale plus jump process:

dPt = µtdt+ σtdWt + dJt (1)

where the drift, µt, and the volatility, σt, are assumed càdlàg, and Wt a Brownian motion at

time t. Jt is the jump process at time t, defined as Jt =
∑Nt

j=1 ctj where ctj represents the size

of the jump at time tj and Nt is a counting process, representing the number of jumps up to

time t and assumed to be finite for all t.

The quadratic variation of the price process up to a certain point in time, t, (QVt), usually

a trading day, can be defined as follow:

QVt =

∫ t

0

σ2
sds+

Nt∑

j=1

c2tj , (2)

where
∫ t

0 σ
2
sds = IVt is the integrated variance or volatility.

There are several estimators in the field of high frequency econometrics for both the

quadratic variance and the integrated volatility of the price. Most of these estimators are

based on equally spaced data. Thus, the interval [0, t] is split into n equal subintervals of

length δ. The j-th intraday return rj on day t is defined as rj = pt−1+jδ − pt−1+(j−1)δ.

Andersen and Bollerslev (1998) proposed RVt to estimate the quadratic variance:

RVt =
n∑

j=1

r2j
p−→ QVt, for δ → 0 (3)

where
p−→ stands for convergence in probability.

2.1 Tests for jumps

The Barndorff-Nielsen and Shephard (2006) test (BNS test hereafter) Barndorff-

Nielsen and Shephard (2006) propose the first robust to jumps estimator of the integrated

variance, the realized bipower variation (BVt), constructed to reduce the impact of jump returns

on the volatility estimate by multiplying them with adjacent jump-free returns:

BVt =
π

2

n∑

j=2

|rj||rj−1| (4)
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In the absence of jumps (Nt = 0), both RVt and BVt consistently estimate the integrated

variance. Barndorff-Nielsen and Shephard (2006) establish a CLT for RVt and BVt, when

Nt = 0:

δ−1/2

[(
RVt

π
2BVt

)
−

( ∫ t

0 σ
2
sds∫ t

0 σ
2
sds

)]
L−→ N

((
0

0

)
,

∫ t

0

σ4
sds

(
2 2

2 π2

4 + π − 3

))
(5)

where
L→ stands for convergence in law.

We can test for jumps by comparing RVt with BVt under the null of no jumps. This leads to

a Hausman-type test, where RVt is more efficient, but consistent only under the null, whereas

BVt is consistent under both hypotheses. Barndorff-Nielsen and Shephard (2006) propose the

difference statistics, whereas Huang and Tauchen (2005) point out that the use of the ratio

statistic leads to a less oversized test.
∫ t

0 σ
4
sds is usually estimated by using the tripower

quarticity, TQt:

TQt = n 1.74

(
n

n− 2

) n∑

j=3

|rj−2|4/3|rj−1|4/3|rj|4/3. (6)

In this paper, we will consider the following feasible difference and ratio statistics:

δ−1/2(RVt −BPVt)√
0.61TQt

(7)

1− BVt

RVt√
0.61 δ max

(
1, TQt

BV 2
t

) (8)

The Andersen et al. (2012) test (Med test hereafter) Andersen et al. (2012) propose

to estimate integrated volatility in the presence of jumps based on the nearest neighbour trun-

cation. The minimum realized variance (MinRVt) and median realized variance (MedRVt)

eliminate jumps by taking respectively the minimum and the median over adjacent returns:

MinRVt = 2.75 n
n−1

∑n
j=2min(|rj|, |rj−1|)2

MedRVt = 1.42 n
n−2

∑n
j=3med(|rj|, |rj−1|, |rj−2|)2.

(9)

Here we consider the test for jumps based on the MedRVt estimator. The test statistic is

based on the same argument as the BNS procedure, i.e. the comparison between a robust to
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jumps estimator and RVt. For simplicity, we will only refer to the ratio test:

1− MedRVt

RVt√
0.96 δ max

(
1, MedRQt

MedRV 2
t

)
L−→ N (0, 1), (10)

where MedRQt = 0.92 n2

n−2

∑n
j=3 med(|rj|, |rj−1|, |rj−2|)4 the median realized quarticity which

estimate the integrated quarticity.

3 The bootstrap for the BNS and Med tests for jumps

In this section, we propose i.i.d. and WILD bootstrap methods for the BNS and Med

tests. As Gonçalves and Meddahi (2009) explain, intraday returns are independent, but usually

heteroskedastic, making the wild bootstrap (WB hereafter) the appropriate bootstrap method.

However, at the same time, i.i.d. bootstrap is valuable as a benchmark and if we assume that

intraday volatility does not vary substantially.

We denote the bootstrap intraday return r∗j . In the case of the i.i.d. bootstrap, r∗j is i.i.d.

from {rj : j = 1, . . . , n}. For the WB, r∗j = rj · ηj, where ηj are i.i.d. with moments given by

µ∗
q = E∗|ηj|q. P ∗ denotes the probability measure under bootstrap re-sampling, conditional on

the original sample. Let E∗ and V ar∗ denote the expected value and the variance under the

P ∗ probability measure.

3.1 Consistency of the bootstrap for the BNS test

I.i.d. bootsrap In order to be able to bootstrap one of the test statistics in equations 7 and

8, we prove a CLT-type result similar to the one in equation 5. The bootstrap realized variance

and realized bipower variation are defined as follows:

RV ∗
t =

n∑

j=1

r∗j
2 (11)

BV ∗
t =

π

2

n∑

j=2

|r∗j ||r∗j−1| (12)

Gonçalves and Meddahi (2009) derive a CLT result for the bootstrapped realized variance.

Following their steps, we first compute the expected values and variances of RV ∗
t and BV ∗

t , as
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well as the covariances between the two, under the bootstrap measure, P ∗.

E∗(RV ∗
t ) = RVt

E∗(BV ∗
t ) =

π
2
n−1
n2 (

∑n
i=1 |ri|)

2

V ar∗(RV ∗
t ) =

∑n
i=1 r

4
i − 1

nRV 2
t

V ar∗(BV ∗
t ) =

π2

4

[
n−1
n2 RV 2

t + 2(n−2)
n3 RVt (

∑n
i=1 |ri|)

2 − 3n−5
n4 (

∑n
i=1 |ri|)

4
]

cov∗(RV ∗
t , BV ∗

t ) =
π
2

[
2n−1

n2

∑n
i=1 |r3i |

∑n
i=1 |ri|−

n−1
n3 RV 2

t (
∑n

i=1 |ri|)
2
]

(13)

As seen above, in the case of i.i.d. bootstrap, the BV ∗
t statistic is not centered in BVt.

Moreover, the variances of both bootstrapped estimators are different from the variances of

the original estimators. These discrepancies occur because for the original estimators, the

asymptotics are based on a local Gaussian assumption, that does not longer hold in the case of

i.i.d. bootstrap (Gonçalves and Meddahi, 2009).

To estimate the variances and covariances of RV ∗
t and BV ∗

t , we define the following consis-

tent estimators:

̂V ar∗(RV ∗
t ) =

∑n
i=1 r

∗
i
4 − 1

n

∑n
i=1 r

∗
i
2

̂V ar∗(BV ∗
t ) =

π2

4

[
n−1
n2

(∑n
i=1 r

∗
i
2
)2

+ 2(n−2)
n3

∑n
i=1 r

∗
i
2 (
∑n

i=1 |r∗i |)
2 − 3n−5

n4 (
∑n

i=1 |r∗i |)
4
]

̂cov∗(RV ∗
t , BV ∗

t ) =
π
2

[
2n−1

n2

∑n
i=1 |r∗i

3|
∑n

i=1 |ri|−
n−1
n3

∑n
i=1 r

∗
i
2 (
∑n

i=1 |r∗i |)
2
] (14)

In the above equations, each power variation -type of sum,
∑n

i=1 |rim|, m ∈ {1, 2, 3, 4}, is
estimated using the bootstrapped counterpart,

∑n
i=1 |r∗i

m|. This estimation procedure will be

jump robust, as bootstrapped returns are sampled under the null.

Theorem 1. CLT of the bootstrapped vector (RV ∗
t ;BV ∗

t )
′ (Consistency of the i.i.d.

bootstrap) Suppose the price process can be described as in 1. Let (RV ∗
t ;BV ∗

t )
′ be the

vector of bootstrapped statistics. As n → ∞ (δ → 0),

√
n

[(
RV ∗

t

BV ∗
t

)
−

(
E∗(RV ∗

t )

E∗(BV ∗
t )

)]
L−→ N

(
O, Ω̂∗

)
, (15)

where

O =

(
0

0

)
and Ω̂∗ = n

(
̂V ar∗(RV ∗

t ) ̂cov∗(RV ∗
t , BV ∗

t )
̂cov∗(RV ∗

t , BV ∗
t ) ̂V ar∗(BV ∗

t )

)
(16)

Given that the original centered vector (RVt;BVt)′ is also multivariate normal (see 5), the

consistency of the bootstrap follows.

Proof: To prove Theorem 1, two steps must be followed:
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1. Show that:

√
n

[(
RV ∗

t

BV ∗
t

)
−

(
E∗(RV ∗

t )

E∗(BV ∗
t )

)]
L−→ N (O,Ω∗) ,

where

Ω∗ = n

(
V ar∗(RV ∗

t ) cov∗(RV ∗
t , BV ∗

t )

cov∗(RV ∗
t , BV ∗

t ) V ar∗(BV ∗
t )

)

2. Show that Ω̂∗ p→ Ω∗.

We show here the proof for 1. The proves for 2 are included in Appendix 1. We need to

prove that

√
n

[( ∑n
j=2 r

∗
j
2

∑n
j=2 |r∗j ||r∗j−1|

)
−

(
E∗(RV ∗

t )

E∗(BV ∗
t )

)]
L−→ N (O,Ω∗)

This is equivalent to proving that:

√
n (c1 c2)

[( ∑n
j=2 r

∗
j
2

∑n
j=2 |r∗j ||r∗j−1|

)
−

(
E∗(RV ∗

t )

E∗(BV ∗
t )

)]
L−→ N (0, c′Ω∗c) ,

where c = (c1c2)′ is a vector of constants.

Thus, we have:

(c1 c2)

[( ∑n
j=2 r

∗
j
2

∑n
j=2 |r∗j ||r∗j−1|

)
−

(
E∗(RV ∗

t )

E∗(BV ∗
t )

)]
=

n∑

j=2

[
c1r

∗
j
2 + c2

π

2
|r∗j ||r∗j−1|− c1rj

2 − c2
π

2

1

n
(rj

2 + |r∗j |
∑

i $=j

|ri|)

]
=

n∑

j=2

z∗j

Given that r∗j is i.i.d., z∗j is a 1-dependent process, with dependence disappearing after the

first period, a general CLT result applies.

Wild Bootstrap In the case of the WB, we follow the same steps as for the i.i.d. boot-

strap. We start by computing all moments under the bootstrap probability measure. For

the realized variance, the moments are those derived by Gonçalves and Meddahi (2009):

E∗(RV ∗
t ) = µ∗

2RVt, V ar∗(RV ∗
t ) = (µ∗

4 − µ∗
2
2)
∑

r4i . The moments of the bootstrapped re-
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alized bipower variation are:

E∗(BV ∗
t ) =

π

2
µ∗
1
2BVt (17)

V ar∗(BV ∗
t ) =

π2

4

[
(µ∗

2
2 − µ∗

1
4)
∑

r2i r
2
i+1 + 2(µ∗

1
2µ∗

2 − µ∗
1
4)
∑

|ri−1r
2
i ri+1|

]
(18)

The covariance between RV ∗
t and BV ∗

t is given by:

cov∗(RV ∗
t , BV ∗

t ) =
π

2

[
E∗
(∑

r2i u
2
i

∑
|riui||ri+1ui+1|

)
− µ∗

2µ
∗
1
2
∑

r2i
∑

|riri+1|
]

(19)

=
π

2

[
µ∗
1µ

∗
3

∑
|r3i ri+1|+ µ∗

1µ
∗
3

∑
|rir3i+1|+ µ∗

2µ
∗
1
2
∑ ∑

i #=j #=j+1

|r2i rjrj+1−

µ∗
2µ

∗
1
2

(
∑

|r3i ri+1|+
∑

|rir3i+1|+
∑ ∑

i #=j #=j+1

|r2i rjrj+1|

)]

=
π

2
µ∗
1(µ

∗
3 − µ∗

2µ
∗
1)
(∑

|r3i ri+1|+
∑

|rir3i+1|
)

Gonçalves and Meddahi (2009) propose estimating V ar∗(RV ∗
t ) with

̂V ar∗(RV ∗
t ) =

µ∗

4−µ∗

2
2

µ∗

4

∑
r∗i

4,

which is a centered estimator. Following their lead, we propose the following centered estimators

for V ar∗(BV ∗
t ) and cov∗(RV ∗

t , BV ∗
t ):

̂V ar∗(BV ∗
t ) =

π2

4

(
µ∗
2
2 − µ∗

1
4

µ∗
2
2

∑
r∗i

2r∗i+1
2 + 2

µ∗
1
2µ∗

2 − µ∗
1
4

µ∗
1
2µ∗

2

∑
|r∗i−1r

∗
i
2r∗i+1|

)
(20)

̂cov∗(RV ∗
t , BV ∗

t ) =
π

2

µ∗
1(µ

∗
3 − µ∗

2µ
∗
1)

µ∗
1µ

∗
3

(∑
|r∗i

3r∗i+1|+
∑

|r∗i r∗i+1
3|
)

(21)

Theorem 2. CLT of the bootstrapped vector (RV ∗
t ;BV ∗

t )
′ (Consistency of the wild

bootstrap) Suppose the price process can be described as in 1. Let (RV ∗
t ;BV ∗

t )
′ be the

vector of bootstrapped statistics. As n → ∞ (δ → 0),

√
n

[(
RV ∗

t

BV ∗
t

)
−

(
E∗(RV ∗

t )

E∗(BV ∗
t )

)]
L−→ N

(
O, Ω̂∗

WB

)
, (22)

where

O =

(
0

0

)
and Ω̂∗

WB = n

(
̂V ar∗(RV ∗

t ) ̂cov∗(RV ∗
t , BV ∗

t )
̂cov∗(RV ∗

t , BV ∗
t ) ̂V ar∗(BV ∗

t )

)
(23)

Proof: The proof follows the same two steps as in Theorem 1. Step 1 follows from the

same arguments as in the case of Theorem 1.

Step 2 concerns the consistency of the estimators of Ω̂∗
WB and is detailed in Appendix 2.

8



3.2 Consistency of the bootstrap for the Med test2

I.i.d. bootstrap In proposing a bootstrapped Med test, we follow the same steps as in the

case of the BNS test. We first compute the expected value and the variance of MedRV under

the bootstrap probability measure, P ∗:

E∗(MedRV ∗
t ) =

π

6− 4
√
3 + π

·
1

n2

n∑

j=1

−(2 + 3n− 6jn+ 6j2 − 6j)r2(j), (24)

where r(j) is the j-th order statistic in the returns sample.

V ar∗(MedRV ∗
t ) =

(
π

6− 4
√
3 + π

n

n− 2

)2
(

n∑

j=1

C(j) · r4(j) +
n∑

j=2

j−1∑

k=1

C1(j, k) · r2(j)r2(k) +

n−1∑

j=1

n∑

k=j+1

C2(j, k) · r2(j)r2(k)

)
, (25)

where r(j) and r(k) are the j-th and k-th order statistics, while C(j), C1(j, k) and C2(j, k) are

defined as:

C(j) =
1

n6

(
36 + 96n− 216j − 468jn+ 540j2 + 35n3 + 10n5j − 2n4j2 + 8n2j4−

16j3n3 − 10n4 + 324j4 − 648j3 + 81n2 − 5n5 + 10n4j − 124n3j2 + 28n3j − 140nj4+

264j3n2 + 24j2n2 − 368j3n+ 760j2n− 224n2j
)

C1(j, k) =−
1

n6

(
−36− 136n+ 108j + 298jn+ 108k − 108j2 + n3 − 84jkn2 + 120nkj2+

312nk2j + 330nk + 312n2k − 324jk + 324kj2 + 324k2j − 174nk2 − 108k2−

700jkn+ 16n4 − 151n2 − 58n3j + 42j2n2 − 78j2n+ 64n2j − 32n4k + 24k2n3−

10n3k − 30k2n2 − 324j2k2 + 116n3jk + 108j2nk2 − 84j2n2k − 132n2jk2
)

C2(j, k) =−
1

n6

(
−36− 136n+ 108j − 700jkn+ 116n3jk + 108j2nk2 − 132j2n2k−

84n2jk2 − 32n4j + 24n3j2 − 10n3j − 30j2n2 − 174j2n+ 312n2j + 330jn+

108k + 16n4 + n3 − 108j2 − 151n2 + 312nkj2 − 84jkn2 + 120nk2j − 58n3k+

42k2n2 − 324j2k2 − 108k2 + 324kj2 + 324k2j + 298nk − 78nk2 + 64n2k − 324jk
)

C(j), C1(j, k) and C2(j, k) are obtained when computing the expectations over the product
∑n

j=3 med(|r∗j |, |r∗j−1|, |r∗j−2|)2
∑n

j=3med(|r∗j |, |r∗j−1|, |r∗j−2|)2. The computations were performed

2This draft only includes the i.i.d. bootstrap method for the Med test. We will include the Wild bootstrap
method in a further version of this paper.
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via counting the number of cases when 1, 2 or 3 returns overlap in the expectation of the

product3:

med(|r∗i |, |r∗i−1|, |r∗i−2|)2med(|r∗j |, |r∗j−1|, |r∗j−2|)2, i, j = 3 . . . n

The covariance between RV ∗ and MedRV ∗ is:

cov∗(RV ∗
t ,MedRV ∗

t ) =
π

6− 4
√
3 + π

n

n− 2

{
3
n− 2

n4

[
n∑

j=1

(−1 + 2jn− 2j2 + 2j)r4(j)+

n∑

j=2

j−1∑

k=1

r2(j)r
2
(k)(2jn− 2j2 − 2n+ 3j − 1)+

n−1∑

j=1

n∑

k=j+1

r2(j)r
2
(k)(2jn− 2j2 − n+ j)

]
+

[n2 − 3(n− 2)]
1

n4

n∑

j=1

−(2 + 3n− 6jn+ 6j2 − 6j)r2(j)RV

}
−

E∗(MedRV ∗
t )RV (26)

Theorem 3. CLT of the bootstrapped vector (RV ∗
t ;MedRV ∗

t )
′ (Consistency of the

i.i.d. bootstrap) Suppose the price process can be described as in 1. Let (RV ∗
t ;MedRV ∗

t )
′

be the vector of bootstrapped statistics. As n → ∞ (δ → 0),

√
n

[(
RV ∗

t

MedRV ∗
t

)
−

(
E∗(RV ∗

t )

E∗(MedRV ∗
t )

)]
L−→ N

(
O, Ω̂∗

Med

)
, (27)

where

O =

(
0

0

)
and Ω̂∗

Med = n

(
̂V ar∗(RV ∗

t ) ̂cov∗(RV ∗
t ,MedRV ∗

t )
̂cov∗(RV ∗
t ,MedRV ∗

t ) ̂V ar∗(MedRV ∗
t )

)
(28)

Proof: The proof follows the same two steps as in Theorem 1. Step 1 follows from the

same arguments as in the case of Theorem 1.

Step 2 concerns the consistency of the estimators of Ω̂∗
Med and is detailed in Appendix 3.

4 Averaging tests for jumps

In this section, we propose combining p-values obtained at different sampling frequencies or

from different testing procedures to gather information on the presence of jumps in the price

3I am very grateful to Tom Holden for the useful suggestions in computing these coefficients.
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process. Our procedure consists of applying one or more testing procedures at different sampling

frequencies, obtain the corresponding p-values and then average them by using Fisher’s method.

Simulation studies looking at the size and power properties of the BNS and Med tests (see, for

instance Dumitru and Urga, 2012) show that their size tends to grow as the sampling frequency

becomes lower (i.e. as δ becomes higher). However, to be able to combine the results from

different frequencies, the tests must have the same size for all frequencies. Thus, instead of using

the asymptotic distribution to obtain p-values, we propose using the empirical distribution of

the bootstrapped statistics.

The combination of test statistics with simple null hypotheses has been long used in the

statistics and econometrics literature, with the oldest and most famous including Tippett

(1931)’s min(pi) statistics, Fisher (1932)’s X2 statistic and Liptak (1958)’s
∑p

j=1Φ
−1(1− pi)

statistic, where pi represents the i-th p-value, i = 1 . . . p. Here, as we attempt to extract

information from more frequencies, we focus on Fisher (1932)’s X2, defined as:

X2 = −2
p∑

j=1

log pi (29)

When the combined test statistics are independent, X2 L−→ χ2(2p). However, this is not

the case here, as the test is applied to the same data, but sampled at different frequencies.

Brown (1975) and Kost and McDermott (2002) proposed approximating the distribution of the

X2 with that of a scaled χ2 variable, but assuming certain approximations for the covariances

between the p-values. The advances in both computational technology and power allow us to

easily simulate the distribution of the X2 statistic.

There are several important contributions in the field of econometrics that use meta-analysis

methods like Tippett (1931), Fisher (1932) or Liptak (1958) to combine test results and simulate

the distributions of the “combined” statistic. Maddala and Wu (1999) apply Fisher (1932)’s

method for unit root tests for panel data; Smeekes and Taylor (2012) use unions of rejections

of unit root tests; Dufour et al. (2004) use combined procedures to test for heteroskedasticity

when there are unknown breakpoints in the variance. A very relevant contribution is the one

by Godfrey (2005), who suggests applying double bootstrap methods to control the overall

significance level of several diagnostic tests applied for an ordinary least squares regression

model.

In this paper, even if the test statistic is asymptotically pivotal, the asymptotic size depends

on the sampling frequency. Thus, following Godfrey (2005), we apply a double-bootstrap

procedure to control the overall significance level of our test averaging procedure.
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4.1 The double bootstrap procedure

Let us assume we are interested in finding out whether jumps occurred during the interval

[0, t], which could be, for instance, a trading day. Moreover, let the data be sampled at sampling

intervals of the form ki · δ, where ki > 0 mutiplies δ, i = 1, . . . , p, where p is the number of

frequencies we choose to combine. We denote with z the test statistic of either the BNS test

or the Med test. In applying the double bootstrap, we take the following steps:

1. compute the test statistic on the original data for different sampling frequencies (ki), zt,ki

2. for each day and each frequency, re-sample the returns under the null and obtain B

replicates for the statistics, z∗t,ki

3. compute the p-value corresponding to the original zt,ki statistics, based on the boot-

strapped distribution:

p∗t,ki =

∑B
j=1 zt,ki > z∗t,ki(j)

B
(30)

4. for each new sample from 1 to B, generate B1 sub-samples and compute the statistic

z∗∗t,ki,b, where b = 1, . . . , B

5. for each new sample from 1 to B, compute corresponding p-value:

p∗∗t,ki,b =

∑B1

j=1 z
∗
t,ki

> z∗∗t,ki(j)

B1
(31)

Thus, this procedure generates for each ki, one p-value from the first round of bootstrap

and B p-values from the second round of bootstrap. The Fisher X2 statistic is computed as:

X2
t = −2

p∑

i=1

log p∗t,ki (32)

The distribution of X2
t can be obtained as:

X2∗∗
t = −2

p∑

i=1

log p∗∗t,ki,b, (33)

where X2∗∗
t is a vector with B elements.

To re-sample under the null, if a jump is identified on that day, we remove the corresponding

return from the data and sample from the remaining returns. To identify the jump return on a

certain day, we take the maximum standardized return of that day, where the standardization

is performed as in Andersen et al. (2007) and Lee and Mykland (2008).

12



5 Simulation study

To assess the effectiveness of our bootstrap methods and test averaging procedure, we

simulate a stochastic volatility process with finite jumps. We use a similar simulation setup as

in Huang and Tauchen (2005) and Dumitru and Urga (2012). The stochastic volatility model

for the log of the price process follows the subsequent dynamics:

dpt = 0.03dt+ exp[0.125 υt]dWpt ,

dυt = −0.1υtdt+ dWυt , corr(dWp, dWυ) = −0.62
(34)

where pt is the log-price process, the W ’s are standard Brownian motions, υt the volatility

factor. This is the process that we simulate under the null hypothesis of no jumps.

Under the alternative, we add rare compound Poisson jumps, arriving with intensity λ = 0.5

and having normally distributed sizes with mean 0 and standard deviation σjump = 1.5.

To the simulated stochastic volatility plus jump model, we add i.i.d. microstructure noise

normally distributed with mean 0 and σnoise = 0.04.

In this version of the paper, we only report results for i.i.d. bootstrap. Results for WB will

be included in further versions.

Table 1 reports the size and power of the i.i.d. bootstrapped and asymptotic BNS and Med

ratio tests. The nominal significance level is 5%.

Table 1: Size and power for the i.i.d. bootstrapped and asymptotic BNS and Med
statistics

1 min 2 min 5 min 10 min 15 min
Size Power Size Power Size Power Size Power Size Power

BNS test
Bootstrap 0.0131 0.7615 0.0440 0.7758 0.0946 0.7544 0.1293 0.7216 0.1353 0.6745

Asymptotic 0.0131 0.7503 0.0368 0.7544 0.0729 0.7390 0.0991 0.6786 0.1011 0.6438
Med test
Bootstrap 0.0160 0.7206 0.0470 0.7422 0.0748 0.7020 0.0819 0.6543 0.0814 0.5980

Asymptotic 0.0090 0.7530 0.0264 0.7627 0.0460 0.7233 0.0527 0.6613 0.0533 0.5933

In the case of the BNS test, we observe very similar results for the asymptotic and bootstrap

tests at high sampling frequencies. Thus, at 1 minute, size is 0.13 in both cases, while power

is slightly higher in the case of the bootstrap (0.76 versus 0.75 for the asymptotic test). At

higher frequencies, the bootstrap test shows slightly higher size and power than the asymptotic

one. Moreover, this discrepancy tends to increase slowly with the decrease in the sampling

frequencies. When prices are contaminated with microstructure noise, this behaviour can be

beneficial at high frequencies, when the tests tend to be undersized. In this case, the bootstrap
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test can help recover some power.

In the case of the Med test, the bootstrap version also tends to be oversized in comparison

to the asymptotic one. The power is very close to the asymptotic one, but is slightly lower for

most frequencies (up to 10 minutes).

We assess the performance of our test averaging procedure by combining 2 or 3 sampling

frequencies for both BNS and Med tests. Table 2 reports the results for the BNS test. In

the table, we also include the asymptotic benchmark for comparison purposes. The nominal

significance level is 5%.

We note that the test combinations manage to outperform the asymptotic results in almost

all cases. This is because in the presence of i.i.d. microstructure noise, the BNS asymptotic

test becomes severely undersized at high frequencies. However, at lower frequencies, where

size is getting close to the nominal one, power gets considerably smaller. Our procedure, by

combining higher with lower frequencies, manages to maintain a high power, combined with

a manageable size. Usually, for every 2 or 3 combined sampling frequencies, our procedure

leads to a power higher than the asymptotic levels for the individual frequencies. The size is

always comprised in the range of the asymptotic size levels for those frequencies. For instance,

combining tests applied on data sampled every 1 and 5 minutes renders a size of 0.028, coupled

with a very high power of 0.768. This power is higher than the one obtained for the asymptotic

test at either 1 or 5 minutes. Size is in the interval of the asymptotic levels for 1 and 5 minutes

(0.009 and 0.0791). The behaviour exemplified here is verified for all combinations of sampling

frequencies.

Table 3 shows the results obtained from combining sapling frequencies for the Med test.

The performance is similar to the one described above for the BNS test. However, the effect

in this case is slightly weaker. When combining 2 or 3 sampling frequencies, size either lies

in the range of the corresponding asymptotic levels, or becomes larger. To keep the size at

lower levels, it is beneficial to combine very high frequencies with lower ones. Power lies in the

range of the asymptotic levels, but towards the upper bound. For instance, when combining

p-values from 1 and 10 minutes, the size of 0.031 is in the range of the asymptotic size levels

(0.008, 0.055). The power (0.725) is in the range of the asymptotic levels, but still very high.

Moreover, this effect is also very pronounced when combining 3 sampling frequencies (see, for

instance, ’1-2-5’ or ’1-2-10’).

Further developments of this paper include applying our procedure to infrequent trading

data, in order to assess the impact of infrequent trading on jump detection.
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Table 2: Size and power from averaging p-values over frequencies. The BNS statistic

Frequencies (min) ’1-2’ ’1-5’ ’1-10’ ’1-15’ ’2-5’ ’2-10’ ’2-15’ ’5-10’ ’5-15’ ’10-15’

’Size’ 0.0181 0.0276 0.0284 0.0266 0.0632 0.0665 0.0700 0.1044 0.1037 0.1373
’Power’ 0.7866 0.7680 0.7354 0.7050 0.7798 0.7489 0.7221 0.7442 0.7105 0.7015

Frequencies (min) ’1-2-5’ ’1-2-10’ ’1-2-15’ ’1-5-10’ ’1-5-15’ ’1-10-15’ 2-5-10’ ’2-5-15’ ’2-10-15’ ’5-10-15’
’Size’ 0.0216 0.0213 0.0189 0.0326 0.0268 0.0352 0.0543 0.0583 0.0665 0.1037

’Power’ 0.7803 0.7535 0.7409 0.7469 0.7283 0.7143 0.7565 0.7439 0.7243 0.7231

’BNS asymp’ ’1 min’ ’2 min’ ’5 min’ ’10 min’ ’15 min’
’Size’ 0.0090 0.0356 0.0791 0.0987 0.1147

’Power’ 0.7442 0.7577 0.7248 0.6766 0.6249
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Table 3: Size and power from averaging p-values over frequencies. The Med statistic

Frequencies (min) ’1-2’ ’1-5’ ’1-10’ ’1-15’ ’2-5’ ’2-10’ ’2-15’ ’5-10’ ’5-15’ ’10-15’

’Size’ 0.0279 0.0312 0.0305 0.0282 0.0669 0.0617 0.0646 0.1069 0.0905 0.1243
’Power’ 0.7779 0.7569 0.7249 0.6938 0.7684 0.7314 0.7059 0.7259 0.6888 0.6813

Frequencies (min) ’1-2-5’ ’1-2-10’ ’1-2-15’ ’1-5-10’ ’1-5-15’ ’1-10-15’ ’2-5-10’ ’2-5-15’ ’2-10-15’ ’5-10-15’
’Size’ 0.0276 0.0249 0.0230 0.0292 0.0295 0.0361 0.0564 0.0525 0.0656 0.0981

’Power’ 0.7699 0.7479 0.7324 0.7379 0.7164 0.7009 0.7474 0.7284 0.7159 0.7129

’med asymp’ ’1 min’ ’2 min’ ’5 min’ ’10 min’ ’15 min’
’Size’ 0.0083 0.0273 0.0445 0.0552 0.0555

’Power’ 0.7540 0.7645 0.7268 0.6553 0.5908
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6 Conclusion

This paper brings two important contributions to the current literature on high frequency

econometrics.

First, we propose bootstrap methods for the Barndorff-Nielsen and Shephard (2006) and

Andersen et al. (2012) tests for jumps. We consider both i.i.d. and Wild bootstrap and

provide consistency results for these methods. These contributions fill an important gap in

the literature on bootstrapping realized-type estimators based on high frequency data, which

lacks developments on robust to jumps estimators. Further improvements to the current paper

will also provide consistency results for bootstrapping the realized bipower variation and the

median realized variation.

Second, we propose a new procedure to detect jumps based on high frequency data that uses

Fisher (1932)’s method to average p-values from one/ different tests applied at different sam-

pling frequencies. The procedure is proven to be more efficient than applying individual tests

on only one sampling frequency. This is because we discard less data and extract information

from multiple frequencies and/ or procedures. When combining p-values obtained at different

sampling frequencies, we apply a double bootstrap procedure to control the overall size of the

test. In the case of the Barndorff-Nielsen and Shephard (2006) test, we show that averaging

p-values of tests applied at different frequencies outperforms the simple asymptotic test, by

delivering a higher power, combined with a manageable size. Similar, but weaker results are

found for the Andersen et al. (2012) test. In this case, the performance of test combinations is

higher when combining results from higher frequencies with results from lower frequencies.

We plan to extend the results in this paper in various ways. First, we will complete the

current paper with results on bootstrapping the realized bipower variation and the median

realized variation, as well as the Wild bootstrap for the median RV test. Second, we will extend

the simulation setup to various types of microstructure noise, including infrequent trading.

Third, we will add theoretical results on the accuracy of the bootstrap.
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A Appendix 1

We need to show that the estimators of all the terms in Ω∗ are consistent. For this,

we prove that both the estimation biases and the variances of ̂V ar∗(RV ∗
t ), ̂V ar∗(BV ∗

t ) and
̂cov∗(RV ∗

t , BV ∗
t ) converge in probability to 0. Gonçalves and Meddahi (2009) show that

E∗( ̂V ar∗(RV ∗
t )) = V ar∗(RV ∗

t ). They also show that ̂V ar∗(RV ∗
t ) is consistent for V ar∗(RV ∗

t ).

First, we compute the expected value for the estimator of the variance of BVt:

E∗( ̂V ar∗(BV ∗
t )) =E∗

{
π2

4

[
n− 1

n2

(
∑

r∗i
4 +

∑∑

j "=i

r∗i
2r∗j

2

)
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n3
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2
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r∗i
2 +
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|r∗i ||r∗j |

)
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3n− 5

n4

(
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4 + 3
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2 + 4
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|r∗i |3|r∗j |+

6
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)]}
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where Sk =
∑

|ri|k, k = 1 . . . 4. At the same time,
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t ) ≈
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Consequently, the bias will be:

Bias( ̂V ar∗(BV ∗
t )) ≈

[
S4

n
+

4S3S1

n2

]

p−→
1

n2
µ−1
4

∫ t

0

σ4
sds+

4

n2
µ−1
3 µ−1

1

∫ t

0

σ3
sds

∫ t

0

σsds

= Op(δ
2)

The variance of ̂V ar∗(BV ∗
t ) is:

V ar∗( ̂V ar∗(BV ∗
t )) = E∗( ̂V ar∗(BV ∗

t ))
2 −

(
E∗( ̂V ar∗(BV ∗

t ))
)2

(36)

We will compute first the second order moment of the estimator:
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2r∗k

2

E∗(A) = S8 + 3
n(n− 1)

n2
S2
4 + 4

n(n− 1)

n2
S6S2 + 6

n(n− 1)(n− 2)

n3
S4S

2
2 +

n(n− 1)(n− 2)(n− 3)

n4
(S2)

4
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B =




∑

r∗i
4 +

∑∑

j "=i

r∗i
2r∗j

2








∑

r∗i
4 + 3

∑∑

j "=i

r∗i
2r∗j

2+

4
∑∑

j "=i

|r∗i |3|r∗j |+ 6
∑∑∑

"=

|r∗i r∗j r∗l |
2 +

∑∑∑∑

"=

|r∗i r∗j r∗l r
∗
k|





=
∑

r∗i
8 +

∑∑

"=

r∗i
4r∗j

4 + 4



2
∑∑

"=

r∗i
6r∗j

2 +
∑∑∑

"=

r∗i
2r∗j

2r∗l
4



+

4




∑∑

"=

|r∗i |7|r∗j |+
∑∑

"=

|r∗i |5|r∗j |3 +
∑∑∑

"=

|r∗i
4r∗j

3r∗l |



+

6




∑∑∑

"=

|r∗i
6r∗j r

∗
l |+ 2

∑∑∑

"=

|r∗i
5r∗j

2r∗l |+
∑∑∑∑

"=

|r∗i
4r∗j

2r∗l r
∗
k|



+

3




∑∑∑∑

"=

|r∗i
2r∗j

2r∗l
2r∗k

2|+ 4
∑∑∑

"=

|r∗i
4r∗j

2r∗l
2|+ 2

∑∑

"=

r∗i
4r∗j

4



+

4




∑∑∑∑

"=

|r∗i
3r∗j

2r∗l
2r∗k|+ 2

∑∑∑

"=

|r∗i
3r∗j

3r∗l
2|+ 2

∑∑∑

"=

|r∗i
5r∗j

2r∗l |+ 2
∑∑

"=

|r∗i
5r∗j

3|



+

6




∑∑∑∑∑

"=

|r∗i
2r∗j

2r∗k
2r∗l r

∗
m|+ 4

∑∑∑∑

"=

|r∗i
3r∗j

2r∗l
2r∗k|+ 2

∑∑∑

"=

|r∗i
3r∗j

3r∗l
2| +

2
∑∑∑∑

"=

|r∗i
4r∗j

2r∗l r
∗
k|+ 4

∑∑∑

"=

|r∗i
4r∗j

3r∗l |





where for simplicity we used != to specify that i != j != k != l != m. . ..

The expectation of B is:

E∗(B) ≈S8 + 7S2
4 + 3S4

2 + 16S2
2S4 + 6S2

1S
3
2 + 20S2S

2
3 + 12S3S5 + 6S2

1S6 + 8S2S6+ (37)

4S1S7 + 28S1S3S4 + 18S2
1S2S4 + 20S1S2S5 + 28S1S

2
2S3
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C =




∑

r∗i
4 + 3

∑∑

"=

r∗i
2r∗j

2 + 4
∑∑

"=

|r∗i |3|r∗j |+ 6
∑∑∑

"=

|r∗i r∗j r∗k|
2 +

∑∑∑∑

"=

|r∗i r∗j r∗kr
∗
l |




2

=




∑

r∗i
8 +

∑∑

"=

r∗i
4r∗j

4



+ 9




∑∑∑∑

"=

r∗i
2r∗j

2r∗k
2r∗k

2 + 4
∑∑∑

"=

r∗i
2r∗j

2r∗k
4+

2
∑∑

"=

r∗i
4r∗j

4



+ 16




∑∑∑∑

"=

|r∗i
3r∗j

3r∗kr
∗
l |+

∑∑∑

"=

|r∗i
6r∗j r

∗
k|+

2
∑∑∑

"=

|r∗i
4r∗j

3r∗k|+
∑∑∑

"=

|r∗i
3r∗j

3r∗k
2|+

∑∑

"=

r∗i
6r∗j

2 +
∑∑

"=

r∗i
4r∗j

4+





36




∑∑∑∑∑∑

"=

|r∗i
2r∗j

2r∗kr
∗
l r

∗
mr∗p|+ 4

∑∑∑∑∑

"=

|r∗i
3r∗j

2r∗kr
∗
l r

∗
m|+

∑∑∑∑∑

"=

|r∗i
4r∗j r

∗
kr

∗
l r

∗
m|+ 4

∑∑∑∑∑

"=

|r∗i
2r∗j

2r∗k
2r∗l r

∗
m|+

4
∑∑∑∑

"=

|r∗i
4r∗j

2r∗kr
∗
l |+ 4

∑∑∑∑

"=

|r∗i
3r∗j

3r∗kr
∗
l |+ 4

∑∑∑∑

"=

|r∗i
3r∗j

2r∗k
2r∗l |+

2
∑∑∑

"=

r∗i
2r∗j

2r∗l
4 + 4

∑∑∑

"=

r∗i
3r∗j

3r∗h
2



+




∑∑∑∑∑∑∑∑

"=

|r∗i r∗j r∗kr
∗
l r

∗
mr∗or

∗
pr

∗
q |

+ 16
∑∑∑∑∑∑∑

"=

|r∗i
2r∗j r

∗
kr

∗
l r

∗
mr∗or

∗
p|+ 72

∑∑∑∑∑∑

"=

|r∗i
2r∗j

2r∗kr
∗
l r

∗
mr∗o |+

96
∑∑∑∑∑

"=

|r∗i
2r∗j

2r∗k
2r∗l r

∗
m|+ 24

∑∑∑∑

"=

|r∗i
2r∗j

2r∗l
2r∗k

2|



+ 8




∑∑∑

"=

|r∗i
4r∗j

3r∗k|+

∑∑

"=

|r∗i
5r∗j

3|+
∑∑

"=

|r∗i
7r∗j |



+ 6




∑∑∑

"=

|r∗i
4r∗j

2r∗k
2|+ 2

∑∑

"=

|r∗i
6r∗j

2|



+

12




∑∑∑∑

"=

|r∗i
4r∗j

2r∗kr
∗
l |+ 2

∑∑∑

"=

|r∗i
5r∗j

2r∗k|+
∑∑∑

"=

|r∗i
6r∗j r

∗
k|



+

2




∑∑∑∑∑

"=

|r∗i
4r∗j r

∗
kr

∗
l r

∗
m|+ 4

∑∑∑∑

"=

|r∗i
5r∗j r

∗
kr

∗
l |



+ 24




∑∑∑∑

"=

|r∗i
3r∗j

2r∗k
2r∗l |+

2
∑∑∑

"=

|r∗i
3r∗j

3r∗k
2|+ 2

∑∑∑

"=

|r∗i
5r∗j

2r∗k|+ 2
∑∑

"=

|r∗i
5r∗j

3|



+

24



36




∑∑∑∑∑

!=

|r∗i
2r∗j

2r∗k
2r∗l r

∗
m|+ 4

∑∑∑∑

!=

|r∗i
3r∗j

2r∗k
2r∗l |+ 2

∑∑∑∑

!=

|r∗i
4r∗j

2r∗kr
∗
l |+

2
∑∑∑

!=

|r∗i
3r∗j

3r∗k
2|+ 4

∑∑∑

!=

|r∗i
4r∗j

3r∗k|



+ 48




∑∑∑∑∑

!=

|r∗i
3r∗j

2r∗kr
∗
l r

∗
m| +

2
∑∑∑∑

!=

|r∗i
3r∗j

2r∗k
2r∗l |+ 2

∑∑∑∑

!=

|r∗i
4r∗j

2r∗kr
∗
l |+

∑∑∑∑

!=

|r∗i
3r∗j

3r∗kr
∗
l |+

∑∑∑∑

!=

|r∗i
5r∗j r

∗
kr

∗
l |+ 2

∑∑∑

!=

|r∗i
4r∗j

2r∗k
2|+ 2

∑∑∑

!=

|r∗i
4r∗j

3r∗k|+

2
∑∑∑

!=

|r∗i
5r∗j

2r∗k|



+ 6




∑∑∑∑∑∑

!=

|r∗i
2r∗j

2r∗kr
∗
l r

∗
mr∗o |+

8
∑∑∑∑∑

!=

|r∗i
3r∗j

2r∗kr
∗
l r

∗
m|+ 12

∑∑∑∑

!=

|r∗i
3r∗j

3r∗kr
∗
l |



+

8




∑∑∑∑∑∑

!=

|r∗i
3r∗j r

∗
kr

∗
l r

∗
mr∗o |+ 4

∑∑∑∑∑

!=

|r∗i
4r∗j r

∗
kr

∗
l r

∗
m|+

4
∑∑∑∑∑

!=

|r∗i
3r∗j

2r∗kr
∗
l r

∗
m|+ 12

∑∑∑∑

!=

|r∗i
4r∗j

2r∗kr
∗
l |



+

12




∑∑∑∑∑∑∑

!=

|r∗i
2r∗j r

∗
kr

∗
l r

∗
mr∗or

∗
p|+ 4

∑∑∑∑∑∑

!=

|r∗i
3r∗j r

∗
kr

∗
l r

∗
mr∗o |+

8
∑∑∑∑∑∑

!=

|r∗i
2r∗j

2r∗kr
∗
l r

∗
mr∗o |+ 24

∑∑∑∑∑

!=

|r∗i
3r∗j

2r∗kr
∗
l r

∗
m|+

12
∑∑∑∑∑

!=

|r∗i
2r∗j

2r∗k
2r∗l r

∗
m|+ 15

∑∑∑∑

!=

|r∗i
3r∗j

2r∗k
2r∗l |





E∗(C) =S8 + 35S2
4 + 32S4

2 + S8
1 + 210S2

2S4 + 280S2
1S

2
3 + 28S2

1S6 + 280S2S
2
3 + 210S4

1S
2
2 + 70S4

1S4+

420S2
1S

3
2 + 28S6

1S2 + 28S2S6 + 56S3S5 + 8S1S7 + 56S3
1S5 + 56S5

1S3 + 280S1S3S4+

560S3
1S2S3 + 420S2

1S2S4 + 588S1S
2
2S3 + 168S1S2S5

[
E∗( ˆV ar∗(BV ∗

t ))
]2

≈
π4

16

1

n2

(
S2
4 + S4

2 +
16

n2
S2
1S

2
3 +

4

n2
S4
1S

2
2+

9

n4
S8
1 + 2S2

2S4 +
8

n
S1S3S4 +

4

n
S2
1S2S4 −

6

n2
S4
1S4 +

8

n
S1S

2
2S3 +

4

n
S2
1S

3
2−

6

n2
S4
1S

2
2 +

16

n2
S3
1S2S3 −

24

n3
S5
1S3 −

12

n3
S6
1S2

)
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Putting together the expectations of A, B and C, we obtain the final formula for V ar∗( ˆV ar∗(BV ∗
t ))

is given bellow:

V ar∗( ̂V ar∗(BV ∗
t )) =

π4

16

[
S8

n4 + 4n2 − 3

n6
+ S2

4
2n4 + 28n2 − 105

n6
+ S4

2
12n2 − 99

n6
− S8

1
12

n6
+

S2
2S4

4n4 + 64n2 − 630

n6
+ S2

1S
3
2
24n2 − 4n3 − 1260

n6
+ S2S

2
3
80n2 − 840

n6
+

S3S5
48n2 − 168

n6
+ S2

1S6
24n2 − 84

n6
+ S2S6

4n4 + 32n2 − 84

n6
+ S1S7

16n2 − 24

n6
−

S2
1S

2
3
16n2 + 840

n6
+ S4

1S
2
2
2n2 − 630

n6
+ S4

1S4
6n2 − 210

n6
+ S6

1S2
12n− 84

n6
−

S3
1S5

168

n6
+ S5

1S3
24n− 168

n6
+ S1S3S4

−8n3 + 112n2 − 840

n6
+

S2
1S2S4

−4n3 + 72n2 − 1260

n6
+ S1S2S5

80n2 − 504

n6
+ S1S

2
2S3

−8n3 + 112n2 − 1764

n6
−

S3
1S2S3

16n2 + 1680

n6

]
= Op(δ

2)

The last step in showing that Ω̂∗ is consistent for Ω∗ is to look at the bias and variance of the

estimator of cov∗(BV ∗
t , RV ∗

t ). The expected value of the latter estimator is given by:

E∗( ̂cov∗(BV ∗
t , RV ∗

t )) =π
n− 1

n2

[
S4 +

n2 − n

n2
S1S3 −

1

n

(
S4 +

n2 − n

n2
S2
2+

2(n2 − n)

n3
S1S3 +

n(n− 1)(n− 2)

n3
S2
1S2

)]

The bias of ̂cov∗(BV ∗
t , RV ∗

t ) is:

Bias( ̂cov∗(BV ∗
t , RV ∗

t )) =π
n− 1

n2

(
S4

n− 1

n
− S1S3

3n− 2

n2
− S2

2
n− 1

n2
+

S2
1S2

3n− 2

n3

)
= Op(δ

2)

The variance of the covariance estimator is:

V ar∗( ̂cov∗(BV ∗
t , RV ∗

t )) =
π2

4
E∗

{[
2
n− 1

n2

∑
|r∗i

3|
∑

|r∗i |− 2
n− 1

n3

∑
|r∗i

2|
(∑

|r∗i |
)2]2

}
−

(
E∗( ̂cov∗(BV ∗

t , RV ∗
t ))
)2

=π2

(
n− 1

n

)2

E∗

{[∑
|r∗i

3|
∑

|r∗i |−
1

n

∑
|r∗i

2|
(∑

|r∗i 3|
)2]2

}
−

(
E∗( ̂cov∗(BV ∗

t , RV ∗
t ))
)2

=π2

(
n− 1

n

)2

E∗ {cov1}− cov2
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cov1 =
(∑

|r∗i
3|
∑

|r∗i |
)2

−
2

n

∑
|r∗i

3|
∑

|r∗i |
∑

|r∗i
2|
(∑

|r∗i |
)2

+
1

n2

(∑
|r∗i

2|
)2 (∑

|r∗i |
)4

= cov11−
2

n
cov12+

1

n2
B

B in the above equation is the same term appearing in the formula for V ar∗( ̂V ar∗(BV ∗
t )). Its

expectation is given in equation 37.

cov11 =




∑

r∗i
4 +

∑∑

"=

|r∗i
3r∗j |




2

∑
r∗i

8 +
∑∑

"=

r∗i
4r∗j

4 + 2
∑∑

"=

|r∗i r∗j
7|+ 2

∑∑

"=

|r∗i
3r∗j

5|+ 2
∑∑∑

"=

|r∗i r∗j
3r∗k

4|+

∑∑∑∑

"=

|r∗i
3r∗j

3r∗kr
∗
l |+ 2

∑∑∑

"=

|r∗i
6r∗j r

∗
k|+ 2

∑∑∑

"=

|r∗i r∗j
3r∗k

4|+

∑∑

"=

|r∗i
2r∗j

6|+
∑∑

"=

r∗i
4r∗j

4

E∗(cov11) =S8 + 2S2
4 + 2S1S7 + 2S3S5 + S2S6 + S2

1S
2
3 + 2S2

1S6 + 4S1S3S4

cov12 =




∑

r∗i
4 +

∑∑

"=

|r∗i
3r∗j |








∑

r∗i
4 +

∑∑

"=

r∗i
2r∗j

2 + 2
∑∑

"=

|r∗i
3r∗j |+

∑∑∑

"=

|r∗i
2r∗j r

∗
k|





=
∑

r∗i
8 + 3

∑∑

"=

r∗i
4r∗j

4 + 3
∑∑∑

"=

|r∗i
2r∗j

2r∗k
4|+ 4

∑∑

"=

|r∗i
2r∗j

6|+

5
∑∑

"=

|r∗i
3r∗j

5|+ 3
∑∑

"=

|r∗i r∗j
7|+ 3

∑∑∑

"=

|r∗i
6r∗j r

∗
k|+ 4

∑∑∑

"=

|r∗i
2r∗j

3r∗k
3|+

3
∑∑∑∑

"=

|r∗i
3r∗j

3r∗kr
∗
l |+

∑∑∑∑

"=

|r∗i
5r∗j r

∗
kr

∗
l |+ 9

∑∑∑

"=

|r∗i r∗j
3r∗k

4|+

3
∑∑∑∑

"=

|r∗i
4r∗j

2r∗kr
∗
l |+ 6

∑∑∑

"=

|r∗i r∗j
2r∗k

5|+ 3
∑∑∑∑

"=

|r∗i
3r∗j

2r∗k
2r∗l |+

∑∑∑∑∑

"=

|r∗i
3r∗j

2r∗kr
∗
l r

∗
m|

E∗(cov12) =S8 + 3S2
4 + 3S2

2S4 + 4S2S6 ++5S3S5 + 3S1S7 + 3S2
1S6 + 4S2S

2
3 + 3S2

1S
2
3 + S3

1S5 + 9S1S3S4+

3S2
1S2S4 + 6S1S2S5 + 3S1S

2
2S3 + S3

1S2S3
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V ar∗( ̂cov∗(BV ∗
t , RV ∗

t )) =
π2

n2

(
S8

n2 − 2n+ 1

n2
+ S2

4
n2 − 6n+ 7

n2
+ S4

2
2

n2
+ 2S1S7

n2 − 3n+ 2

n2
+

2S3S5
n2 − 5n+ 6

n2
− S2

1S
2
3
6

n
+ 2S2

1S6
n2 − 3n+ 3

n2
+ S2S6

n2 − 8n+ 8

n2
−

4S2
2S4

n− 4

n2
− 4S2S

2
3
2n− 5

n2
− S3

1S5
2

n
+ S2

1S
3
2
4

n2
− S4

1S
2
2
1

n2
+

S2
2S4

2

n
+ 2S1S3S4

n2 − 9n+ 14

n2
− 2S2

1S2S4
2n− 9

n2
− 4S1S2S5

3n− 5

n2
−

4S1S
2
2S3

n− 7

n2
− S2

1S2S3
2

n

)

=Op(δ
2)

B Appendix 2

Just as in the i.i.d. case, we show that the estimators of all the terms in Ω∗
WB are consistent.

Gonçalves and Meddahi (2009) show the consistency of ̂V ar∗(RV ∗
t ) for V ar∗(RV ∗

t ) for the case of the

wild bootstrap. We are left with proving the consistency for the estimators of the variance of BV ∗
t

and for the covariance between BV ∗
t and RV ∗

t . The estimation biases for all these estimators equal 0.

Next, we derive their variances and show they converge to 0 in probability.

To compute the variance of ̂V ar∗(BV ∗
t ), we define the following notations: a =

µ∗

2
2−µ∗

1
4

µ∗

2
2 , b =

µ∗

1
2µ∗

2−µ∗

1
4

µ∗

1
2µ∗

2

, a′ = µ∗
2
2 − µ∗

1
4 and b′ = µ∗

1
2µ∗

2 − µ∗
1
4.

V ar∗( ̂V ar∗(BV ∗
t )) =

π4

16

[
E∗
(
a
∑

r∗i
2r∗i+1

2 + 2b
∑

|r∗i−1r
∗
i
2r∗i+1|

)2
−

(
a′
∑

r2i r
2
i+1 + 2b′

∑
|ri−1r

2
i ri+1|

)2]

=
π4

16
[A−B]
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A =E∗

[
a2
(∑

r2i u
2
i r

2
i+1u

2
i+1

)2
+ 4b2

(∑
|ri−1ri

2ri+1ui−1ui
2ui+1|

)2
+

4ab
∑

r2i u
2
i r

2
i+1u

2
i+1

∑
|ri−1ri

2ri+1ui−1ui
2ui+1|

]

=a2



µ∗
4
2
∑

r4i r
4
i+1 + 2µ∗

2
2µ∗

4

∑
r2i r

4
i+1r

2
i+2 + µ∗

2
4
∑ ∑

i #=j #=j±1

r2i r
2
i+1r

2
j r

2
j+1



+

4b2



µ∗
2
2µ∗

4

∑
r2i r

4
i+1r

2
i+2 + µ∗

1
4µ∗

2
2
∑ ∑

i #=j #=j±1#=j±2

|ri−1ri
2ri+1||rj−1rj

2rj+1|+

2µ∗
1
2µ∗

3
2
∑

|ri−2r
3
i−1r

3
i ri+1|+ 2µ∗

1
2µ∗

2
3
∑

|ri−2r
2
i−1ri

2r2i+1ri+2|
)
+

4ab
(
µ∗
1µ

∗
3µ

∗
4

∑
|r3i−1ri

4ri+1|+ µ∗
1µ

∗
3µ

∗
4

∑
|ri−1ri

4r3i+1|+ µ∗
1µ

∗
2
2µ∗

3

∑
|ri−2r

2
i−1ri

3r2i+1|+

µ∗
1µ

∗
2
2µ∗

3

∑
|r2i−2r

3
i−1r

2
i ri+1|

)

In the above equation, we denote the sums of the type
∑

|rkmi−mr
km−1

i−m+1 . . . r
kp−1

i+p−1r
kp
i+p| with Skmkm−1...kp−1kp .

V ar∗( ̂V ar∗(BV ∗
t )) =

π4

16

[
a′2S44

(
µ∗
4
2

µ∗
2
4 − 1

)
+ 2a′2S242

(
µ∗
4

µ∗
2
2 − 1

)
+ 4b′2S242

(
µ∗
4

µ∗
2
2 − 1

)
+

8b′2S1331

(
µ∗
3
2

µ∗
1
2µ∗

2
2 − 1

)
+ 8b′2S12221

(
µ∗
2

µ∗
1
2 − 1

)
+

4a′b′S341

(
µ∗
3µ

∗
4

µ∗
1µ

∗
2
3 − 1

)
+ 4a′b′S143

(
µ∗
3µ

∗
4

µ∗
1µ

∗
2
3 − 1

)
+

4a′b′S1232

(
µ∗
3

µ∗
1µ

∗
2

− 1

)
+ 4a′b′S2321

(
µ∗
3

µ∗
1µ

∗
2

− 1

)]

All the above sums, if multiplied by the right scale, i.e. n
km+...+kp

2
−1, are realized multipower varia-

tions which converge in probability to µkm . . . µkp

∫ t
0 σ

km+...+kp
s ds. In our case, all sums converge to

multipliers of
∫ t
0 σ

8
sds. Thus, V ar∗( ̂V ar∗(BV ∗

t )) = Op(δ3).

The variance of the estimator for the covariance between RV ∗
t and BV ∗

t is defined as:

V ar∗( ̂cov∗(RV ∗
t , BV ∗

t )) = E∗
[
( ̂cov∗(RV ∗

t , BV ∗
t ))

2
]
−
[
E∗( ̂cov∗(RV ∗

t , BV ∗
t ))

2
]

(38)
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We use the following notation: c = π
2µ

∗
1(µ

∗
3 − µ∗

2µ
∗
1).

E∗
[
( ̂cov∗(RV ∗

t , BV ∗
t ))

2
]2

=
c2

µ∗
1
2µ∗

3
2

[
µ∗
2µ

∗
6

∑
r6i r

2
i+1 + 2µ∗

1µ
∗
3µ

∗
4

∑
|r3i−1ri

4ri+1|+

µ∗
1
2µ∗

3
2
∑ ∑

i #=j #=j±1

|r3i ri+1r
3
j rj+1|+ µ∗

2µ
∗
6

∑
r2i r

6
i+1 + 2µ∗

1µ
∗
3µ

∗
4

∑
|ri−1ri

4ri+1
3|+

µ∗
1
2µ∗

3
2
∑ ∑

i #=j #=j±1

|rir3i+1rjr
3
j+1|+ 2

(
µ∗
4
2
∑

r4i r
4
i+1 + µ∗

1
2µ∗

6

∑
|rir6i+1ri+2|+

µ∗
3
2µ∗

2

∑
|r3i r2i+1r

3
i+2|+ µ∗

1
2µ∗

3
2
∑ ∑

i #=j #=j±1

|r3i ri+1rjr
3
j+1|









To write the final expression for V ar∗( ̂cov∗(RV ∗
t , BV ∗

t )), we use the same sum notation as in the case

of V ar∗( ̂V ar∗(BV ∗
t )).

V ar∗( ̂cov∗(RV ∗
t , BV ∗

t )) =c2
[
S62

(
µ∗
2µ

∗
6

µ∗
1
2µ∗

3
2 − 1

)
+ 2S341

(
µ∗
4

µ∗
1µ

∗
3

− 1

)
+

S26

(
µ∗
2µ

∗
6

µ∗
1
2µ∗

3
2 − 1

)
+ 2S143

(
µ∗
4

µ∗
1µ

∗
3

− 1

)
+ 2S44

(
µ∗
4
2

µ∗
1
2µ∗

3
2 − 1

)
+

2S161

(
µ∗
6

µ∗
3
2 − 1

)
+ 2S323

(
µ∗
2

µ∗
1
2 − 1

)]

=Op(δ
3)
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