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Abstract

We provide a tool for estimating DSGE models by Bayesian Maximum-likelihood meth-

ods under very general information assumptions. This framework is applied to a New

Keynesian model where we compare the standard approach, that assumes an informa-

tional asymmetry between private agents and the econometrician, with an assumption

of informational symmetry. For the former, private agents observe all state variables

including shocks, whereas the econometrician uses only data for output, inflation and

interest rates. For the latter both agents have the same imperfect information set and

this corresponds to what we term the ‘informational consistency principle’. We first

assume rational expectations and then generalize the model to allow some households

and firms to form expectations adaptively. We find that in terms of model posterior

probabilities, impulse responses, second moments and autocorrelations, the assumption

of informational symmetry by rational agents significantly improves the model fit. We

also find qualified empirical support for the heterogenous expectations model.

JEL Classification: C11, C52, E12, E32.

Keywords: Imperfect Information, DSGE Model, Rational versus Adaptive Expectations,

Bayesian Estimation

∗To be presented at the 2010 Royal Economic Society Conference, March 29 – 31, University of Surrey.
Earlier versions of this paper were presented at the Conference “Robust Monetary Rules for the Open
Economy” at the University of Surrey, September 20-21, 2007; the CEF 2008 Annual Conference in Paris,
June 26–28, 2008; a seminar at the Bank of England and at the annual CDMA Conference, 2009, University
of St Andrews, 2–4 September; We acknowledge financial support for this research from the ESRC, project
no. RES-000-23-1126 and from the EU Framework Programme 7 project MONFISPOL. Comments from
participants at all these events are gratefully acknowledged, particularly those from the discussant at the
Surrey Conference, Michel Juillard.



Contents

1 Introduction 1

2 The Rational Expectations Model 3

3 The Behavioural Model 6

4 General Solution with Imperfect Information 9

4.1 Linear Approximation about the Non-Stochastic Steady State . . . . . . . . 9

4.2 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3 Statistical Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.4 Rational Inattention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Analytical Example 13

6 Bayesian Estimation 14

6.1 Data, Priors and Model Identifiability . . . . . . . . . . . . . . . . . . . . . 15

6.2 The Rational Expectations Model . . . . . . . . . . . . . . . . . . . . . . . 16

6.3 The Behavioural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.4 Impulse Response Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Further Model Validation 23

7.1 Standard Moment Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.2 Unconditional Autocorrelations . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Conclusions 26

A Linearization of Behavioural Model 31

B Proof of Theorem 32

C Priors and Posterior Estimates 35

D Figures 38



1 Introduction

A large recent literature has relaxed the extreme information assumptions of standard ra-

tional expectations in what are now referred to as Dynamic Stochastic General Equilibrium

(DSGE) models. There are many approaches on offer ranging from those that stay within

the conventional rational expectations paradigm to behavioural alternatives. In the former

category are a number of refinements that assume that agents are not able to perfectly

observe states that define the economy. Thus Pearlman et al. (1986) propose a general

framework for introducing information limitations at the point agents form expectations.

Pearlman (1992), Svensson and Woodford (2003) and Svensson and Woodford (2001) use

this framework to study optimal monetary policy. Collard and Dellas (2004), Collard and

Dellas (2006) (discussed below) investigate empirical issues associated with imperfect infor-

mation. The ‘Rational Inattention’ literature that includes Mankiw and Reis (2002), Sims

(2005), Adam (2007), Luo and Young (2009), Luo (2006)) and Reis (2009) fits into this

agenda, the basic idea being that agents can process information subject to a constraint

placing an upper bound on the information flow. The literature cited up to now all assumes

homogeneous agents with a common information set, or a simple form of aggregation across

staggered information up-dating; the examination of diverse agents with diverse information

sets goes back to Townsend (1983) and has been recently developed by Woodford (2003)

and Pearlman and Sargent (2003).

A relaxation of the rational expectations assumption itself is provided by the statistical

rational learning literature pioneered by Evans and Honkapohja (2000) and adopted in a

estimated macro-model by Milani (2007). This introduces a specific form of bounded ratio-

nality in which utility-maximizing agents make forecasts in each period based on standard

econometric techniques such as least squares. In many cases this converges to a rational

expectations equilibrium. A more drastic ‘behavioural’ alternative that limits the cognitive

ability of agents still further is proposed by the ‘animal spirits’ approach of DeGrauwe

(2009) where agents choose between, and learn about alternative simple forecasting rules.

At the same time the formal estimation of DSGE models by Bayesian methods has

become standard.1 However, as Levine et al. (2007) first pointed out, most of this DSGE

estimation makes asymmetric information assumptions where perfect information about

current shocks and other macroeconomic variables is available to the economic agents, but

not to the econometricians. Although perfect information on idiosyncratic shocks may be

available to economic agents, it is implausible to assume that they have full information

on economy-wide shocks. It therefore makes sense to address empirically alternative in-

formation assumptions to assess whether parameter estimates are consistent across these

assumptions and whether these alternatives lead to a better model fit.

In this paper we present two models: The first stays within the conventional rational

expectations framework, but relaxes the extreme perfect information assumptions for the

1See Fernandez-Villaverde (2009) for a comprehensive and accessible review.
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private sector. In a basic New Keynesian (NK) macro-model we make the assumption

that either agents are better informed than the econometricians (the standard asymmetric

information case in the estimation literature) or that they both have only the same imperfect

information available, and that there is informational symmetry. We utilize the solution

in the latter case, obtained for a completely general linear rational expectations model

by Pearlman et al. (1986). The second model introduces heterogeneous expectations and

encompasses the first. Proportions of households and firms form either rational or adaptive

expectations. This captures the spirit of the simple learning rules in DeGrauwe (2009) and

of the statistical learning literature whilst enabling the model to be expressed in a linear

form. This, in turn, is essential for the Kalman-filter techniques we employ to solve the

model under imperfect information. We elaborate on this point in section 4.

The symmetric information assumption is the informational counterpart to the “cog-

nitive consistency principle” proposed in Evans and Honkapohja (2009) which holds that

economic agents should be assumed to be “about as smart as, but no smarter than good

economists”. Whilst we make greater cognitive demands on rational agents, the formation

of rational (model-consistent) expectations, our assumption that agents have no more in-

formation than the economist who constructs and estimates the model amounts to what

we term the informational consistency principle (ICP).2 Certainly the ICP seems plausible

– a central question is whether it adds realism to our model in practice by improving its

empirical performance.

The possibility that imperfect information in NK models improves the empirical fit has

been examined by Collard and Dellas (2004) and Collard and Dellas (2006), although an

earlier assessment of the effects of imperfect information for an IS-LM model dates back to

Minford and Peel (1983). They show that with imperfect information about output and the

technology shock, or with misperceived money, the effect on inflation and output of a mon-

etary shock is the hump-shaped one displayed empirically in VAR estimation. With perfect

information, the hump-shaped effect is not in evidence in simulations of the NK model. Col-

lard and Dellas (2006) in particular are able to reproduce this without resorting to lagged

price indexation. The purpose of our paper is to investigate this issue formally within

the Bayesian-maximum likelihood estimation framework examining model fit in terms of

model posterior probabilities, impulse responses, second moments, autocorrelations and a

comparison with a DSGE-VAR.3

2We are grateful to George Evans for pointing this out this analogy to us.
3Since writing an earlier version of this paper, we came across Collard et al. (2009) which carries out

an exercise using the solution method of Pearlman et al. (1986) and Levine et al. (2007) that is similar to
the analysis of our rational expectations model in some respects. We examine a more general behavioural
model that encompasses that with rational expectations. A further distinguishing feature of our work is
that our model validation alongside the marginal likelihood comparison is more comprehensive. But most
importantly, whereas Collard et al. (2009) conclude that marginal likelihood differences between symmetric
and asymmetric information assumptions are “rather small”, we find very significant differences that are
supported by our comparisons of second moments with those of the data and model impulse responses
with that of a DSGE-VAR. This suggests that the importance of imperfect information for understanding
business cycles may be underestimated by these authors.
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The rest of the paper is organized as follows. Section 2 sets out the rational expectations

model. Section 3 generalizes the model to a behavioural one where certain proportions of

households and firms form rational and adaptive expectations. Section 4 sets out the

solution method (summarizing Pearlman et al. (1986)) and pays particular attention to

a technical but important issue of log-linearization. We also show that our framework

encompasses the rational inattention approach of Sims (2005), Adam (2007) and Luo and

Young (2009) as a special case. Sections 5 provides an analytical solution for a simplified

version of our model that demonstrates how imperfect information gives rise to endogenous

persistence in the sense that it is not solely driven by exogenous shocks. Sections 6 and 7

set out and discuss the results of our Bayesian estimation. Section 8 concludes.

2 The Rational Expectations Model

We utilize a fairly standard NK model with a Taylor-type interest rate rule. The simplicity

of our model facilitates the separate examination of different sources of persistence in the

model. First, the model in its most general form has external habit in consumption habit

and price indexing. These are part of the model, albeit ad hoc in the case of indexing,

and therefore endogenous. Persistent exogenous shocks to demand, technology and the

price mark-up classify as exogenous persistence. A key feature of the model is a further

endogenous source of persistence that arises when agents have imperfect information and

learn about the state of the economy using Kalman-filter updating.

The full model in non-linear form is as follows

1 = β(1 + Rt)Et

[

MUC
t+1

MUC
t Πt+1

]

(1)

Wt

Pt
= −

1

(1 − 1
η )

MUL
t

MUC
t

(2)

MCt =
Wt

αAtPtL
α−1
t

(3)

Ht − ξβEt[Π̃
ζ−1
t+1 Ht+1] = YtMUC

t (4)

Jt − ξβEt[Π̃
ζ
t+1Jt+1] =

1

1 − 1
ζ

MCtMStYtMUC
t (5)

Yt =
AtL

α
t

∆t
(6)

∆t ≡
1

n

n
∑

j=1

(Pt(j)/Pt)
−ζ (7)

1 = ξΠ̃ζ−1
t + (1 − ξ)

(

Jt

Ht

)1−ζ

(8)

Π̃t ≡
Πt

Πγ
t−1

(9)
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Yt = Ct + Gt (10)

Equation (1) is the familiar Euler equation with β the discount factor, 1 + Rt the gross

nominal interest rate, MUC
t the marginal utility of consumption and Π ≡ Pt

Pt−1
the gross

inflation rate, with Pt the price level. The operator Et[·] denotes rational expectations

conditional upon a general information set (see section 4). In (2) the real wage, Wt

Pt
is a

mark-up on the marginal rate of substitution between leisure and consumption. MUL
t is

the marginal utility of labour supply Lt. Equation (3) defines the marginal cost. Equations

(4) to (9) describe Calvo pricing with 1 − ξ equal to the probability of a monopolistically

competitive firm re-optimizing its price, indexing by an amount γ with an exogenous mark-

up shock MSt. They are derived from the optimal price-setting first-order condition for a

firm j setting a new optimized price P 0
t (j) given by

P 0
t (j)Et

[

∞
∑

k=0

ξkDt,t+kYt+k(j)

(

Pt+k−1

Pt−1

)γ
]

=
κ

(1 − 1/ζ)
Et

[

∞
∑

k=0

ξkDt,t+kPt+kMCt+kYt+k(j)

]

(11)

where the stochastic discount factor Dt,t+k = βk MUC
t+k

/Pt+k

MUC
t /Pt

, and demand for firm j’s output,

Yt+k(j), is given by

Yt+k(j) =

(

P 0
t (j)

Pt+k

)−ζ

Yt+k (12)

In equilibrium all firms that have the chance to reset prices choose the same price P 0
t (j) =

P 0
t and

P 0
t

Pt
= Jt

Ht
is the real optimized price in (7) and (8).

Equation (6) is the production function with labour the only variable input into pro-

duction and the technology shock At exogenous. Price dispersion ∆t, defined by (7), can

be shown for large n, the number of firms, to be given by

∆t = ξΠ̃ζ
t ∆t−1 + (1 − ξ)

(

Jt

Ht

)−ζ

(13)

Finally (10), where Ct denotes consumption, describes output equilibrium, with an exoge-

nous government spending demand shock Gt. To close the model we assume a current

inflation based Taylor-type interest-rule

log(1 + Rt) = ρr log(1 + Rn,t−1) + (1 − ρr)

(

θπ log
Πt

Π
+ log(

1

β
) + θy log

Yt

Y

)

+ ǫe,t (14)

where ǫe,t is a monetary policy shock.4

The following form of the single period utility for household r is a non-separable function

4Note the Taylor rule feeds back on output relative to its steady state rather than the output gap so we
avoid making excessive informational demands on the central bank when implementing this rule.
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of consumption and labour effort that is consistent with a balanced growth steady state:

Ut =

[

(Ct(r) − hCCt−1)
1−̺(1 − Lt(r))

̺
]1−σ

1 − σ
(15)

where hCCt−1 is external habit. In equilibrium Ct(r) = Ct and differentiating we have

MUC
t = (1 − ̺)(Ct − hCCt−1)

(1−̺)(1−σ)−1(1 − Lt)
̺(1−σ) (16)

MUL
t = −(Ct − hCCt−1)

(1−̺)(1−σ)̺(1 − Lt)
̺(1−σ)−1 (17)

Shocks At, Gt are assumed to follow AR(1) processes. Thus we have

log
At+1

A
= ρa log

At

A
+ ǫa,t+1 (18)

log
Gt+1

G
= ρg log

Gt

G
+ ǫg,t+1 (19)

where A, G denote the non-stochastic balanced growth values or paths of the variables

At, Gt. ǫe,t, ǫa,t and ǫg,t are i.i.d. with mean zero and variances σ2
ǫe

, σ2
ǫa

and σ2
ǫg

respectively.

ǫe,t is assumed to be white noise. Following Smets and Wouters (2007) and others in the

literature, we decompose the price mark-up shock into persistent and transient component:

MSt = MSper,tMStran,t where

log
MSper,t+1

MSper
= ρms log

MSper,t

MSper
+ ǫmsper,t+1 (20)

log
MStra,t+1

MStra
= ǫmstra,t+1 (21)

This results in MSt being an ARMA(1,1) process. We can normalize A = 1 and put

MS = MSper = MStra = 1 in the steady state. ǫmstra,t, is also assumed to be i.i.d. with

mean zero and variance σ2
ǫmstra

. The innovations are assumed to have zero contemporaneous

correlation. This completes the model. The equilibrium is described by 14 equations, (1)–

(10) and (14)–(17) defining 13 endogenous variables Πt Π̃t Ct Yt ∆t Rt MCt MUC
t Ut MUL

t

Lt Ht Jt and Wt

Pt
. There are 4 shocks in the system: At, Gt, MSt and ǫe,t.

The log-linearization5 of the model about the non-stochastic steady state is given by

yt = cyct + (1 − cy)gt where cy =
C

Y
(22)

EtmuC
t+1 = muC

t − (rt − Etπt+1) (23)

πt =
β

1 + βγ
Etπt+1 +

γ

1 + βγ
πt−1 +

(1 − βξ)(1 − ξ)

(1 + βγ)ξ
(mct + mst) (24)

5Lower case variables are defined as xt = log Xt

X
. rt and πt are log-deviations of gross rates. The validity

of this log-linear procedure for general information sets is discussed in the next section.
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where marginal utility, muC
t , and marginal costs, mct, are defined by

muC
t =

(1 − ̺)(1 − σ) − 1

1 − hC
(ct − hCct−1) −

̺(1 − σ)L

1 − L
lt

mct = wt − pt − at + (1 − α)lt

wt − pt = muL
t − muC

t

yt = at + αlt

muL
t =

1

1 − hC
(ct − hCct−1) +

L

1 − L
lt + muC

t

Equations (22) and (23) constitute the micro-founded ‘IS Curve’ and demand side for the

model, given the monetary instrument. According to (23) solved forward in time, the

marginal utility of consumption is the sum of all future expected real interest rates. (24)

is the ‘NK Philips Curve‘, the supply side of our model. In the absence of indexing it says

that the inflation rate is the discounted sum of all future expected marginal costs. Note

that price dispersion, ∆t, disappears up to a first order approximation and therefore does

not enter the linear dynamics. Finally, shock processes and the Taylor rule are given by

gt+1 = ρggt + ǫg,t+1

at+1 = ρaat + ǫa,t+1

mspert+1 = ρmsmspert + ǫmsper,t+1

mst = mspert + ǫmstra,t

rt = ρrrt−1 + (1 − ρr)[θππt + θyyt] + ǫe,t

Bayesian estimation is based on the rational expectations solution of the log-linear

model. The conventional approach assumes that the private sector has perfect information

of the entire state vector muC
t , πt, πt−1, ct−1, c∗t−1 and, crucially, current shocks mspert,

mst, at. These are extreme information assumptions and exceed the data observations

on three data sets yt, πt and rt that we subsequently use to estimate the model. If the

private sector can only observe these data series (we refer to this as symmetric information)

we must turn from a solution under perfect information on the part of the private sector

(later referred to as asymmetric information – AI since the private sector’s information set

exceeds that of the econometrician) to one under imperfect information – II.

3 The Behavioural Model

We now assume that proportions λh and λf of households and firms respectively form

rational expectations as before, but now the remaining agents form adaptive expectations.

Our assumption of adaptive expectations differs from statistical learning as in Milani (2007),

and from limiting the private sector to simple rules (“heuristics”), but allowing a degree of

rationality through a selection process that evaluates their performance, as in DeGrauwe

6



(2009). These alternatives would be of interest in our imperfect information environment,

but as yet our techniques cannot be applied to these cases (see section 4 for more discussion).

Consider first households. In principle those forming rational expectations could make

different consumption and labour supply decisions. However we can avoid this complication

by making the standard assumption of perfect insurance to equalize consumption decisions

across the two types. Since they face the same real wage it follows from equating the

marginal rate of substitution between consumption and leisure that labour supply decisions

are the same too. What now changes for households is that expectations are composites of

rational (Er
t [ · ]) and adaptive (Ea

t [ · ]) with weights λh and 1 − λh respectively. First order

conditions for the representative household are now given by

1 = β(1 + Rt)

(

λhEr
t

[

MUC
t+1

MUC
t Πt+1

]

+ (1 − λh)Ea
t

[

MUC
t+1

MUC
t Πt+1

])

(25)

Wt

Pt
= −

1

(1 − 1
η )

MUL
t

MUC
t

(26)

Turning to firms, the optimal price-setting equation for any firm setting new prices is

given as before by (11). However this choice is different for firms forming adaptive and

rational expectations.6 It is convenient to adopt the setup of in which we have perfectly

competitive wholesale firms who produce a homogeneous good, which is bought by retail

firms who differentiate the product at a fixed cost; then the real marginal cost of the

wholesale firms, namely MCt = Wt

αAtPtL
α−1
t

will be passed on to the retail firms, so that this

is the same for all retail firms, be they rational or adaptive. Thus in (11) the only thing

that differs for rational or adaptive firms is the way they form expectations. It follows

that the RHS of the equations in J,H below are dependent on the economy-wide values of

Y,MUC ,MC. Assume that the proportion of rational firms in the economy is λf . Then

price setting and output equilibrium corresponding to (1)– (10) before are given by

Hr
t − ξβEr

t [Π̃ζ−1
t+1 Hr

t+1] = YtMUC
t

Jr
t − ξβEr

t [Π̃
ζ
t+1J

r
t+1] =

1

1 − 1
ζ

MCtMStYtMUC
t

Ha
t − ξβEa

t [Π̃ζ−1
t+1 Ha

t+1] = YtMUC
t

Ja
t − ξβEa

t [Π̃ζ
t+1J

a
t+1] =

1

1 − 1
ζ

MCtMStYtMUC
t

1 = ξΠ̃ζ−1
t + (1 − ξ)λf

(

Jr
t

Hr
t

)1−ζ

+ (1 − ξ)(1 − λf )

(

Ja
t

Ha
t

)1−ζ

Π̃t ≡
Πt

Πγ
t−1

MCt =
Wt

αAtPtL
α−1
t

6DeGrauwe (2009) also has a model with composite expectations but fails to incorporate this aspect.
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Yt =
AtL

α
t

∆t

∆t = ξΠ̃ζ
t ∆t−1 + (1 − ξ)λf

(

Jr
t

Hr
t

)−ζ

+ (1 − ξ)(1 − λf )

(

Ja
t

Ha
t

)−ζ

Yt = Ct + Gt

Now we have a separate set of inflation dynamic for rational and adaptive firms with

aggregate indexation-modified inflation Π̃t given by a weighted sum of optimized real prices.

Similarly price dispersion, ∆t, is now a weighted sum of contributions from the two types

of firms.

Now define real optimized prices Qr
t ≡ Jr

t /Hr
t , Qa

t ≡ Ja
t /Ha

t and put Q̄r
t ≡ Qr

t Π̃t

and Q̄a
t ≡ Qa

t Π̃t. We further distinguish between adaptive expectations of inflation by

households and firms, Ea
h,t[πt+1] and Ea

f,t[πt+1] respectively. We can eliminate the latter

and after some manipulation (see Appendix A) show that the log-linearization is as follows:

yt = cyct + (1 − cy)gt (27)

λhEr
t muC

t+1 + (1 − λh)Ea
h,tmuC

t+1 = muC
t + λhEr

t πt+1 + (1 − λh)Ea
h,tπt+1 (28)

q̄r
t − ξβEr

t q̄r
t+1 = πt − γπt−1 + (1 − βξ)(mct + mst)

= q̄a
t − ξβEa

t q̄a
t+1 (29)

πt − γπt−1 = (1 − ξ)(λf q̄r
t + (1 − λf )q̄a

t ) (30)

Er
t q̄

r
t+1 − ξβEr

t q̄r
t+2 = (1 − ξβµ1)E

r
t q̄a

t+1 − ξβ(1 − µ1)E
a
f,tq̄

a
t+1 (31)

where muC
t , mct, shock processes and the Taylor rule are exactly as for the rational expec-

tations model.7 Adaptive expectations are given by

Ea
f,tq̄

a
t+1 = µ1q̄

a
t + (1 − µ1)E

a
f,t−1q̄

a
t

Ea
h,tu

a
c,t+1 = µ2muC

t + (1 − µ2)E
a
h,t−1u

a
c,t

Ea
h,tπ

a
t+1 = µ3πt + (1 − µ3)E

a
h,t−1π

a
t

Equations (27) and (28) constitute the ‘IS’ curve with composite expectations by the house-

holds. Equations (29) – (31) define the two NK Phillips Curves for rational and adaptive

firms. (30) now gives aggregate inflation and (31) is the defining equation for Er
t q̄

a
t+1. Note

that when all agents are rational, i.e., λh = λf = 1, then πt − γπt−1 = (1− ξ)q̄r
t and we get

back to the previous NK model.

7Note that for estimation purposes the coefficient on mst in (24) and (29) has been normalised to 1.
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4 General Solution with Imperfect Information

Both RE and behavioural models are a special case of the following general setup in non-

linear form

Zt+1 = J(Zt, EtZt,Xt, EtXt) + νσǫt+1 (32)

EtXt+1 = K(Zt, EtZt,Xt, EtXt) (33)

where Zt,Xt are (n−m)× 1 and m× 1 vectors of backward and forward-looking variables,

respectively, and ǫt is a ℓ × 1 shock variable, ν is an (n − m) × ℓ matrix and σ is a small

scalar. In log-linearized form with zt ≡ log Zt

Z where Z is the possibly trended steady state

and xt ≡ log Xt

X . the state-space representation is

[

zt+1

Etxt+1

]

=

[

A11 A12

A21 A22

][

zt

xt

]

+ B

[

Etzt

Etxt

]

+

[

ut+1

0

]

(34)

where zt, xt are vectors of backward and forward-looking variables, respectively, and ut

is a shock variable; a more general setup allows for shocks to the equations involving

expectations. In addition we assume that agents all make the same observations at time t,

which are given by

Wt = m(Zt, EtZt,Xt, EtXt) + µσǫt (35)

wt =
[

M1 M2

]

[

zt

xt

]

+ L

[

Etzt

Etxt

]

+ vt (36)

in non-linear and linear forms respectively, where µσǫt and vt represents measurement

errors. Given the fact that expectations of forward-looking variables depend on the infor-

mation set, it is hardly surprising that the absence of full information will impact on the

path of the system.

In order to simplify the exposition we assume terms in EtZt and EtXt do not appear

in the set-up so that in the linearized form B = L = 0. Full details of the solution for the

general setup are provided in Pearlman et al. (1986).8

4.1 Linear Approximation about the Non-Stochastic Steady State

Before proceeding to the rational expectations solution, we need to pose a basic question: is

(34) linearized about the deterministic steady state, where expectations are conditional on

any information set, a correct general form of the first-order approximation to the non-linear

model above? In other words, up to a first order approximation, are the expected values of

all variables in the non-linear model equal to their deterministic steady state values?

8Our model reduces to this form if we assume a pure inflation targeting rule with θy = 0 in (14). In fact
we find our empirical results to change very little with this simplification.
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We draw upon and generalize the results of Schmitt-Grohe and Uribe (2004) on approx-

imating non-linear RE models, Pearlman et al. (1986) PI solutions of linear RE models, and

extended Kalman filter approximations for non-linear models. The latter is different from

the standard engineering literature in which the Kalman filter is re-linearized at every stage

(see Appendix B). However if the system is always close to the equilibrium, then there is

no advantage to be gained from this, and we keep the linearization about the equilibrium.

It is important to emphasize that there are no theorems to show that the extended Kalman

filter guarantees convergence to the true nonlinear filter even for first-order deviations from

the steady state. However it is a technique that is widely used, and the empirical evidence

in its favour is good. The proofs in the appendix are therefore subject to the assumption

that the approximation to the nonlinear filter is good to first order.

We now prove the following which establishes our requirement for the first order ap-

proximation:

Theorem

We look for a RE solution to to the non-linear model (32) and (33) under imperfect infor-

mation which involves the innovations process variable Z̃t ≡ Zt − Et−1Zt:

Xt = g(Zt, Z̃t, σ) ; Zt+1 = h(Zt, Z̃t, σ) + ησεt+1 ; Z̃t+1 = f(Z̃t, σ) + ησεt+1

where σ is small. Then we have that gσ = hσ = 0.

Proof : See Appendix A.

This is the most important part of the generalization of Schmitt-Grohe and Uribe (2004),

and the remainder represents a linearized version of Pearlman et al. (1986).

4.2 Solution Procedure

First assume perfect information. Following Blanchard and Kahn (1980), it is well-known

that, there is then a saddle path satisfying:

xt + Nzt = 0 where
[

N I
]

[

A11 A12

A21 A22

]

= ΛU
[

N I
]

where ΛU has unstable eigenvalues.

In the imperfect information case, following Pearlman et al. (1986), we use the Kalman

filter updating given by

[

zt,t

xt,t

]

=

[

zt,t−1

xt,t−1

]

+ J

[

wt − M

[

zt,t−1

xt,t−1

]]

where we denote zt,t ≡ Et[zt] etc. Thus the best estimator of the state vector at time t− 1

is updated by multiple J of the innovation for the vector of observables wt −M

[

zt,t−1

xt,t−1

]

.
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The matrix J is given by

J =

[

PDT

−NPDT

]

Γ−1

where D ≡ M1 − M2A
−1
22 A21, M ≡ [M1 M2] partitioned conformably with

[

zt

xt

]

, Γ ≡

EPDT +V where E ≡ M1−M2N , V = cov(vt) is the covariance matrix of the measurement

errors and P satisfies the Ricatti equation (40) below.

Using the Kalman filter, the solution as derived by Pearlman et al. (1986)9 is given by

the following processes describing the pre-determined and non-predetermined variables zt

and xt and a process describing the innovations z̃t ≡ zt − zt,t−1:

Predetermined : zt+1 = Czt + (A − C)z̃t + (C − A)PDT (DPDT + V )−1(Dz̃t + vt)

+ ut+1 (37)

Non-predetermined : xt = −Nzt + (N − A−1
22 A21)z̃t (38)

Innovations : z̃t+1 = Az̃t − APDT (DPDT + V )−1(Dz̃t + vt) + ut+1 (39)

where C ≡ A11 − A12N, A ≡ A11 − A12A
−1
22 A21, D ≡ L1 − L2A

−1
22 A21

and P is the solution of the Riccati equation given by

P = APAT − APDT (DPDT + V )−1DPAT + U (40)

where U = cov(ut) is the covariance matrix of the shocks to the system.

We can see that the solution procedure above is a generalization of the Blanchard-Kahn

solution for perfect information by putting z̃t = vt = 0 to obtain

zt+1 = Czt + ut+1 ; xt = −Nzt (41)

By comparing (41) with (37) we see that the determinacy of the system is independent

of the information set. This is an important property that contrasts with the case where

private agents use statistical learning to form forward expectations.

4.3 Statistical Learning

We now pose the question as to whether our framework can handle statistical learning.

The work of Milani (2007) assumes that non-rational agents form expectations on the

basis of having estimated the relationship between forward and backward-looking variables

(including shocks) using discounted least squares. However he does this in the context

of a very simple model in which there is only one representative agent, with all variables

9A less general solution procedure for linear models with imperfect information is provided by Lungu
et al. (2008) with an application to a small open economy model, which they also extend to a non-linear
version.

11



observable, and as a consequence all shocks are observable with a lag of one period; hence

one can apply e-stability results to show that there is convergence of the system to an

equilibrium, which coincides with the rational expectations equilibrium. Our model is more

complex, requiring inferences to be made about the shocks, so that the filtered values are

obtained rather than the true values. In general Bullard and Eusepi (2009), among others,

show that there can be convergence to a system that exhibits indeterminacy. Any theory

to account for this in estimation under imperfect information is currently non-existent, so

we have taken a line of least resistance and assume non-rational agents form expectations

adaptively.

4.4 Rational Inattention

On the theme of rational inattention, the fact that the dynamics of zt depend on the

dynamics of z̃t is equivalent to the result of Luo and Young (2009). For a simple stochastic

growth model with rational inattention, they show that the dynamics of capital in their

model, kt, depends on k̂t where the latter is last period’s expected value of kt, which in

our notation would be kt − k̃t. it is also interesting to note that when there is only one

predetermined variable in the system (as in Adam (2007) and Luo and Young (2009)), and

it is observed with measurement error, then there is a one-to-one relationship between the

variance of this error and the information channel capacity, the latter measuring the inverse

of the degree of rational inattention. This is because if kt has a normal distribution, then the

difference in entropy at time t before and after a noisy measurement of kt is a function10 of

σ2
k/(pk +σ2

k), where pk = vart−1kt and σ2
k is the variance of the noise. Thus if σ2

k is defined,

then after solving the Riccati equation above, one can evaluate the capacity of the channel.

Conversely, when the capacity is given, one can evaluate pk/σ
2
k, followed by pk from the

Riccati equation, which then implies σ2
k. When there are several predetermined variables,

with noisy observations made on only one, then there is still a one-to-one relationship; thus

if kt = hT zt, then the difference in entropy is σ2
k/(h

T Ph + σ2
k) where P = vart−1zt.

Thus our general framework with measurement error encompasses the rational inat-

tention literature that assumes a single predetermined variable and relies on information

channel capacity. However when more than one variable is observed with error, then the

variance of the shock to measurements is a square matrix whose number of elements are

obviously larger than the single parameter that represents the channel capacity. Thus we

may consider estimating the capacity when there is one variable that is measured, but this

does not easily generalise to the case when when there is more than one measurement per

time period.

10For a Gaussian process the variance conditioned by the latest measurement is given by pk−p2
k/(pk+σ2

k) =
pkσ2

k/(pk+σ2
k), so that the defined value of the channel capacity is given by 1

2
(log(pk)−log(pkσ2

k/(pk+σ2
k))) =

−

1

2
log(σ2

k/(pk + σ2
k)).
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5 Analytical Example

To demonstrate the imperfect information solution procedure and the possible implica-

tions for endogenous persistence we consider a special case of our model without habit or

indexation:

πt = βEtπt+1 +
(1 − βξ)(1 − ξ)

ξ
mct + mst

which for convenience we write as Etπt+1 = 1
β πt + xt + wt where xt ≡

(1−βξ)(1−ξ)
βξ mct and

wt ∼ N(0, σ2
w) is now our transient shock to the mark-up. We now assume that xt follows

an exogenous AR(1) process

xt+1 = ρxt + εt+1 ǫt ∼ N(0, σ2
ǫ )

For our purposes this is most easily set up in the form







wt+1

xt+1

Et[πt+1]






=







0 0 0

0 ρ 0

1 1 α













wt

xt

πt






+







wt+1

εt+1

0







where α ≡ 1
β .

Under perfect information agents (somehow) observe the entire state vector consisting

of the mark-up shock, the marginal cost and inflation. [wt xt πt]
′

. We compare this with

imperfect information where agents observe only inflation πt with no measurement error.

Then from our general solution procedure in section 4, the following matrices are defined

A = C =

[

0 0

0 ρ

]

; N =

[

1

α

1

α − ρ

]

= −E; D =

[

−
1

α
−

1

α

]

; U =

[

σ2
w 0

0 σ2
ε

]

; V = 0

It follows from (40) that

P =

[

σ2
w 0

0 p

]

where p =
ρ2pσ2

w

σ2
w + p

+ σ2
ε

From (37) it follows that the innovations are given by

[

w̃t+1

x̃t+1

]

=

[

0 0

0 ρ

][

w̃t

x̃t

]

−

[

0 0

0 ρ

][

σ2
w

p

]

(w̃t + π̃t)

(p + σ2
w)

+

[

wt+1

ǫt+1

]

Noting that N − A−1
22 A21 =

[

0 ρ
α(α−ρ)

]

, it follows that the solution is given by

xt = ρxt−1 + εt

x̃t =
ρ

σ2
w + p

(σ2
wx̃t−1 − pwt−1) + εt
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πt = −
1

α

(

1 +
ρσ2

wp

(α − ρ)(σ2
w + p)

)

wt −
1

α − ρ
xt +

ρσ2
w

α(α − ρ)(σ2
w + p)

x̃t (42)

Figure 1 in Appendix E illustrates the solution for β = 0.99, ρ = 0.9, σǫ = 1 and

σ2
w = 0, 1, 2. The figure shows an impulse response to the mark-up, x0 = 1. Under

perfect information σ2
w = 0 and inflation is given by π = − 1

α−ρxt with xt = ρxt−1, x0 = 1.

Inflation jumps immediately to −9.1 but then proceeds to return to zero driven by the

exogenous process for xt. With imperfect information (II) the last term in (42) associated

with the innovation introduces endogenous persistence arising from the rational learning

of the private sector about this unobserved shock using Kalman updating. The inflation

trajectory is now hump-shaped and the deviation from the v-shaped perfect information

path increases as the variance of the transient shock σ2
w increases.

6 Bayesian Estimation

In the same year that Blanchard and Kahn (1980) provide a general solution for a linear

model under RE in the state space form, Sims (1980) suggests the use of Bayesian methods

for solving multivariate systems. This leads to the development of Bayesian VAR (BVAR)

models (Doan et al. (1984)), and, during the 1980s, the extensive development and appli-

cation of Kalman filtering-based state space systems methods in statistics and economics

(Aoki (1987), Harvey (1989)).

Modern DSGE methods further enhance this Kalman filtering based Bayesian VAR state

space model with Monte-Carlo Markov Chain (MCMC) optimising, stochastic simulation

and importance-sampling (Metropolis-Hastings (MH) or Gibbs) algorithms. The aim of this

enhancement is to provide the optimised estimates of the expected values of the currently

unobserved, or the expected future values of the variables and of the relational parameters

together with their posterior probability density distributions (Geweke (1999)). It has been

shown that DSGE estimates are generally superior, especially for the longer-term predictive

estimation than the VAR (but not BVAR) estimates (Smets and Wouters (2007)), and

particularly in data-rich conditions (Boivin and Giannoni (2005)).

The crucial aspect is that agents in DSGE models are forward-looking. As a con-

sequence, any expectations that are formed are dependent on the agents’ information set.

Thus unlike a backward-looking engineering system, the information set available will affect

the path of a DSGE system.

The Bayesian approach uses the Kalman filter to combine the prior distributions for

the individual parameters with the likelihood function to form the posterior density. This

posterior density can then be obtained by optimizing with respect to the model parameters

through the use of the Monte-Carlo Markov Chain sampling methods. Four variants of

our linearized model are estimated using the Dynare software (Juillard (2003)), which has

been extended by the paper’s authors to allow for imperfect information on the part of the

private sector.
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In the process of parameter estimation, the mode of the posterior is first estimated using

Chris Sim’s csminwel after the models’ log-prior densities and log-likelihood functions are

obtained by running the Kalman recursion and are evaluated and maximized. Then a

sample from the posterior distribution is obtained with the Metropolis-Hasting algorithm

using the inverse Hessian at the estimated posterior mode as the covariance matrix of the

jumping distribution. The scale used for the jumping distribution in the MH is set in order

to allow a good acceptance rate (20%-40%). A number of parallel Markov chains of 100000

runs each are run for the MH in order to ensure the chains converge. The first 25% of

iterations (initial burn-in period) are discarded in order to remove any dependence of the

chain from its starting values.

6.1 Data, Priors and Model Identifiability

To estimate the system, we use three macro-economic observables at quarterly frequency

for the US: real GDP, the GDP deflator and the nominal interest rate. Since the variables

in the model are measured as deviations from a constant steady state, the time series are

simply de-trended against a linear trend in order to obtain approximately stationary data.

Following Smets and Wouters (2003), all variables are treated as deviations around the

sample mean. Real variables are measured in logarithmic deviations from linear trends,

in percentage points, while inflation (the GDP deflator) and the nominal interest rate are

detrended by the same linear trend in inflation and converted to quarterly rates. The

estimation results are based on a sample from 1970:1 to 2004:4.

The values of priors are taken from Levin et al. (2006) and Smets and Wouters (2007).

Table 6 in Appendix D provides an overview of the priors used for each model variant

described below. In general, inverse gamma distributions are used as priors when non-

negativity constraints are necessary, and beta distributions for fractions or probabilities.

Normal distributions are used when more informative priors seem to be necessary. We use

the same prior means as in previous studies and allow for larger standard deviations, i.e.

less informative priors, in particular for the habit parameter and price indexation. The

priors on α, ξ are the exceptions and based on Smets and Wouters (2007) with smaller

standard deviations. Also, for the parameters γ, hC , ξ and ̺ we centre the prior density in

the middle of the unit interval. The priors related to the process for the price mark-up shock

are taken from Smets and Wouters (2007). The priors for µ1, µ2, µ3, λh, λf are also assumed

beta distributed with means 0.5 and standard deviations 0.2. Three of the structural

parameters are kept fixed in the estimation procedure. These calibrated parameters are

β = 0.99; L = 0.4, cy = 0.6.

As emphasized by Canova and Sala (2009), it is necessary to confront the question

of parameter identifiability in any DSGE model before taking the model to the data.

Model/parameters identification is a prerequisite for the informativeness of different es-

timators, and their effectiveness when one uses the models to address policy questions and

sources of identification failure could be marginalization (from the model structure), or lack
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of information (from the data).

Before estimating our models, we carry out a simple experiment examining parameter

identifiability in our most general composite-expectations model. In this experiment, using

the log-linearized solutions as the data generating process, we generate artificial data sets

of length T = 5000 for all the observable variables from the DSGE model. To limit the

influence of the initial conditions, we discard the first 100 observations. In particular, we

simulate the data by imposing the prior means to the parameters. We then re-estimate

the model on the artificial data sets using the standard Maximum Likelihood (ML) method

and ask whether the ML estimates recover the DSGE model’s priors. Convergence of the

ML procedure then implies that the likelihood surface is not flat, suggesting there may be

no identifiability problem.

One advantage of this technique is that it is completely independent of the nature or

the size of the data used in estimation so that we can detect potential identification failures

which are inherent in the model structure. The simulation and estimation results are then

compared with the prior distributions and reported in Table 6. In the table, we measure the

bias as the absolute value of the difference between the prior mean and the ML estimate for

each parameter. We see that the bias is not markedly greater than one standard deviation

in all cases, and much smaller in many cases indicating a 90% confidence interval for the

true model. Overall the identification check suggests that identifiability in our DSGE model

is generally very strong for much of the parameter space.

6.2 The Rational Expectations Model

We consider 4 model variants: GH (γ, hC > 0), G (hC = 0), H (γ = 0) and Z (zero persis-

tence or γ = hC = 0). Then for each model variant we examine three information sets: first

we make the assumption that private agents are better informed than the econometricians

(the standard asymmetric information case in the estimation literature) – the Asymmetric

Information (AI) case. Then we examine two symmetric information sets for both econo-

metrician and private agents: Imperfect Information without measurement error on the

three observables rt, πt, yt (II) and measurement error on two observables πt, yt (IIME).

This gives 12 sets of results. First Table 7 in Appendix D reports the parameter estimates

using Bayesian methods. It summarizes posterior means of the studied parameters and

90% confidence intervals for the four model specifications across the three information sets,

AI, II and IIME, as well as the posterior model odds. Overall, the parameter estimates are

plausible and reasonably robust across model and information specifications. The results

are generally similar to those of Levin et al. (2006) and Smets and Wouters (2007) for the

US, thus allowing us to conduct relevant empirical comparisons.

First it is interesting to note that the parameter estimates are fairly consistent across

the information assumptions despite the fact that these alternatives lead to a considerably

better model fit based on the corresponding posterior marginal data densities. On the other

hand, the point estimates are relatively less robust across different model specifications,
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particularly for the Calvo price parameter and those in relation to the policy rule and

process of mark-up shock.

Focusing on the parameters characterising the degree of price stickiness and the existence

of real rigidities, we find that the price indexation parameters are estimated to be smaller

than assumed in the prior distribution (in line with those reported by Smets and Wouters

(2007)). The estimates of γ imply that inflation is intrinsically not very persistent in the

relevant model specifications (the weight on lagged inflation in the Phillips curve is 0.27

implied by Model GH when assuming perfect information). If we assume an imperfect

information set on GH, the model estimates that inflation is sightly more persistent as the

weight becomes 0.33. The posterior mean estimates for the Calve price-setting parameter,

ξ, obtained from Model GH across all the information sets imply an average price contract

duration of about five quarters, similar to the findings of Christiano et al. (2005), Levin

et al. (2006) and Smets and Wouters (2007). The external habit parameter is estimated to

be around 80% of past consumption, which is somewhat higher than the estimates reported

in Christiano et al. (2005), although this turns out to be a very robust outcome of the

estimated models. The point estimates of hC obtained from the imperfect information

version seems to be slightly closer to the plausible values.

In Table 1 we report the posterior marginal data density from the estimation which

is computed using the Geweke (1999) modified harmonic-mean estimator. The marginal

data density can be interpreted as maximum log-likelihood values, penalized for the model

dimensionality, and adjusted for the effect of the prior distribution (Chang et al. (2002)).

Whichever model variant has the highest marginal data density attains the best relative

model fit.

Model AI II IIME

H -238.20 -230.89 -231.37

G -245.30 -239.15 -238.40

GH -239.59 -230.95 -230.52

Z -244.37 -242.04 -239.21

Table 1: Marginal Log-likelihood Values Across Model Variants and Information Sets

The model posterior probabilities are constructed as follows. Let pi (θ|mi) represent

the prior distribution of the parameter vector θ ∈ Θ for some model mi ∈ M and let

L (y|θ,mi) denote the likelihood function for the observed data y ∈ Y conditional on the

model and the parameter vector. Then the joint posterior distribution of θ for model mi

combines the likelihood function with the prior distribution:

pi (θ|y,mi) ∝ L (y|θ,mi) pi (θ|mi)

Bayesian inference also allows a framework for comparing alternative and potentially
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misspecified models based on their marginal likelihood. For a given model mi ∈ M and

common dataset, the latter is obtained by integrating out vector θ,

L (y|mi) =

∫

Θ
L (y|θ,mi) p (θ|mi) dθ

where pi (θ|mi) is the prior density for model mi, and L (y|mi) is the data density for

model mi given parameter vector θ. To compare models (say, mi and mj) we calculate

the posterior odds ratio which is the ratio of their posterior model probabilities (or Bayes

Factor when the prior odds ratio, p(mi)
p(mj)

, is set to unity):

POi,j =
p(mi|y)

p(mj |y)
=

L(y|mi)p(mi)

L(y|mj)p(mj)
(43)

BFi,j =
L(y|mi)

L(y|mj)
=

exp(LL(y|mi))

exp(LL(y|mj))
(44)

in terms of the log-likelihoods. Components (43) and (44) provide a framework for com-

paring alternative and potentially misspecified models based on their marginal likelihood.

Such comparisons are important in the assessment of rival models.

Given Bayes factors we can compute the model probabilities p1, p2, · · ·pn for n models.

Since
∑n

i=1 pi = 1 we have that 1
p1

=
∑n

i=2 BFi,1, from which p1 is obtained. Then pi =

p1BF (i, 1) gives the remaining model probabilities. These are reported in Table 2 where

we denote the probability of variant G, information assumption II say, by Pr(G, II) etc.

Pr(GH, IIME)=0.3610

Pr(H, II)=0.2494

Pr(GH, II)=0.2348

Pr(H, IIME)=0.1543

Pr(H, AI)=0.0002

Pr(G, IIME)=0.0001

Pr(G, II)=0.0001

Remaining prob. are almost zero

Table 2: Model Probabilities Across Model Variants and Information Sets

Tables 1 and 2 reveal that a combination of Model GH and with information set IIME

outperforms its 11 rivals with a posterior probability of 36%. However, the differences in

log marginal likelihood or the posterior odds ratio are not substantive between Models GH

and H under either IIME or II. For example, the log marginal likelihood difference between

Model GH under IIME and Model H under II is 0.43. As suggested by Kass and Raftery

(1995), in order to choose the former over later, we need a prior probability over Model GH

under IIME 1.54 (≈ e0.43) times larger than our prior probability over Model H under II.

This factor is believed to be small and therefore we are unable to conclude that Model GH

under IIME outperforms Model H under II. Equivalently, in Bayesian model comparison,
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a posterior Bayes factor needs to be at least 3 for there to be a positive evidence favouring

Model mi over mj .

Our analysis of the model comparison contains several important results. First, price

indexation does not improve the model fit, but the existence of habit is crucial as the results

clearly suggest that incorporating habit persistence in consumption in the US model imparts

greater inertia to the model, and improves the fit (relatively). Second, the II (or IIME)

specification leads to significantly better fit for all model variants. Third, we find substantial

evidence that the combinations of Models GH/H and IIME/II are far superior to any other

combinations in terms of the ability to explain the data highlighting the importance of the

underlying model persistence mechanisms and informational symmetry.

The focus on various alternative specifications seeks to address some of the concerns with

Bayesian model comparisons pointed out by Sims (2003). By estimating a large number

of model variants, this method intends to complete the space of competing models and to

compute posterior odds that take into consideration other (seemingly irrelevant) aspects

of the specification. One obvious limitation of this methodology is that the assessment of

model fit is only relative to its other rivals with different restrictions. The outperforming

model in the space of competing models may still be poor (potentially misspecified) in

capturing the important dynamics in the data. To further evaluate the absolute performance

of one particular model (or information assumption) against data, it is necessary to compare

the model’s implied characteristics with those of the actual data (or the VAR model).

6.3 The Behavioural Model

We consider the same four model variants and information sets as for the behavioural

model. Table 8 in Appendix D reports the posterior estimates. The estimated policy

coefficients are fairly robust across specifications and are reasonably consistent with those

using the rational expectations model. The estimates of γ imply that inflation is less

persistent compared to the previous model. The results from the behavioural model also

show that the price stickiness parameter is estimated to be larger than assumed in the prior

distribution. This implies that there is a considerable degree of price stickiness. Although

this high degree of nominal stickiness in price is implausible and far from our priors, it

is in line with the findings by Smets and Wouters (2005) and others.11 Similar to the

rational expectations model, the estimates of risk-aversion parameter are close to the prior

assumption, indicating that the intertemporal elasticity of substitution (equal to 1/σ is less

than one which is plausible as suggested in much of RBC literature.

Note that the estimates of the 5 parameters associated with adaptive expectations

across all the specifications are statistically different from zero according to the 90% interval

11It reflects the low slope in the Phillips curve in output-inflation space as revealed by the data. This
can be reconciled with a plausible degree of price stickiness without significantly changing the rest of the
parameter estimates by either introducing Kimball preferences, as in Smets and Wouters (2007), or state-
contingent price contracts, as in Gertler and Leahy (2008). To keep the core model relatively simple, we
have chosen not to go down this route.
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suggesting that they are playing important roles in the US economy. In particular, looking

at Model H under the II assumption, the estimated λh and λf suggest that a share of

around 70% of households form rational expectations while only around 20% firms are

rational. But the sensitivity of restrictions is strong in these estimates as the estimated

values of µ2 and λh are smaller in the absence of habit persistence. Nevertheless, most

of the estimated adaptive expectation parameters are tight estimates based the percentiles

obtained from the estimation suggesting that they are statistically reliable.

Table 3 reports the posterior marginal data density obtained from estimating the be-

havioural model and Table 4 shows the probability ranking. We find that Model H with

imperfect information set II has the highest marginal data density and attains the best rela-

tive model fit. This again suggests that incorporating the consumption habit seems to offer

significant improvement in terms of the model fit to US data. The degree of consumption

habit is also high and statistically significant using the behavioural model suggesting, in

principle, the empirical relevance of the parameter. Also as found in the previous section,

the data shows no support for the price indexation. Finally, in terms of using different infor-

mation assumptions, we find that the II and IIME specifications do not lead to significantly

better fit for all model variants. As one would expect, the ability of information symmetry

to improve the model fit fall sharply when only 20% of firms turn out to form adaptive

expectations in our estimation. There is evidence that the combinations of Model H and

all three information assumptions are far superior to any other combinations in terms of

the ability to explain the data, again highlighting the importance of the underlying habit

persistence mechanisms.

Model AI II IIME

H -227.14 -226.55 -227.27

G -242.87 -242.98 -243.15

GH -230.87 -230.79 -230.72

Z -239.27 -238.55 -239.12

Table 3: Marginal Log-likelihood Values Across Model Variants and Information Sets
(The Behavioural Model)

6.4 Impulse Response Analysis

This subsection investigates the importance of shocks to the endogenous variables of in-

terests by analyzing the impulse responses to the structural shocks in the models. As an

alternative way of validating the model performance, we also compare the estimated DSGE

model and an identified VAR model in terms of matching their impulse responses. To focus

the presentation, this exercise is only performed for Model GH (the ‘best’ rational expecta-

tions model), Model Z (with zero persistence) and Model COM H (the ‘best’ behavioural

model) across different information sets AI and II. The aim is to investigate the impact of
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Pr(H, II)=0.4798

Pr(H, AI)=0.2660

Pr(H, IIME)=0.2335

Pr(GH, IIME)=0.0074

Pr(GH, II)=0.0069

Pr(GH, AI)=0.0064

Remaining prob. are zero

Table 4: Model Probabilities Across Model Variants and Information Sets (The
Behavioural Model)

changing information assumptions in terms of the impulse response dynamics and to what

extent the simplest NK model Z can be brought closer to the data by introducing imperfect

information.

The estimated model impulse response functions (IRFs) can be directly related from the

state space representation of the above economic model. To tackle the degree of freedom

problem of the VAR models, a solution is to improve these by tilting them towards the

values implied by the DSGE parameters. The latter impose a prior on the VAR, yielding

the so-called DSGE-VAR approach proposed by Del Negro and Schorfheide (2004).

In general, their method implements the DSGE model prior by generating dummy

observations from the DSGE model, and adding them to the actual data and leads to an

estimation of the VAR based on a mixed sample of artificial and actual observations. The

ratio of dummy over actual observations (called the hyperparameter λ) controls the variance

and therefore the weight of the DSGE prior relative to the sample. If λ is small the prior is

diffuse. For extreme values of this parameter (0 or ∞) either an unrestricted VAR or the

DSGE model is estimated. The empirical performance of a DSGE-VAR will depend on the

tightness of the DSGE prior. Details on the algorithm used to implement this DSGE-VAR

are to be found in Del Negro and Schorfheide (2004) and Del Negro et al. (2005).

We fit our VAR to the same data set used to estimate the DSGE model. We con-

sider a VAR with 4 lags.12 We use a data-driven procedure to determine the tightness

of the prior endogenously based on the marginal data density. Our choice of the optimal

λ is 0.5 and this is found by comparing different VAR models using the estimates of the

marginal data density. In particular, we iterate over a grid that contains the values of

λ = [0; 0.25; 0.5; 0.75; 1; 2; 5;∞] and we find that the DSGE-VAR(4) with λ = 0.5 has the

highest posterior probability.13 This implies that the mixed sample that is used to estimate

the VAR has slightly lower weight on the DSGE model (artificial observations) than on the

VAR (actual observations).

Figure 2 in Appendix E depicts the mean responses corresponding to a positive one

12The choice of the lag length maximizes the marginal data density associated with the DSGE-VAR(λ̂).
13Alternatively, one can simply find the ‘optimal’ λ̂ by estimating the parameter λ as one of the deep

parameters.
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standard deviation shock. The endogenous variables of interest are the observables in the

estimation and each response is for a 10 period (2.5 years) horizon. All DSGE impulse

responses are computed simulating the vector of DSGE model parameters at the posterior

mean values reported in Table 5. The impulse responses for VAR(4) are obtained using the

DSGE-VAR identification procedure. Overall, we find that the sign and magnitude of the

DSGE and VAR impulse responses are quite similar implying that the DSGE model seems

to mimic the VAR model in, at least, some dimensions. This confirms that the estimated

DSGE model under both AI and II seems to be able to capture the main features of the

US data. The overall impact of the model dynamics can be broadly described using the

estimated impulse responses.

In response to an exogenous policy tightening, our model GH under asymmetric infor-

mation (AI) predicts a decline in output that dies out within a few years, a gradual decrease

in the inflation rate over several periods following a hump shaped response and a rise in the

nominal interest rate. These findings are robust across many empirical studies and can be

viewed as evidence of sizeable and persistent real effects of monetary policy shock captured

by our model GH. When we assume informational symmetry, results for the DSGE model

responses change dramatically. In particular, the imperfect information (II) specification

produces a large hump-shaped decline in output (the peak effect occurs roughly over one

year after the shock) and a gradual and lagged response in inflation when consumption

habit and indexation are present. The larger decline and sluggish response of output to the

policy shock in the II model show the evidence of endogenous persistence that is driven by

informational symmetry. It is noteworthy that model GH succeeds in accounting for the

inertial responses of inflation and output. Model Z without any persistence mechanisms

fails to replicate the observed hump-shaped IRF for inflation under both information sets.

It is interesting to note that our behavioural model H under both information sets manages

to simulate a much larger hump-shaped decline in output (the peak effect occurs roughly

over 5 years following the policy change) and does a better job at mimicking the response

generated by the data. This shows further evidence of some endogenous persistence.

Following a positive technological shock, inflation and the interest rate fall gradually

as higher productivity shrinks labour demand, pushing marginal cost down on impact,

lowers prices and interest rate and monetary policy does not respond strongly enough to

offset the downward pressure on marginal cost. Again these responses are predicted by

many empirical studies on DSGE models (e.g. Levin et al. (2006) and Smets and Wouters

(2007)) and the estimated reactions from our models account for these behaviours. In

particular, Model GH when assuming II does well at accounting for the dynamic response

of the US output to a productivity shock and Model Z when assuming II does a better job,

compared to its AI counterpart, at predicting the reactions of inflation and interest rate

computed from the data following a shock in technology. It is also worth noting that with

AI the DSGE model somewhat overstates the initial responses particularly in inflation. In

general, we conclude that the model’s overall performance with respect to a technology
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shock is improved with informational symmetry. In addition, the overall performance of

the behavioural model in matching the dynamic responses in the data is satisfactory, in

particular, outperforming the rational expectation Model GH in predicting the response of

inflation after a productivity shock.

With respect to the remaining shocks/responses, our models do well at accounting for

the responses of output and interest rate to a government spending shock and the response

of inflation to the transient part of a price mark-up shock. The qualitative effects are similar

and the information specification does not seem to make a significant impact. The response

of inflation following the government spending shock is somewhat overstated by our DSGE

model under either information assumption. In terms of the persistent mark-up shock

(referred to as Mark-up (ms) in Figure 2), the II assumption helps improve the model’s

performance in reflecting the central projection, particularly of inflation and output. To be

specific, II helps generate a better shape of IRF while Model GH under AI predicts that

output is not affected very much. Moreover, a result that is worth emphasizing is that

Model Z when assuming II does very well at projecting the most likely after-shock path of

inflation. Changing the information assumption slightly improves the IRFs of interest rate.

The simulations from the behavioural Model H using both II and AI show that the

behavioural model does better at projecting the most likely after-shock path of almost all

the variables in response to the government spending and the two versions of mark-up

shocks, getting closer to the data. The only exception is the interest rate response after

a government spending shock. Overall, these results from the estimated posterior impulse

responses, combined with the simulated IRF based on the simple calibrated example (Figure

1), imply that the presence of the II specification or the assumption of agents’ adaptive

behaviour improve the fit of the model.

7 Further Model Validation

The summary statistics such as first and second moments have been standard for researchers

to use to validate models in the literature on DSGE models, especially in the RBC tradition.

As the Bayes factors (or posterior model odds) are used to assess the relative fit amongst a

number of competing models, the question of comparing the moments is whether the models

correctly predict population moments, such as the variables’ volatility or their correlation,

i.e. to assess the absolute fit of a model to macroeconomic data. Following Schorfheide

(2000), let ŷT be a sample of observation of length T that one could have observed in the past

or that one might observe in the future. One can derive the sampling distribution of ŷT given

the current state of knowledge using the Bayes theorem: p(ŷT |yT ) =
∫

L(ŷT |θ)p(θ|yT )dθ.

Assume that T (yT ) is a test quantity that reflects an aspect of the data (moment) that

one wants to check, e.g. correlation between output and inflation or the output volatility.

In order to assess whether the estimated model can replicate population moments, one

sequentially generates draws from the posterior distribution, p(θ|yT ) and the predictive

23



distribution p(ŷT |yT ) so that the predictive T (ŷT ) can be computed.

7.1 Standard Moment Criteria

To assess the contributions of assuming different information sets and proportions of

adaptive agents in our estimated model variants, we compute some selected second mo-

ments and present the results in this subsection. Table 5 presents the second moments

implied by the above estimations and compares with those in the actual data. In partic-

ular, we compute these model implied statistics by simulating the models at the posterior

means obtained from estimation. The models are simulated by using 10000 series with

10000 periods. The first 1000 observations are dropped to eliminate the possible effect of

initial conditions and an HP filter is applied before computing the moments to eliminate

the possible trends. The results of model’s second moments are compared with the sec-

ond moments in the actual data to evaluate model’s empirical performance for the selected

model variants.

Standard Deviation
Model Output Inflation Interest rate

Data 4.99 0.62 0.74
Model GH AI 5.01 0.71 0.94
Model Z AI 3.01 0.81 1.06
Model GH II 4.57 0.67 0.88
Model Z II 2.67 0.50 0.80
Model COM H AI 2.77 0.51 0.66
Model COM H II 2.58 0.49 0.65

Cross-correlation with Output
Data 1.00 -0.22 -0.36
Model GH AI 1.00 -0.50 -0.71
Model Z AI 1.00 -0.51 -0.46
Model GH II 1.00 -0.47 -0.69
Model Z II 1.00 -0.16 -0.21
Model COM H AI 1.00 -0.19 -0.42
Model COM H II 1.00 -0.18 -0.41

Autocorrelations (Order=1)
Data 0.96 0.85 0.94
Model GH AI 0.98 0.88 0.95
Model Z AI 0.95 0.91 0.96
Model GH II 0.98 0.87 0.94
Model Z II 0.98 0.89 0.95
Model COM H AI 0.84 0.95 0.91
Model COM H II 0.84 0.94 0.91

Table 5: Selected Second Moments

In terms of the standard deviations, almost all the rational expectations models gener-

ate relative high volatility compared to the actual data (except for output). In line with

the Bayesian model comparison, Model GH (assuming II and rational expectations) fits
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the data better in terms of implied volatility, getting closer to the data in this dimension.

Overall, the estimated models are able to reproduce acceptable volatility for the main vari-

ables of the DSGE model. The inflation volatilities implied by the models are close to

that of the data. All rational expectations models under investigation appear to match

well the autocorrelations (order=1) of all the endogenous variables. Using the behavioural

model, output is less autocorrelated while inflation seems to be more autocorrelated then

those in the data at order 1. Table 5 also reports the cross-correlations of the 3 observable

variables vis-a-vis output. The data report that the inflation rate and nominal interest

rate are countercyclical. All model variants perform successfully in generating the nega-

tive contemporaneous inflation-output and interest rate-output correlations observed in the

data.

The ‘preferred’ model, Model GH (assuming imperfect information and rational expec-

tations), does a better job at matching the data volatilities and first order autocorrelations,

suggesting that habit formation and informational symmetry help fitting the data in these

dimensions. In addition, the abilities of Model Z in capturing the inflation and interest

rate volatilities and the contemporaneous cross-correlations are improved quite significantly

when assuming there is informational symmetry. Overall, Bayesian Maximum-likelihood

based methods suggest that all the implications of each model for fitting the data are con-

tained in their likelihood functions. In other words, the simulation results mainly show

that, switching from AI and II delivers a better fit to most features of the actual data, as

suggested by the data and likelihood criterion.

The behavioural models, in general, are able to capture the main features of the data

in most dimensions and strengthen the argument that the presence of partial rationality is

supported by the data. In particular, Model H assuming adaptive expectations performs

very well in generating and matching the contemporaneous cross-correlations of output

with both inflation and interest rate, outperforming all its rivals. Model H is also more

successful in replicating the interest rate volatility captured by the data. However, the

main shortcoming that the behavioural model faces is the difficulty of replicating the output

volatility.

7.2 Unconditional Autocorrelations

To further illustrate how the estimated models capture the data statistics based on different

information or behavioural assumptions, we plot the unconditional autocorrelations of the

actual data and those of the endogenous variables generated by the model variants in Figure

3. In general, all rational expectations models match reasonably well the autocorrelations

shown in the data within a shorter period horizon and our ‘best’ rational expectations

model, Model GH under II, does a slightly better job at matching the autocorrelations

compared to its AI counterpart. The data report that all variables are positively and very

significantly autocorrelated over short horizons. At a lag of one quarter, all the estimated

models are able to generate the observed autocorrelations as noted above (except for the
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output autocorrelograms simulated by the behavioural model H), but at higher lags, the

model simulated autocorrelations under AI are greater (more persistence) than those of the

sample for the interest rate and inflation for the rational expectations model, but display

less persistence for the behavioral model. When it comes to matching the interest rate a

similar story applies except that the persistence switch-over of the behavoural model does

not occur.

Of particular interest is that, when assuming II, the implied autocorrelograms produced

by Model Z fit extremely well the observed autocorrelations of interest rate and inflation

while its AI counterpart generates much sluggishness and is less able to match the inflation

autocorrelation observed in the data from the second lag onwards. Imperfect information

can therefore do much to improve the empirical performance of the simplest NK model

Z with no added persistence mechanisms, though overall it loses out in comparison with

models with these features. The results in this exercise again generally show that the DSGE

models under II perform better at capturing the main features of the US data, strengthening

the argument that the presence of informational symmetry helps improve the model fit to

data.

8 Conclusions

Our paper makes both a methodological and substantive contribution to the macroeconomic

literature on imperfect information. The methodological contribution is the provision of a

general tool for estimating DSGE models by Bayesian Maximum-likelihood methods un-

der very general information assumptions on the part of private agents. Our substantive

contribution is an application to a NK model where we compare the standard approach,

that assumes an informational asymmetry between private agents and the econometrician,

with as assumption of informational symmetry. For the former private agents observe all

state variables including shocks, whereas the econometrician only uses only data for output,

inflation and interest rates. For the latter both agents have the same imperfect informa-

tion set. For the rational model, we find that in terms of model posterior probabilities,

impulse responses, second moments and autocorrelations, the assumption of informational

symmetry significantly improves the model fit to data.The behavioural model easily wins

the marginal likelihood race, but this must be qualified by the poor fit of output volatility

and is failure to capture observed persistence in output and the interest rate.

There are three other notable results. First, we study variants of our model which close

down the two endogenous persistence mechanisms of habit in consumption and indexing in

turn. We then pose the question of whether imperfect information can provide an alternative

source of endogenous persistence as illustrated in our simple analytical model. Indeed we

find this is the case: our Model Z with neither mechanism and with imperfect (symmetric)

information fits the observed autocorrelation of the data of the interest rate and inflation

extremely well, whereas the same model with perfect (asymmetric) information on the part
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of the private sectors results in a poor fit in this dimension. Second we study symmetric

information with measurement error for the observed macroeconomic series and find this

improves the fit still further, thought the increase in the model probability is not significant.

Finally there is little to be gained from the indexation mechanism in terms of model fit, an

encouraging result for our workhorse NK model as price-indexation is generally deemed to

be an unsatisfactory ad hoc compromise feature of this genre.

There are a number of directions for future research. We have deliberately chosen to

apply our methodology to a relatively simple NK model with only few frictions. Having

demonstrated that information plays an important role for the estimation of this model,

the next step would be to examine its implications for closed- and open-economy models

with a range of frictions such as Smets and Wouters (2007) and Adolfson et al. (2007),

respectively. Second as alluded to in the introduction there are other ways of modelling

information limitations associated with the rational inattention literature. We have shown

that our general framework with a single measurement error is equivalent to models in the

rational inattention literature that assumes a single predetermined variable and rely on

information channel capacity. However a formal comparison with the sticky information

approach of Mankiw and Reis (2002) would be of some interest. Finally optimal policy

needs to be examined making consistent information assumptions at the estimation and

policy analysis stages. If imperfect information on the part of the private sector proves (as

in our rational model) to be strongly supported empirically in a range of DSGE models with

various frictions, this suggests that the imperfect information solution of optimal policy set

out in Pearlman (1992) is appropriate.
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Appendix

A Linearization of Behavioural Model

Log-linearizing the non-linear system as it stands gives

qr
t = ξβEr

t [πt+1 + qr
t+1] − ξβγπt + (1 − βξ)(mct + mst)

(A.1)

qa
t = ξβEa

f,t[πt+1 + qa
t+1] − ξβγπt + (1 − βξ)(mct + mst)

(A.2)

wt − pt = muL
t − muC

t (A.3)

mct = wt − pt − at + (1 − α)lt (A.4)

λhEr
t muC

t+1 + (1 − λh)Ea
h,tmuC

t+1 = muC
t − (rt − λhEr

t πt+1 − (1 − λh)Eh,a
t πt+1) (A.5)

muC
t =

(1 − ̺)(1 − σ) − 1

1 − hC

(ct − hCct−1) −
̺(1 − σ)L

1 − L
lt (A.6)

muL
t =

1

1 − hC

(ct − hCct−1) +
L

1 − L
lt + muC

t (A.7)

yt = cyct + (1 − cy)gt (A.8)

ξ(πt − γπt−1) = (1 − ξ)(λf qr
t + (1 − λf )qa

t ) (A.9)

where we distinguish between adaptive expectations of inflation by households and firms, Ea
h,t[πt+1]

and Ea
f,t[πt+1] respectively.. However the following obviates the need to define separate adaptive

process for firms for both qa
t and πt. Define q̄a

t = qa
t + πt − γπt−1, q̄

r
t = qr

t + πt − γπt−1. Then (A.1),

(A.2) and (A.9) become

q̄r
t = ξβEr

t q̄r
t+1 + πt − γπt−1 + (1 − βξ)(mct + mst) (A.10)

q̄a
t = ξβEa

f,tq̄
r
t+1 + πt − γπt−1 + (1 − βξ)(mct + mst) (A.11)

πt − γπt−1 = (1 − ξ)(λf q̄r
t + (1 − λf )q̄a

t ) (A.12)

Equation (A.12) represents the central cognitive requirement for the adaptive firms, and is central

to deriving the remaining relationships of the model. We assume that these agents (1) observe the

overall inflation rate πt and since they choose their own optimal relative price qa
t at time t they

therefore observe q̄a
t = qa

t + πt − γπt−1, and (2) know the value of ξ as well as the proportion of

adaptive firms 1 − λf . Armed with this information they can deduce the value of q̄r
t from (A.12).

Similarly rational firms can deduce the value of q̄a
t .

We also need to define adaptive processes for Ea
h,t[πt+1], Eh,tu

a
c,t+1 and Ef,tq̄

a
t+1:

Ef,tq̄
a
t+1 = µ1q̄

a
t + (1 − µ1)Ef,t−1q̄

a
t

Eh,tu
a
c,t+1 = µ2muC

t + (1 − µ2)Eh,t−1u
a
c,t

Eh,tπ
a
t+1 = µ3πt + (1 − µ3)Eh,t−1π

a
t

Since adaptive and rational agents need to form their own (differing) expectations of future

inflation we need to explain how expectations are formed of one another’s expectations of future q̄a
t
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and q̄r
t . We first note that (A.11) and (A.10) imply that

q̄r
t − ξβEr

t q̄r
t+1 = q̄a

t − ξβEa
f,tq̄

a
t+1 (A.13)

so that Er
t q̄r

t+1 is known to adaptive firms. Therefore taking expectations Ea
f,t of (A.13) and noting

that Ea
f,tq̄

r
t = q̄r

t we deduce that

Ea
f,t[E

r
t q̄r

t+1] = Er
t q̄r

t+1 (A.14)

We now make the assumption that adaptive agents do not think they are able to have better

expectations of Ea
f,tq̄

r
t+1 than do rational agents, meaning that they assume Ea

f,tq̄
r
t+1 = Ea

f,t[E
r
t q̄r

t+1],

and by (A.14) this implies Ea
f,tq̄

r
t+1 = Er

t q̄r
t+1. Hence it follows that

Ea
f,tπt+1 − γπt−1 = (1 − ξ)(λfEr

t q̄r
t+1 + (1 − λf )Ea

f,tq̄
a
t+1) (A.15)

Rational agents are aware that they can form superior estimates to adaptive agents of q̄a
t+1.

Thus advancing (A.13) by one period and taking expectations yields

Er
t q̄r

t+1 − ξβEr
t q̄r

t+2 = Er
t q̄a

t+1 − ξβEr
t [Ea

f,t+1q̄
a
t+2] (A.16)

But adaptive agents assume

Ea
f,t+1q̄

a
t+2 = µ1q̄

a
t+1 + (1 − µ1)E

a
f,tq̄

a
t+1 (A.17)

When rational agents take expectations of this at time t, they know that Er
t [Ea

f,tq̄
a
t+1] = Ea

f,tq̄
a
t+1.

Hence (A.16) can be written as

Er
t q̄r

t+1 − ξβEr
t q̄r

t+2 = (1 − ξβµ1)E
r
t q̄a

f,t+1 − ξβ(1 − µ1)E
a
t q̄a

f,t+1

which is the defining equation for Er
t q̄a

t+1, which is substituted into

Er
t πt+1 − γπt−1 = (1 − ξ)(λfEr

t q̄r
t+1 + (1 − λf )Er

t q̄a
f,t+1)

found by taking RE of (A.15)

B Proof of Theorem

Assume a model of the form

Zt+1 = J(Zt, Xt) + ησεt+1 EtXt+1 = K(Zt, Xt)

where σ is small, and with measurements

Wt = L(Zt, Xt)

We shall assume that there is a solution to this which involves the innovations process variable

Z̃t ≡ Zt − Et−1Zt:

Xt = g(Zt, Z̃t, σ) Zt+1 = h(Zt, Z̃t, σ) + ησεt+1 Z̃t+1 = f(Z̃t, σ) + ησεt+1
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Also assume that

EtZt − EtZt−1 = EtZ̃t = i(Z̃t)

Noting that K(Zt, Xt) = EtK(Zt, Xt) it follows that

K(Zt, g(Zt, Z̃t, σ)) = EtK(Zt, g(Zt, Z̃t, σ))

and the 1st order approximation to this is

K1zt + K2g1zt + K2g2z̃t = K1(zt − z̃t + i1z̃t) + K2g1(zt − z̃t + i1z̃t) + K2g2i1z̃t (B.1)

Ultimately we shall be solving for the partial derivative values at the steady state of f, g, h, i, and

in particular by equating terms in zt and z̃t in (B.1) we obtain

K1 + K2g1 = g1h1 K1 + K2g1 + K2g2 = (K1 + K2g1 + K2g2)i1

In the 1-dimensional case it is clear that i1 = 1, and if the dimension of Wt equals that of Zt then

i1 = I, the identity matrix. Now consider the second non-linear equation:

K(Zt, Xt) = K(Zt, g(Zt, Z̃t, σ)) = Etg(Zt+1, Z̃t+1, σ)

= Etg(h(Zt, Z̃t, σ) + ησεt+1, f(Z̃t, σ) + ησεt+1, σ)

The first order approximation to this is

K1zt +K2g1zt +K2g2z̃t +K2gσσ = g1h1(zt − z̃t + i1z̃t)+ g1h2i1z̃t + g2f1i1z̃t + g1hσσ + g2fσσ + gσσ

from which it follows that

K1 + K2g1 = g1h1 K2g2 = −g1h1 + g1h1i1 + g1h2i1 + g2f1i1 K2gσ = g1hσ + g2fσ + gσ

Equating the two Zt+1 equations implies

h(Zt, Z̃t, σ) = J(Zt, Xt) = J(Zt, g(Zt, z̃t, σ))

so that to first order

J1zt + J2g1zt + J2g2z̃t + J2gσσ = h1zt + h2z̃t + hσσ

and hence

J1 + J2g1 = h1 J2g2 = h2 J2gσ = hσ

Note that K1 + K2g1 = g1h1 and J1 + J2g1 = h1 are the standard saddlepath solutions for g1 and

h1.

Finally we need an equation describing how Etzt is calculated. Thus assume that Et−1zt is

known. We can use the extended Kalman filter,14 but evaluated always around the steady state.

14The control theory literature provides numerous numerical studies of convergence of the extended
Kalman filter. There appears to be no guarantee of convergence, so that the problem might possibly
be exacerbated by the approximation chosen, but the vast majority of the studies show that the extended
Kalman filter is very reliable. There are very few studies that compare the extended Kalman filter to the
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The measurement is given by Wt = L(Zt, Xt) = L(Zt, g(Zt, Z̃t, σ)). It follows that

Etzt = Et−1zt + PHT (HPHT )−1Hz̃t

where H = L1 + L2g1 + L2g2. It follows that

i1 = PHT (HPHT )−1H

Having solved previously for g1, h1 we still have to solve for g2, h2, f1, i1 as well as for P . Note

that the latter arises from

P = f1PfT
1 + σ2ηηT

In addition we require that the first-order approximation to Z̃t+1 equation derived from the the Zt+1

equation should have the same first-order approximation as the Z̃t+1 equation itself. This implies

that

(h1 + h2)(I − i1) = f1 fσ = 0

This implies that we need to solve for the nx+nz unknowns gσ, hσ for which the remaining equations

reduce to :

(K2 − I)gσ = g1hσ J2gσ = hσ

Since K2 is nx ×nx and J2 is nz ×nx, it follows that there are nx + nz equations in (B) from which

it follows that gσ = 0, hσ = 0.

Thus the Schmitt-Grohe and Uribe Theorem 1 applies to the case of partial information as well.

exact filter calculated numerically. However a more recent approach with considerably more accuracy is due
to Julier and Uhlmann (2004).
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C Priors and Posterior Estimates

Parameter Notation Prior distribution Identification check♦

Density Mean S.D/df ML mode S.D. Bias⋆

Risk aversion σ Normal 2.00 0.50 2.17 0.39 0.17
Price indexation γ Beta 0.50 0.15 0.33 0.16 0.17
Calvo prices ξ Beta 0.50 0.10 0.53 0.06 0.02
Consumption habit formation hC Beta 0.50 0.20 0.47 0.04 0.03
Preference parameter ̺ Beta 0.50 0.20 0.50 0.09 0.00
Labour share α Normal 0.80 0.10 0.78 0.24 0.02

Adaptive expectations

Error adjustment - Ef,tq̄
a
t+1 µ1 Beta 0.50 0.20 0.62 0.19 0.12

Error adjustment - Eh,tu
a
c,t+1 µ2 Beta 0.50 0.20 0.54 0.04 0.04

Error adjustment - Ea
h,t[πt+1] µ3 Beta 0.50 0.20 0.53 0.02 0.03

Proportion of rational households λh Beta 0.50 0.20 0.46 0.04 0.04
Proportion of rational firms λf Beta 0.50 0.20 0.46 0.08 0.04

Interest rate rule

Inflation θπ Normal 2.00 0.50 2.09 0.13 0.09
Output θy Normal 0.125 0.05 0.124 0.03 0.001
Interest rate smoothing ρr Beta 0.80 0.10 0.80 0.01 0.00

AR(1) coefficient

Technology ρa Beta 0.85 0.10 0.82 0.02 0.03
Government spending ρg Beta 0.85 0.10 0.83 0.02 0.02
Price mark-up ρms Beta 0.50 0.20 0.37 0.16 0.13

Standard deviation of AR(1) innovations

Technology sd(ǫa) Inv. gamma 0.60 2.00 1.14z 0.18 0.14
Government spending sd(ǫg) Inv. gamma 1.67 2.00 0.97 0.04 0.03
Price mark-up sd(ǫms) Inv. gamma 0.10 2.00 1.06 0.34 0.06

Standard deviation of I.I.D. shocks/mearsument errors

Mark-up process sd(ǫm) Inv. gamma 0.10 2.00 0.63 0.37 0.37
Monetary policy sd(ǫe) Inv. gamma 0.10 2.00 1.02 0.02 0.02
Observation error (inflation) sd(ǫπ) Inv. gamma 0.10 2.00 - - -
Observation error (output) sd(ǫy) Inv. gamma 0.10 2.00 - - -

Table 6: Prior Distributions and ML Estimation Based on Artificial Data

♦ We generated artificial data observations of length T=5000 by imposing the prior means to all
of the parameters (except for the S.D. of the shocks). The results presented here are based on
maximum likelihood estimates of Model GH (behavioural) for the T=5000 observations.
⋆ Note that Bias is measured as the absolute value of the difference between the prior mean and
the mean of ML estimates for each parameter.
z The artificial data are simulated assuming that the standard deviations of all the shocks are 1
instead of using their prior means.
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AI II IIME

Parameter Model GH Model H Model G Model Z Model GH Model H Model G Model Z Model GH Model H Model G Model Z

σ 2.28 [1.51:3.01] 2.22 [1.44:3.03] 2.57 [1.92:3.25] 2.62 [1.93:3.24] 2.36 [1.60:3.07] 2.30 [1.57:3.06] 2.66 [1.99:3.29] 2.78 [2.07:3.42] 2.38 [1.64:3.09] 2.30 [1.53:3.04] 2.62 [2.00:3.26] 2.74 [2.01:3.39]
γ 0.38 [0.16:0.58] - 0.34 [0.14:0.53] - 0.43 [0.21:0.65] - 0.39 [0.20:0.57] - 0.49 [0.24:0.73] - 0.47 [0.23:0.69] -
ξ 0.82 [0.75:0.90] 0.85 [0.79:0.91] 0.60 [0.46:0.76] 0.67 [0.55:0.79] 0.83 [0.76:0.90] 0.85 [0.79:0.91] 0.64 [0.56:0.72] 0.70 [0.62:0.82] 0.83 [0.76:0.91] 0.86 [0.80:0.91] 0.67 [0.60:0.75] 0.71 [0.63:0.80]
hC 0.84 [0.75:0.93] 0.86 [0.78:0.94] - - 0.80 [0.69:0.91] 0.84 [0.76:0.92] - - 0.81 [0.71:0.91] 0.84 [0.77:0.93] - -
̺ 0.33 [0.07:0.58] 0.33 [0.06:0.59] 0.37 [0.10:0.63] 0.32 [0.08:0.53] 0.35 [0.08:0.61] 0.33 [0.08:0.58] 0.37 [0.12:0.65] 0.25 [0.04:0.47] 0.34 [0.07:0.59] 0.33 [0.07:0.58] 0.31 [0.07:0.53] 0.31 [0.07:0.54]
α 0.87 [0.72:1.00] 0.87 [0.72:1.02] 0.75 [0.62:0.88] 0.76 [0.61:0.89] 0.87 [0.73:1.01] 0.88 [0.73:1.03] 0.74 [0.61:0.87] 0.74 [0.58:0.89]] 0.86 [0.72:1.01] 0.87 [0.73:1.02] 0.73 [0.60:0.86] 0.72 [0.58:0.86]

Interest rate rule
θπ 1.58 [1.18:1.96] 1.55 [1.08:1.95] 2.97 [2.43:3.52] 2.84 [2.40:3.34] 1.57 [1.19:1.95] 1.48 [1.08:1.86] 2.87 [2.39:3.38] 2.73 [1.34:3.55] 1.57 [1.17:1.96] 1.48 [1.07:1.84] 2.90 [2.33:3.43] 2.83 [2.28:3.56]
θy 0.09 [0.00:0.17] 0.08 [-0.01:0.17] 0.23 [0.16:0.29] 0.24 [0.18:0.30] 0.08 [0.00:0.17] 0.08 [-0.01:0.17] 0.22 [0.16:0.28] 0.19 [0.08:0.29] 0.08 [0.00:0.17] 0.08 [-0.01:0.16] 0.23 [0.17:0.30] 0.21 [0.15:0.30]
ρr 0.80 [0.75:0.86] 0.81 [0.75:0.97] 0.58 [0.44:0.71] 0.53 [0.44:0.64] 0.80 [0.75:0.86] 0.81 [0.76:0.87] 0.52 [0.40:0.65] 0.54 [0.35:0.75] 0.81 [0.75:0.87] 0.81 [0.76:0.86] 0.55 [0.43:0.69] 0.46 [0.29:0.62]

AR(1) coefficient
ρa 0.98 [0.97:0.99] 0.98 [0.96:0.99] 0.96 [0.95:0.98] 0.96 [0.95:0.98] 0.98 [0.97:0.99] 0.98 [0.97:0.99] 0.97 [0.95:0.99] 0.97 [0.94:0.99] 0.98 [0.97:0.99] 0.98 [0.97:0.99] 0.96 [0.95:0.98] 0.97 [0.95:0.98]
ρg 0.92 [0.87:0.97] 0.93 [0.87:0.98] 0.88 [0.84:0.93] 0.89 [0.85:0.94] 0.92 [0.86:0.97] 0.93 [0.88:0.98] 0.87 [0.82:0.92] 0.88 [0.82:0.95]] 0.91 [0.86:0.97] 0.93 [0.88:0.98] 0.86 [0.82:0.91] 0.88 [0.83:0.93]
ρms 0.27 [0.04:0.47] 0.36 [0.05:0.65] 0.98 [0.96:0.99] 0.98 [0.96:0.99] 0.40 [0.10:0.69] 0.50 [0.19:0.80] 0.98 [0.97:0.99] 0.89 [0.53:0.99] 0.40 [0.11:0.69] 0.54 [0.19:0.83] 0.98 [0.97:0.99] 0.95 [0.96:0.99]

Standard deviation of AR(1) innovations
sd(ǫa) 1.39 [0.92:1.83] 1.62 [1.12:2.17]] 0.74 [0.58:0.89] 0.72 [0.57:0.86] 1.27 [0.85:1.70] 1.49 [1.02:2.00] 0.71 [0.57:0.84] 0.70 [0.53:0.88] 1.26 [0.87:1.65] 1.43 [0.94:1.98] 0.72 [0.59:0.86] 0.72 [0.57:0.88]
sd(ǫg) 2.03 [1.80:2.56] 2.03 [1.80:2.25] 2.60 [2.07:3.09] 2.69 [2.19:3.17] 2.05 [1.83:2.28] 2.03 [1.81:2.25] 2.62 [2.12:3.07] 2.62 [1.98:3.17]] 2.05 [1.81:2.27] 2.02 [1.80:2.24] 2.71 [2.21:3.14] 2.65 [2.11:3.21]
sd(ǫms) 0.07 [0.03:0.12] 0.07 [0.03:0.11] 0.23 [0.04:0.41] 0.17 [0.04:0.34] 0.07 [0.03:0.12] 0.06 [0.03:0.10] 0.11 [0.05:0.17] 0.14 [0.04:0.25] 0.06 [0.03:0.10] 0.06 [0.03:0.09] 0.09 [0.04:0.13] 0.11 [0.04:0.19]

Standard deviation of I.I.D. shocks/mearsument errors
sd(ǫm) 0.11 [0.04:0.17] 0.08 [0.03:0.13] 0.14 [0.05:0.20] 0.16 [0.09:0.24] 0.11 [0.04:0.16] 0.06 [0.03:0.10] 0.23 [0.18:0.27] 0.18 [0.03:0.26] 0.09 [0.03:0.14] 0.06 [0.03:0.09] 0.13 [0.03:0.23] 0.13 [0.03:0.24]
sd(ǫe) 0.27 [0.24:0.30] 0.27 [0.24:0.29] 0.26 [0.22:0.30] 0.22 [0.17:0.26] 0.27 [0.24:0.30] 0.27 [0.24:0.30] 0.29 [0.25:0.33] 0.27 [0.22:0.31]] 0.27 [0.24:0.30] 0.27 [0.24:0.30] 0.28 [0.24:0.32] 0.25 [0.21:0.30]
sd(ǫπ) - - - - - - - - 0.09 [0.03:0.14] 0.06 [0.03:0.09] 0.15 [0.03:0.25] 0.14 [0.03:0.25]
sd(ǫy) - - - - - - - - 0.07 [0.02:0.12] 0.07 [0.02:0.12] 0.06 [0.03:0.10] 0.07 [0.02:0.12]

Price contract length
1

1−ξ 5.56 6.67 2.50 3.03 5.88 6.67 2.78 3.33 5.88 7.14 3.03 3.45

LL and posterior model odd
LL -239.59 -238.20 -245.30 -244.37 -230.95 -230.89 -239.15 -242.04 -230.52 -231.37 -238.40 -239.21
Prob. 0.00 0.00 0.00 0.00 0.23 0.25 0.00 0.00 0.36 0.15 0.00 0.00

Table 7: Bayesian Posterior Distributions♦

♦ Notes: we report posterior means and 90% probability intervals (in parentheses) based on the output of the Metropolis-Hastings Algorithm.
Sample range: 1970:I to 2004:IV.
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AI II IIME

Parameter Model GH Model H Model G Model Z Model GH Model H Model G Model Z Model GH Model H Model G Model Z

σ 2.48 [1.74:3.32] 2.46 [1.70:3.17] 2.60 [1.90:3.31] 2.53 [1.80:3.25] 2.52 [1.76:3.26] 2.50 [1.77:3.22] 2.55 [1.84:3.24] 2.50 [1.81:3.18] 2.52 [1.81:3.25] 2.55 [1.83:3.28] 2.55 [1.82:3.30] 2.50 [1.83:3.15]
γ 0.29 [0.11:0.46] - 0.27 [0.11:0.43] - 0.29 [0.11:0.47] - 0.24 [0.10:0.39] - 0.30 [0.12:0.47] - 0.24 [0.10:0.38] -
ξ 0.91 [0.87:0.95] 0.89 [0.84:0.94] 0.87 [0.82:0.92] 0.86 [0.81:0.92] 0.91 [0.87:0.95] 0.88 [0.83:0.95] 0.88 [0.83:0.92] 0.87 [0.81:0.92] 0.90 [0.85:0.95] 0.88 [0.81:0.94] 0.87 [0.83:0.92] 0.87 [0.82:0.92]
hC 0.87 [0.80:0.94] 0.88 [0.80:0.95] - - 0.88 [0.81:0.94] 0.87 [0.80:0.95] - - 0.87 [0.80:0.94] 0.87 [0.80:0.95] - -
̺ 0.46 [0.12:0.76] 0.45 [0.12:0.76] 0.20 [0.04:0.36] 0.22 [0.03:0.39] 0.46 [0.14:0.77] 0.44 [0.12:0.73] 0.20 [0.03:0.36] 0.21 [0.05:0.38] 0.46 [0.15:0.76] 0.43 [0.11:0.72] 0.21 [0.04:0.37] 0.21 [0.04:0.38]
α 0.79 [0.63:0.95] 0.80 [0.64:0.97] 0.90 [0.74: 1.05] 0.89 [0.74:1.05] 0.79 [0.63:0.95] 0.79 [0.63:0.94] 0.91 [0.75:1.06] 0.90 [0.73:1.05]] 0.78 [0.63:0.94] 0.79 [0.63:0.93] 0.90 [0.75:1.06] 0.89 [0.74:1.06]

Adaptive expectations
µ1 0.30 [0.13:0.47] 0.29 [0.11:0.49] 0.25 [0.10:0.39] 0.29 [0.10:0.49] 0.29 [0.12:0.45] 0.32 [0.11:0.53] 0.28 [0.13:0.43] 0.30 [0.11:0.50] 0.28 [0.11:0.45] 0.30 [0.10:0.49] 0.29 [0.12:0.43] 0.32 [0.13:0.51]
µ2 0.39 [0.18:0.59] 0.42 [0.20:0.62] 0.19 [0.01:0.36] 0.30 [0.07:0.51] 0.42 [0.19:0.68] 0.43 [0.21:0.65] 0.18 [0.01:0.36] 0.31 [0.07:0.52] 0.43 [0.18:0.70] 0.47 [0.21:0.76] 0.22 [0.02:0.42] 0.26 [0.06:0.43]
µ3 0.47 [0.04:0.78] 0.46 [0.04:0.78] 0.23 [0.02:0.57] 0.12 [0.01:0.31] 0.49 [0.13:0.85] 0.45 [0.04:0.77] 0.23 [0.01:0.57] 0.16 [0.01:0.44] 0.48 [0.04:0.78] 0.46 [0.04:0.77] 0.18 [0.01:0.51] 0.18 [0.08:0.48]
λh 0.73 [0.56:0.89] 0.69 [0.51:0.87] 0.20 [0.03:0.36] 0.16 [0.02:0.29] 0.75 [0.60:0.93] 0.71 [0.54:0.96] 0.18 [0.02:0.34] 0.15 [0.02:0.30] 0.76 [0.60:0.93] 0.72 [0.54:0.93] 0.17 [0.02:0.33] 0.16 [0.01:0.29]
λf 0.17 [0.01:0.33] 0.18 [0.02:0.32] 0.14 [0.02:0.27] 0.16 [0.02:0.29] 0.18 [0.02:0.34] 0.23 [0.02:0.43] 0.16 [0.02:0.30] 0.18 [0.02:0.32] 0.20 [0.02:0.38] 0.24 [0.03:0.46] 0.15 [0.02:0.29] 0.18 [0.02:0.33]

Interest rate rule
θπ 1.92 [1.45:2.40] 1.89 [1.42:2.32] 1.71 [1.28:2.12] 1.69 [1.20:2.15] 1.95[1.46:2.42] 1.91 [1.43:2.40] 1.69 [1.26:2.09] 1.69 [1.20:2.09] 1.93 [1.46:2.37] 1.90 [1.43:2.37] 1.71 [1.28:2.13] 1.63 [1.16:2.06]
θy 0.11 [0.04:0.18] 0.11 [0.04:0.18] 0.14 [0.07:0.20] 0.13 [0.07:0.20] 0.11 [0.03:0.17] 0.11 [0.03:0.17] 0.14 [0.07:0.20] 0.14 [0.08:0.20] 0.10 [0.04:0.17] 0.10 [0.03:0.17] 0.14 [0.07:0.20] 0.14 [0.07:0.20]
ρr 0.89 [0.85:0.93] 0.88 [0.84:0.92] 0.89 [0.85:0.92] 0.88 [0.85:0.92] 0.89 [0.85:0.93] 0.88 [0.84:0.92] 0.89 [0.85:0.92] 0.88 [0.85:0.92] 0.88 [0.84:0.92] 0.88 [0.83:0.92] 0.89 [0.85:0.93] 0.88 [0.84:0.92]

AR(1) coefficient
ρa 0.87 [0.73:0.99] 0.86 [0.70:0.99] 0.84 [0.70:0.99] 0.84 [0.70:0.98] 0.90 [0.76:0.99] 0.90 [0.7:0.99] 0.84 [0.70:0.98] 0.85 [0.72:0.97] 0.91 [0.79:0.99] 0.91 [0.78:0.99] 0.85 [0.91:0.99] 0.87 [0.76:0.98]
ρg 0.93 [0.89:0.98] 0.93 [0.88:0.98] 0.96 [0.94:0.99] 0.96 [0.94:0.99] 0.93 [0.88:0.98] 0.93 [0.88:0.98] 0.96 [0.94:0.99] 0.96 [0.94:0.99]] 0.93 [0.88:0.98] 0.93 [0.88:0.98] 0.96 [0.94:0.99] 0.96 [0.94:0.99]
ρms 0.56 [0.19:0.91] 0.66 [0.40:0.93] 0.45 [0.12:0.77] 0.53 [0.26:0.81] 0.56 [0.20:0.90] 0.58 [0.24:0.91] 0.44 [0.13:0.76] 0.53 [0.26:0.81] 0.52 [0.15:0.89] 0.59 [0.24:0.93] 0.44 [0.14:0.76] 0.53 [0.26:0.81]

Standard deviation of AR(1) innovations
sd(ǫa) 0.94 [0.14:2.34] 0.71 [1.14:1.63]] 0.49 [0.15:0.83] 0.63 [0.13:1.30] 0.90 [0.16:1.89] 1.26 [1.14:2.53] 0.44 [0.15:0.75] 0.56 [0.15:1.15] 1.01 [0.16:1.88] 1.05 [0.18:1.84] 0.45 [0.15:0.77] 0.51 [0.16:0.89]
sd(ǫg) 2.07 [1.84:2.31] 2.06 [1.83:2.28] 2.17 [1.91:3.42] 2.14 [1.86:2.42] 2.06 [1.84:2.29] 2.05 [1.82:2.28] 2.18 [1.91:2.45] 2.16 [1.89:2.43]] 2.07 [1.84:2.28] 2.05 [1.83:2.28] 2.17 [1.89:2.45] 2.15 [1.88:2.41]
sd(ǫms) 0.08 [0.03:0.14] 0.15 [0.06:0.22] 0.08 [0.03:0.16] 0.14 [0.05:0.21] 0.08 [0.03:0.15] 0.12 [0.03:0.20] 0.08 [0.03:0.14] 0.13 [0.05:0.21] 0.08 [0.03:0.14] 0.13 [0.04:0.20] 0.08 [0.03:0.15] 0.13 [0.05:0.19]

Standard deviation of I.I.D. shocks/mearsument errors
sd(ǫm) 0.12 [0.07:0.17] 0.09 [0.03:0.14] 0.12 [0.06:0.17] 0.09 [0.03:0.15] 0.12 [0.06:0.17] 0.08 [0.03:0.13] 0.12 [0.06:0.17] 0.09 [0.03:0.14] 0.12 [0.07:0.17] 0.08 [0.0:0.14] 0.12 [0.05:0.17] 0.09 [0.03:0.14]
sd(ǫe) 0.26 [0.23:0.29] 0.26 [0.23:0.29] 0.26 [0.23:0.28] 0.26 [0.23:0.28] 0.26 [0.23:0.28] 0.26 [0.23:0.29] 0.25 [0.23:0.28] 0.25 [0.23:0.28]] 0.26 [0.23:0.29] 0.26 [0.23:0.29] 0.25 [0.23:0.28] 0.25 [0.23:0.28]
sd(ǫy) - - - - - - - - 0.001 [0.000:0.002] 0.001 [0.000:0.001] 0.001 [0.000:0.001] 0.001 [0.000:0.001]

Price contract length
1

1−ξ 11.11 9.09 7.69 7.14 11.11 8.33 8.33 7.69 10.00 8.33 7.69 7.69

LL and posterior model odd
LL -230.87 -227.14 -242.87 -239.28 -230.79 -226.55 -242.98 -238.55 -230.72 -227.27 -243.15 -239.12
Prob. 0.006 0.266 0.000 0.000 0.007 0.480 0.000 0.000 0.007 0.2335 0.000 0.000

Table 8: Bayesian Posterior Distributions (The Behavioural Model)♦

♦ Notes: we report posterior means and 90% probability intervals (in parentheses) based on the output of the Metropolis-Hastings Algorithm.
Sample range: 1970:I to 2004:IV.
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Figure 1: Inflation Dynamics under Perfect (PI) and Imperfect Information
(II)
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Figure 2: Estimated Impulse Response Functions - AI vs. II♦

♦ Each panel plots the mean response corresponding a positive one standard deviation shock.
Each response is for a 10 period horizon. All DSGE impulse responses are computed simulating
the vector of DSGE model parameters at the posterior mean values reported in Table 5. The
impulse responses for VAR(4) are obtained using the DSGE-VAR identification procedure
described in the section 5.4. Mark-up(ms) and Mark-up(m) represent the price mark-up shocks
(persistent and transient components respectively). The area in-between the black dashed lines
covers the space between the first and ninth posterior deciles of the IRFs estimated by the VAR.
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Figure 3: Autocorrelations of Observables in the Actual Data and in the
Estimated Models
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