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Abstract: The (quasi-) maximum likelihood estimator (QMLE) for the autoregres-
sive parameter in a spatial autoregressive model cannot in general be written explicitly
in terms of the data. The only known properties of the estimator have hitherto been
its first-order asymptotic properties (Lee, 2004, Econometrica), derived under specific
assumptions on the evolution of the spatial weights matrix involved. In this paper we
show that the exact cumulative distribution function of the estimator can, under mild
assumptions, be written in terms of that of a particular quadratic form. A number of
immediate consequences of this result are discussed, and some examples are analyzed
in detail. The examples are of interest in their own right, but also serve to illustrate
some unexpected features of the distribution of the MLE. In particular, we show that
the distribution of the MLE may not be supported on the entire parameter space,
and may be nonanalytic at some points in its support.

Keywords: spatial autoregression, maximum likelihood estimation, group interaction, net-

works, complete bipartite graph.

JEL Classification: C12, C21.

1 Introduction

Spatial autoregressive processes have enjoyed considerable recent popularity in mod-
elling cross-sectional data in economics and in several other disciplines, among which
are geography, regional science, and politics.2 In most applications, such models are

∗Corresponding author. School of Economics, University of Surrey, Guildford, Surrey, GU2 7XH,
UK. Tel: +44 (0) 1483 683473.

2For an introduction to spatial autoregressions see, e.g., LeSage and Pace (2009). Empirical appli-
cations of spatial autoregressions in economics can be found in Case (1991), Besley and Case (1995),
Audretsch and Feldmann (1996), Bell and Bockstael (2000), Bertrand, Luttmer and Mullainathan
(2000), Topa (2001), Pinkse, Slade, and Brett (2002), Liu, Patacchini, Zenou, and Lee (2015), to
name just a few.
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based on a fixed spatial weights matrix W whose elements reflect the modeler’s as-
sumptions about the pairwise interactions between the observational units. A scalar
autoregressive parameter λ measures the strength of this cross-sectional interaction,
and is often of direct interest. For example, in social interaction analysis measuring
the strength of network effects may be important for policy purposes. This paper
is concerned with the exact properties of the (quasi-)maximum likelihood estimator
(MLE) for this parameter that is implied by assuming a Gaussian likelihood.

The particular class of spatial autoregressive models we discuss have the form

y = λWy +Xβ + σε, (1.1)

where y is the n × 1 vector of observed random variables, X is a fixed n × k matrix
of regressors of full column rank, with n > k + 1, ε is a mean-zero n × 1 random
vector, β ∈ Rk and σ > 0 are parameters. We will refer to model (1.1) simply as the
SAR (spatial autoregressive) model; it is also known as the spatial lag model, or as
the mixed regressive, spatial autoregressive model. We refer to the model with the
regression component (Xβ) missing as the pure SAR model.

There is a vast literature on maximum likelihood estimation of model (1.1), an
early reference being Ord (1975). A rigorous first-order asymptotic analysis of the
estimator was given only much later, in an influential paper by Lee (2004). Bao and
Ullah (2007) provide analytical formulae for the second-order bias and mean squared
error of the MLE for λ in the Gaussian pure SAR model, and Bao (2013) and Yang
(2015) extend such approximations to the case when exogenous regressors are included
and when ε is not necessarily Gaussian. Robinson and Rossi (2015) propose higher-
order refinements for the distribution of the QMLE. Several other papers have studied
the performance of the QMLE by simulation, particularly in relation to competing
estimators such as the two-stage least squares (2SLS) estimator or more general GMM
estimators.

Despite the above, and other, contributions, there remain some compelling rea-
sons for studying its exact properties - more so, perhaps, than usual. First, the exact
distribution of the MLE for λ may possess important features that would be impos-
sible to discover by Monte Carlo simulation or asymptotic methods - for example,
non-differentiability, non-analyticity, or unboundedness of the density. Second, exact
results can assist and complement simulation methods to check the accuracy of the
available asymptotic results. This is particularly important in the present context,
as asymptotic results depend on the assumptions made on how the spatial weights
matrix evolves with the sample size.

Due to the fact that the QMLE for λ is in general unavailable in closed form,
even the calculation of the QMLE has been regarded as problematic in this model, let
alone the study of its exact properties. The key observation that enables us to carry
out an exact analysis of the MLE is the observation that, under a condition that is
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satisfied in particular whenever all eigenvalues of W are real, the profile likelihood for
λ is single-peaked on the relevant parameter space. This fact is important in itself,
because it simplifies the computation of the estimator greatly. And, it implies that
the cdf of the MLE for λ can be written down in terms of the cdf of a quadratic form,
notwithstanding the unavailability of the estimator in closed form. This representation
of the cdf provides a starting point for a full exact analysis of the MLE, for an
arbitrary distribution of ε. We show that the distribution theory for the QMLE
is non-standard, and turns out to have key aspects in common with that for serial
correlation coefficients (von Neumann, 1941, Koopmans, 1942). In particular, the cdf
can be non-analytic at certain points of its domain, and can have a different functional
form in the intervals between those points.

Because the exact distribution theory for the QMLE is complicated for general
(W,X), the present paper focuses on exact consequences of the cdf representation
that hold under some restrictions on (W,X). The virtue of imposing such restrictions
lies in revealing important properties of the MLE that can be expected to hold more
generally. For the case of arbitrary (W,X) our results are useful for computational
purposes, and to derive approximations to the distribution of the MLE, but these
matters are not pursued here.

The rest of the paper is organized as follows. Section 2 discusses the parameter
space for λ, and introduces some examples that are used throughout the paper to
illustrate the theoretical results. Section 3 rules out the cases when the MLE does not
exist, or is non-random, and derives some key properties of the profile log-likelihood
for λ. Section 4 presents the representation of the cdf of the MLE, and discusses
a number of consequences. Section 5 applies the main results first to the case of a
Gaussian pure SAR model with symmetric W , and then to the examples introduced
earlier. For these cases, we provide simple explicit formulae for the cdf of the MLE,
which also prove useful to clarify the asymptotic behavior of the estimator in cases
not covered by Lee’s (2004) assumptions.

All quantities considered in this paper are real unless otherwise noted. We denote
the column space of a matrix A by col(A), and its null space by null(A). Finally,
“a.s.” stands for almost surely, with respect to the Lebesgue measure on Rn.

2 Assumptions and Examples

2.1 The Parameter Space for λ

In order for model (1.1) to uniquely determine the vector y (given Xβ and ε) it is
necessary and sufficient that the matrix Sλ := In−λW is nonsingular, or, equivalently,
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that λ 6= ω−1, for all nonzero real eigenvalues ω of W .3 This we assume throughout,
but in practice the parameter space for λ is usually restricted much further, as we
discuss next. Throughout the paper, we maintain the following assumption.

Assumption A. W has at least one negative eigenvalue and at least one positive
eigenvalue.

There are two components to Assumption A. The crucial component is that W is
not allowed to be nilpotent (a matrix is nilpotent if all its eigenvalues are zero). If
W were nilpotent the study of the MLE would be trivial, as in that case maximiz-
ing the Gaussian likelihood is equivalent to minimizing the residual sum of squares
(Sλy −Xβ)′ (Sλy −Xβ), and hence the MLE would coincide with the OLS estima-
tor.4 The second component of Assumption A, that two of the nonzero real eigenvalues
of W have opposite sign, is mainly made for simplicity, and is in any case virtually
always satisfied in applications when W is non-nilpotent.

Given Assumption A, we normalize, without loss of generality, the largest real
eigenvalue of W to be equal to 1, and we denote the smallest real eigenvalue of W
by ωmin. The interval Λ := (ω−1

min, 1) is the largest interval containing the origin in
which Sλ is nonsingular. Either Λ or a subset thereof, is, implicitly or explicitly,
virtually always regarded as the relevant parameter space for λ (see, e.g., Lee, 2004,
and Kelejian and Prucha, 2010). The estimator we study in this paper is the maximum
of the likelihood on Λ.

2.2 Examples

To illustrate our results the following examples will be used throughout the paper,
and in particular in Section 5. The examples are chosen for their simplicity and their
popularity in the literature. In the first example W has full rank, while in the second
example W has rank two (the minimum possible, given Assumption A).

Example 1 (Group Interaction Model). The relationships between a group of m
members, all of whom interact uniformly with each other, may be represented by a
matrix whose elements are all unity except for a zero diagonal. When normalized so
that its row sums are unity, such a matrix has the form Bm := (m−1)−1 (ιmι

′
m − Im) ,

where ιm denotes an m× 1 vector of ones. Suppose there are r such groups, of sizes
m1 ≤ m2 ≤ .... ≤ mr, and there are no between-group interactions. We refer to the

3The condition that Sλ is nonsingular is equivalent to the condition that 1 − λω 6= 0 for all
eigenvalues ω of W , which in turn is equivalent to λ 6= ω−1, for all nonzero real eigenvalues ω of W ,
because λ is assumed to be real and ω−1 is real if and only if ω is.

4If W is nonnegative, as it usually is in applications, then it is nilpotent if and only if there is
a permutation of the observational units that makes W triangular, i.e., makes the autoregressive
process unilateral (see Martellosio, 2011).
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SAR model with block-diagonal spatial weights matrix

W = diag(Bmi , i = 1, ..., r) (2.1)

as the Group Interaction model (see, e.g., Kelejian et al., 2006, Lee, 2007). For this
model Λ = (−(m1− 1), 1). We say that the model is balanced if the groups are of the
same size, unbalanced otherwise.5

Example 2 (Complete Bipartite Model). In a complete bipartite graph the n obser-
vational units are partitioned into two groups of sizes p and q, say, with all individuals
within a group interacting with all in the other group, but with none in their own
group (e.g., Bramoullé et al., 2009, Lee et al., 2010). For p = 1 or q = 1 this corre-
sponds to the graph known as a star, a particularly important case in network theory
(e.g., Jackson, 2008). The adjacency matrix of a complete bipartite graph is

A :=

[
0pp ιpι

′
q

ιqι
′
p 0qq

]
.

The corresponding row-standardized weights matrix is

W =

[
0pp

1
q ιpι

′
q

1
p ιqι

′
p 0qq

]
. (2.2)

Alternatively, A can be rescaled by its largest eigenvalue, yielding the symmetric
weights matrix

W =
1
√
pq
A. (2.3)

We refer to the SAR model with weights matrix (2.2) or (2.3), as, respectively, the row-
standardized Complete Bipartite model and the symmetric Complete Bipartite model.
In both cases, W has two nonzero eigenvalues (1 and −1, each with multiplicity 1),
and n− 2 zero eigenvalues, so that Λ = (−1, 1).

3 The Profile Log-Likelihood

Quasi-maximum likelihood of the parameters in model (1.1) is based on the log-
likelihood obtained under the assumption ε ∼ N(0, In). For any λ such that Sλ is
nonsingular, this log-likelihood is

l(β, σ2, λ) := −n
2

ln(σ2) + ln (|det (Sλ)|)− 1

2σ2
(Sλy −Xβ)′(Sλy −Xβ), (3.1)

5Particularly in the unbalanced case, it may be preferable to use different autoregressive parameters
for each group. Generalizations of this type will not be considered in the present paper.
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where additive constants have been omitted. After maximizing l(β, σ2, λ) with respect
to β and σ2 we obtain the profile, or concentrated, log-likelihood

lp(λ) := −n
2

ln
(
y′S′λMXSλy

)
+ ln (|det (Sλ)|) , (3.2)

where MX := In − X(X ′X)−1X ′. The profile log-likelihood function lp(λ) is a.s.
differentiable for any λ such that det(Sλ) 6= 0 (see Hillier and Martellosio, 2014b),
with first derivative

l̇p(λ) = n
y′W ′MXSλy

y′S′λMXSλy
− tr(Gλ), (3.3)

where Gλ := WS−1
λ . We note for future reference that the profile score can be rewrit-

ten as

l̇p(λ) =
n

2

y′S′λQλSλy

y′S′λMXSλy
, (3.4)

where
Qλ := MXCλ + C ′λMX , (3.5)

and

Cλ := Gλ −
tr(Gλ)

n
In. (3.6)

We can now define the MLE of λ precisely. Recall that the condition that Sλ is
nonsingular is equivalent to λ 6= ω−1, for all nonzero real eigenvalues ω of W . That
is, the function lp(λ) is a.s. defined for λ on the whole real line with the exception
of a finite number of isolated points (and the unrestricted maximizer of lp(λ) can, in
general, be anywhere on this set). The estimator we consider in this paper is

λ̂ML := arg max
λ∈Λ

lp(λ), (3.7)

provided that the maximum exists and is unique. This is the MLE in most com-
mon use, but of course it might not be the MLE under a different specification of
the parameter space for λ. In particular, several authors suggest that λ should be
restricted to (−1, 1) (see, e.g., Kelejian and Prucha, 2010). If W is nonnegative,
(−1, 1) ⊆ Λ by the Perron-Frobenius Theorem. If (−1, 1) is a proper subset of
Λ, the estimator λ̃ML := arg maxλ∈(−1,1) lp(λ) is a censored version of λ̂ML. That

is, Pr(λ̃ML = −1) = Pr(λ̂ML < −1), and Pr(λ̃ML < z) = Pr(λ̂ML < z), for any
z ∈ (−1, 1), and it is clear that the results for λ̂ML given below induce those for λ̃ML.

3.1 Existence of the QMLE

Before embarking on a study of the properties of λ̂ML it is prudent to check that it
exists, i.e., that the profile log-likelihood is bounded above on Λ, and, if it exists, that
it is not trivial, i.e., that it depends on the data y. Perhaps unexpectedly, there are
combinations of the matrices W and X for which neither of these is true.
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Proposition 1. If MX(ωIn − W ) = 0 for some real eigenvalue ω of W , then the
profile score l̇p(λ) does not depend on y. Also, for any real nonzero eigenvalue ω of
W , limλ→ω−1 lp(λ) = +∞ a.s. if MX(ωIn −W ) = 0, and limλ→ω−1 lp(λ) = −∞ a.s.
if MX(ωIn −W ) 6= 0.

Proposition 1 implies that, if MX(ωIn−W ) = 0 for some real eigenvalue ω of W ,
a maximizer of lp(λ) is nonrandom, subject to existence. In fact, the proposition also
says that a maximizer of lp(λ) may not even exist, in the sense that lp(λ) may be
a.s. unbounded from above.6 Fortunately, the condition MX(ωIn−W ) = 0 is usually
not met in applications. but does occur in some apparently reasonable models. Two
examples follows.

Example 3. The weights matrix W = Ir⊗Bm of a balanced Group Interaction model
(see Example 1 above) has two eigenspaces: col(Ir⊗ ιm), associated to the eigenvalue
1, and its orthogonal complement, associated to the eigenvalue ωmin = −1/(m − 1).
For this W , col(ωminIn−W ) = col(Ir⊗ιm) (directly from the definition of Bm). Thus,
Proposition 1 implies that, if col(Ir ⊗ ιm) ⊆ col(X), then lp(λ) does not depend on
y and lp(λ) → +∞ as λ → ω−1

min. Since the matrix Ir ⊗ ιm represents group specific

fixed effects, it follows that, in the balanced Group Interaction model, λ̂ML fails to
exist in the presence of group fixed effects.7

Example 4. Consider a symmetric or row-standardized Complete Bipartite model
(see Example 2 above) with X containing an intercept for each of the two groups (and
any other regressors). In that case MXW = 0, so Proposition 1 applies with ω = 0,
and implies that λ̂ML is a constant.

In the rest of the paper we assume that, unless otherwise specified, MX(ωIn−W ) 6=
0 for any real eigenvalue ω of W . This amounts to ruling out the pathological cases
when λ̂ML does not exist or does not depend on the data y. For a detailed analysis
of the identifiability failure that occurs when MX(ωIn − W ) = 0 see Hillier and
Martellosio (2014b).

3.2 The First-Order Condition

Since lp(λ) is almost surely differentiable on Λ, and Λ is an open set, λ̂ML, if it exists,
must be a root of the first-order condition l̇p(λ) = 0.

Lemma 1. The first-order condition l̇p(λ) = 0 is a.s. equivalent to a polynomial
equation of degree equal to the number of distinct eigenvalues of W .

6In the case when limλ→ω−1 lp(λ) = +∞ one could define λ̂ML = ω−1, but note that this would
be an estimator not depending on y.

7See Lee (2007) for a different perspective on the inferential problem in a balanced Group Inter-
action model with fixed effects.
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Thus, the equation l̇p(λ) = 0 has a number of complex roots (counting multiplici-
ties) equal to the number of distinct eigenvalues of W , for any W . Of these roots, any
real one lying in Λ is a candidate for λ̂ML. Since there is no explicit algebraic solution
of polynomial equations of degree higher than four, Lemma 1 explains why λ̂ML can-
not in general be obtained “in closed form”. In spite of this, we shall see in the next
section that the cdf of λ̂ML admits a very simple representation in terms of the cdf of
a certain quadratic form. The following result is the key to that representation.

Lemma 2. If tr(C2
λ) > 0 for all λ ∈ Λ, the first-order condition l̇p(λ) = 0 a.s. has a

single solution in Λ, which corresponds to the maximum of lp(λ).

Geometrically, Lemma 2 says that, under the stated condition, the profile log-
likelihood lp(λ) is a.s. single-peaked on Λ, with no stationary inflection points. Al-
though this is not our main focus here, the result has clear computational advantages,
as it greatly simplifies numerical optimization of the likelihood.

The proof of Lemma 2 relies on an application of a Cauchy-Schwarz inequality, for
which only the condition tr(C2

λ) > 0 for all λ ∈ Λ is needed. Note that the condition
depends only on W, not on X. Importantly, it is satisfied whenever W has only real
eigenvalues, which is often the case in applications.8 For example, all eigenvalues
of W are real when W is the row-standardized version of a symmetric matrix, or,
more generally, when it is similar to a symmetric matrix. It seems difficult to provide
a simple characterization of the class of matrices W for which tr(C2

λ) > 0 for all
λ ∈ Λ, but, for any given W , one can check the condition graphically. The following
example provides some evidence that the condition is considerably more general than
the requirement that all eigenvalues of W are real.

Example 5. Consider the weights matrix W obtained by row-standardizing the band
matrix

A =


0 a3 a4 0 · · ·
a1 0 a3 a4

a2 a1 0 a3

0 a2 a1 0
...

. . .

 ,
for fixed a1, a2, a3, a4. If a1 = a3 and a2 = a4, all the eigenvalues of W are real and
therefore lp(λ) is a.s. single-peaked by Lemma 2. Other configurations of the ai can
induce multi-peakedeness of lp(λ). To see this, fix n = 20, a1 = a2 = a3 = 1, and
consider values of a4 in [0, 1]. For a4 larger than about 0.55 and not too close to 1,

8If all eigenvalues of W are real then all eigenvalues of Cλ are real, and hence all eigenvalues of
C2
λ are nonnegative, which implies tr(C2

λ) ≥ 0. But tr(C2
λ) = 0 is impossible given Assumption A,

because it requires all eigenvalues of Cλ to be zero, which is the case if and only if Gλ, and hence W,
is a scalar multiple of In.
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the eigenvalues of W are not all real. However, for any a4 larger than about 0.55,
tr(C2

λ) > 0 for all λ ∈ Λ, and hence lp(λ) is a.s. single-peaked by Lemma 2. For smaller
values of a4 tr(C2

λ) is not positive for all λ ∈ Λ, and there is a positive probability
(as y ranges over Rn) that lp(λ) is multi-peaked. Figure 3.2 displays tr(C2

λ) when
a4 = 0.9 (left panel) and a4 = 0 (right panel). Note that Λ depends on a4. One can
check by simulation that, whatever the value of X, a4 = 0 entails a high probability
of multi-peakedeness.

−1.5 −1 −0.5 0 0.5 1

0

20

40

λ

tr
(C

2 λ
)

a4 = 0.9

−4 −3 −2 −1 0 1

0

20

40

λ

tr
(C

2 λ
)

a4 = 0

Figure 1: tr(C2
λ), λ ∈ Λ, for the weights matrix W in Example 5.

A complete understanding of what causes multi-peakedness is beyond the scope
of this paper, but the next result is a first step in that direction.

Lemma 3. If W is nonnegative, the first-order condition l̇p(λ) = 0 a.s. has at most
one solution in [0, 1), which corresponds to a local maximum of lp(λ).

Thus, provided that W is nonnegative and that lp(λ) has a peak in the open set
(0, 1), lp(λ) is unimodal on that interval. In other words, multi-peakedeness must
always involve peaks at negative values of λ when W is nonnegative. This result is
of interest for applications in which it may be natural to restrict attention to positive
values of λ.

4 Distributional Properties of the QMLE

4.1 The Main Theorem

The unimodality property established in Lemma 2 has direct consequences for the
distribution of λ̂ML. Indeed, unimodality of the profile log-likelihood lp(λ) on Λ
implies that the single peak of lp(λ) is to the left of a point z ∈ Λ if and only if the
slope of lp(λ) at λ = z is negative. This observation allows us to derive the main
result of the paper.
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Theorem 1. If tr(C2
λ) > 0 for all λ ∈ Λ, the cdf of λ̂ML at any point z ∈ Λ is given

by
Pr(λ̂ML ≤ z) = Pr(y′S′zQzSzy ≤ 0). (4.1)

Theorem 1 provides a representation of the cdf of λ̂ML, for any W such that
tr(C2

λ) > 0 for all λ ∈ Λ, for any X, and for any distribution of y (not necessarily

that induced by the SAR model). The result reduces the study of λ̂ML, an estimator
that is generally unavailable in closed form, to the study of a very simple statistic,
a quadratic form in y. There are a number of advantages of this representation. In
simple cases the result can deliver an explicit formula for the cdf of λ̂ML (examples will
be provided below). More generally, the theorem does not provide explicit formulae
directly, but it is still useful for computational purposes and to study the distribution
of the λ̂ML. In the present paper we are interested in exact consequences of Theorem
1, but before moving to that, we mention the other possible uses of Theorem 1.

First, Theorem 1 provides a straightforward way to obtain the cdf of λ̂ML numer-
ically, for any completely specified distribution of y (not necessarily that induced by
the SAR model). Indeed, using equation (4.1), the whole cdf can be computed very
efficiently by simply simulating a quadratic form and counting the proportion of neg-
ative realizations, without the need to directly maximize the likelihood. This is useful,
for example, to study by simulation how the model characteristics (parameters, W
and X, and, distribution of ε) affect the distribution of λ̂ML.

Second, Theorem 1 can be used to estimate the true cdf of λ̂ML, and in particular
to construct confidence intervals. This can be done by drawing y from an estimate of
the distribution of y (for example by replacing the parameters indexing the distribu-
tion of y with some estimates), or by the bootstrap. Note that deriving the bootstrap
distribution of λ̂ML directly (that is, without relying on Theorem 1) can be computa-
tionally very intensive, given the need to repeatedly maximize the likelihood. Using
Theorem 1 it is possible to bootstrap a quadratic form instead, a computationally
trivial task.

Third, Theorem 1 provides a direct route to obtaining a higher-order asymptotic
approximation to the distribution of λ̂ML - for example, by using a saddlepoint ap-
proximation for the distribution of the quadratic form y′S′zQzSzy.9

Computational issues and the derivation of approximations are not the focus of
this paper. Instead, starting from the next section we study exact consequences of
Theorem 1. Not surprisingly, such analysis requires imposing additional structure on
the model, which we will do gradually.

9Subject to suitable conditions, the first-order asymptotic distribution of λ̂ML can also be obtained
from Theorem 1 by an application of the results in Kelejiian and Prucha (2001) on the asymptotic
distribution of quadratic forms. The first-order asymptotic behavior of the QMLE has been compre-
hensively studied by Lee (2004), using a related methodology.
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4.2 Some Exact Consequences

4.2.1 General Distributional Properties

Quadratic forms have been much studied in the statistical and econometric literature.
Their distribution theory is generally complicated, but some general distributional
properties of λ̂ML follow from that literature. The results in Mulholland (1965) and
Saldanha and Tomei (1996) show that in general there will be a number of points
z ∈ Λ at which the distribution function of y′S′zQzSzy is non-analytic at the origin.
By Theorem 1, it follows that the distribution function of λ̂ML is non-analytic at these
values of z, and has a different functional form in the intervals between such points.
Importantly, this result does not depend on the distribution assumptions made (see
Forchini, 2002). This property of the distribution of λ̂ML is not a mere curiosity: for
any (W,X) there will usually be a number of points z ∈ Λ at which the cdf of λ̂ML

is non-analytic. Examples will be given in Section 5. It is worth remarking that in
some cases the non-analyticity persists asymptotically, the Complete Bipartite model
being one example (see Section 5.3.1).

Letting h := y/(y′y)1/2, a vector distributed on the unit sphere in n dimensions,
Sn−1, rewrite (4.1) as Pr(λ̂ML ≤ z) = Pr (h′S′zQzSzh ≤ 0). This representation al-
lows one to appeal to known results for quadratic forms defined on the sphere (see,
e.g., Hillier, 2001, and Forchini, 2005). Such expressions are too complicated for our
purposes, but progress can be made by exploiting the special structure of the matrix
of the quadratic form.

Let us now, and for the rest of the paper, assume that the distribution of y is that
induced by the SAR model, i.e., Sλy = Xβ+σε =: ỹ. It is convenient to rewrite (4.1)
as

Pr(λ̂ML ≤ z) = Pr
(
ỹ′A(z, λ)ỹ ≤ 0

)
, (4.2)

where
A(z, λ) := (SzS

−1
λ )′Qz(SzS

−1
λ ). (4.3)

The structure of the matrix A(z, λ) is evidently crucial in determining the prop-
erties of λ̂ML. In particular, if ε ∼ N(0, In), a spectral decomposition of A(z, λ) shows
that ỹ′A(z, λ)ỹ is distributed as a linear combination of independent (possibly non-
central) χ2 variates, with coefficients the distinct eigenvalues of A(z, λ). This would
be the “crudest” use of Theorem 1. However, by exploiting the special structure of
A(z, λ), and imposing some conditions on the relationship between W and X, it is
possible to be much more precise.

4.2.2 The Case When W Is Similar to a Symmetric Matrix

We begin by restricting attention to the case when W is similar to a symmetric
matrix, a condition that is equivalent to W being diagonalizable and having only real
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eigenvalues. It is easy to see that W is similar to a symmetric matrix, for example,
whenever it is obtained by row-standardizing a symmetric matrix.10

Some new notation is needed. Let T denote the number of distinct eigenvalues
of W . If the distinct eigenvalues of W are all real we denote them by, in ascending
order, ω1, ω2, ..., ωT , the eigenvalue ωt occurring with algebraic multiplicity nt (so that
ω1 = ωmin, ωT = 1). Also let gt(z) := ωt/ (1− zωt) and γt(z) := gt(z) − tr(Gz)/n,
for t = 1, ..., T , be the distinct eigenvalues of, respectively, Gz, and Cz. If W is
similar to a symmetric matrix we can write W = HDH−1, with H a nonsingular
matrix (orthogonal if W is symmetric) whose columns are the eigenvectors of W ,
and D := diag (ωtInt , t = 1, ..., T ) . We denote by Mst the ns × nt submatrix of M :=
H ′MXH associated to the eigenvalues ωs and ωt. Writing x := H−1ỹ and partitioning
x conformably with the partition of M (so that xt is nt×1, for t = 1, ..., T ), we obtain
the following result.

Proposition 2. In a SAR model with W similar to a symmetric matrix,

Pr(λ̂ML ≤ z) = Pr

 T∑
t=1

dtt(z, λ)x′tMttxt + 2
T∑

s,t=1,s>t

dst(z, λ)x′sMstxt ≤ 0

 , (4.4)

for any z ∈ Λ, where the coefficients dst(z, λ) are given by

dst(z, λ) :=
(1− zωs)(1− zωt)
(1− λωs)(1− λωt)

[γs(z) + γt(z)] = dts(z, λ). (4.5)

Proposition 2 provides a very general representation of the cdf of λ̂ML in terms
of a linear combination of simple quadratic and bilinear forms in the vectors xt. The
next result focuses on the cases when representation (4.4) contains only quadratic
forms in the xt, and subvectors of them.

Proposition 3. (i) In a SAR model with W similar to a symmetric matrix, the
bilinear terms in (4.4) all vanish if and only if the matrix MXW is symmetric. In
that case, for any z ∈ Λ,

Pr(λ̂ML ≤ z) = Pr

(
T∑
t=1

dtt(z, λ)x′tMttxt ≤ 0

)
. (4.6)

(ii) In a SAR model, if W and MXW are both symmetric (4.6) simplifies further to

Pr(λ̂ML ≤ z) = Pr

(
T∑
t=1

dtt(z, λ)x̃′tx̃t ≤ 0

)
, (4.7)

10If R is a diagonal matrix with the row sums of the symmetric matrix A on the diagonal, then the
row-standardised matrix W = R−1A = R−1/2(R−1/2AR−1/2)R1/2 is similar to the symmetric matrix
R−1/2AR−1/2.
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where x̃t is a subvector of xt of dimension nt − nt(X), where nt(X) is the number of
columns of X in the eigenspace associated to ωt. The vector x̃t contains those elements
of xt that correspond to eigenvectors not in col(X).

The highly structured representations of the cdf in the Propositions 2 and 3 pro-
vide the basis for some of the subsequent analysis. The condition that MXW is
symmetric is certainly restrictive in applications, but has the merit to uncover unex-
pected properties of the QMLE, starting from the support property discussed in the
next section. An example when MXW is symmetric is an unbalanced group interac-
tion model with fixed effects, and all β coefficients varying across groups (that is, X
is the direct sum of mi × ki matrices Xi, i = 1, ..., r, with each Xi containing at least
a column of ones).11 Other examples will be met later in the paper.

4.2.3 Support of the QMLE

We now discuss another consequence of Theorem 1: the support of λ̂ML is not neces-
sarily the entire interval Λ.12 This is an unexpected phenomenon that has not been
noticed previously, to the best of our knowledge. While it seems difficult to specify
general conditions on W and X that lead to restricted support for λ̂ML, it turns out
that in the context of Proposition 3 (i) the conditions that do so are straightforward,
and we confine ourselves here to that case. The assumptions underlying Proposition 3
(i) are restrictive, but do provide examples when the phenomenon occurs, along with
an intuitive interpretation.

To begin with, observe that the first-order condition l̇p(λ) = 0 implies that the
only possible candidates for the QMLE are the values of λ for which the matrix Qλ
is indefinite (see equation (3.4)). More decisively, Theorem 1 shows that if there are
values of z ∈ Λ for which Qz is either positive or negative definite, those will either
be impossible (Pr(λ̂ML ≤ z) = 0), or certain (Pr(λ̂ML ≤ z) = 1). In such cases
the support of λ̂ML is a proper subset of Λ. This cannot happen for the pure SAR
model, because in that case Qz = (Gz +G′z)−n−1tr(Gz +G′z)In, which is necessarily
indefinite (since n−1tr(Gz + G′z) is the average of the eigenvalues of Gz + G′z). But,
when regressors are introduced, there can be choices for (W,X) for which λ̂ML is
not supported on the whole Λ. The following result illustrates this. For simplicity,
the result is based on the assumption that y is supported on the whole of Rn. For
t = 2, ..., T−1, zt denotes the point z ∈ Λ at which γt(z) = 0 (existence and uniqueness
of zt is established by Lemma A.1 in Appendix A).

11See also Hillier and Martellosio (2014a). Note that unbalancedness is essential here, because, as
we have seen in Section 3.1, the MLE does not exist in the balanced case when group fixed effects
are present.

12By support of (the distribution of) λ̂ML we mean the set on which the density of λ̂ML is positive,
assuming that the density exists.
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Proposition 4. Assume that in a SAR model W is similar to a symmetric matrix
and MXW is symmetric.

(i) If, for some t = 2, ..., T − 1, col(X) contains all eigenvectors of W associated to
the eigenvalues ωs with s > t, then the support of λ̂ML is (ω−1

min, zt).

(ii) If, for some t = 2, ..., T − 1, col(X) contains all eigenvectors of W associated to
the eigenvalues ωs with s < t, then the support of λ̂ML is (zt, 1).

We now provide some intuition, and some examples, for Proposition 4. One impli-
cation of the result is that λ̂ML cannot be positive if col(X) contains all eigenvectors
of W associated to positive eigenvalues (even if the true value of λ is positive).13 Now,
the eigenvectors of W associated to positive eigenvalues can be interpreted as captur-
ing all positive spatial autocorrelation (as measured by the statistic u′Wu/u′u) in a
zero-mean process u. Also, λ̂ML can be thought of as a measure of the autocorrelation
remaining in y after conditioning on the regressors. Hence, Proposition 4 admits the
intuitive interpretation that the autocorrelation remaining after conditioning on all
eigenvectors of W associated to positive eigenvalues can only be negative. An exam-
ple of this effect arises in the unbalanced Group Interaction model with fixed effects,
and all β coefficients varying across groups (see the end of Section 4.2.2). Also, the
fixed effects span the eigenspace of W associated to the eigenvalue 1, and 1 is the only
positive eigenvalue of W . Hence in this model λ̂ML can never be positive. Another
example of the restricted support phenomenon, in the context of a Complete Bipartite
model, will be given in Section 5.3.2.

It is worth remarking that if the support of λ̂ML is restricted then asymptotic
approximations to its distribution that are supported on the entire interval Λ are
unlikely to be satisfactory.

4.3 Invariance Properties

This section derives some general properties of the QMLE for λ that can be deduced
directly from the invariance properties of the model and of the first-order equation
l̇p(λ) = 0. To begin with, observe that the profile score equation, and hence λ̂ML, is
invariant to scale transformations y → κy, for any κ > 0, in the sample space. A first
important consequence of this type of invariance is stated in the next proposition,
where a scale mixture of the pdf p(y) (assuming it exists) is

∫
κ p(κy)g(κ)dκ, where

g(κ) is the pdf of κ.

Proposition 5. The distribution of λ̂ML induced by a particular distribution of y is
the same for all scale mixtures of that distribution.

13This is because, in that case, zt in Proposition 4 (i) must be nonpositive, by Lemma A.1 in
Appendix A and the fact that γt(0) = ωt ≤ 0.
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A second consequence of the invariance with respect to scale transformations in
the sample space is a reduction in the number of parameters indexing the distribution
of λ̂ML. Suppose the distribution of ε depends on a parameter θ. A subspace U of Rn
is said to be an invariant subspace of a matrix M if Mu ∈ U for every u ∈ U .

Proposition 6. Assume that the distribution of ε in a SAR model does not depend
on β or σ2. Then, (i) if col(X) is not an invariant subspace of W , the distribution
of λ̂ML depends on β, λ, σ2, θ only through β/σ, λ, θ; (ii) if col(X) is an invariant
subspace of W , the distribution of λ̂ML depends only on λ, θ.

Note that in case (ii) the distribution of λ̂ML does not depend on σ. Hence, in
that case, the distribution of λ̂ML induced by a particular distribution of ε is the same
for all scale mixtures of that distribution.

In applications, col(X) is generally not an invariant subspace of W , and therefore
the distribution of λ̂ML depends not only on λ, θ but also on β/σ. Possibly the simplest
nontrivial (i.e., col(X) 6= {0}) case in which col(X) is not an invariant subspace of W
is a SAR model with X = ιn and a W with constant row sums. More generally, an
easy to check necessary and sufficient condition for col(X) to be an invariant subspace
of W is MXWX = 0.14

5 Applications

This section provides simple illustrations of the various aspects of the distribution
of λ̂ML we have studied. We assume that ε belongs to the family of scale mixtures
of N(0, In), denoted by ε ∼ SMN(0, In). Note that these are spherically symmetric
distributions for ε, which need not be i.i.d. Also, we focus on the pure model, or the
model with a constant mean. Section 5.1 analyzes the case of symmetric W . Then,
in Sections 5.2 and 5.3 we consider the balanced Group Interaction model and the
Complete Bipartite model, respectively.15

5.1 Mixed-Gaussian Pure SAR Model with Symmetric W

We now study in some detail the distribution of λ̂ML in a pure SAR model with
symmetric W and ε ∼ SMN(0, In). As we shall see, in this case it is possible to derive
a relatively simple explicit formula for the cdf of λ̂ML.

14Note that MXWX = 0 if MXW is symmetric, the condition used in Proposition 3.
15For the balanced Group Interaction model, and the Complete Bipartite model, λ̂ML is the unique

root in Λ of either a quadratic or a cubic (by Lemma 1), and is therefore available in closed form. How-
ever, obtaining the exact distribution from such a closed form seems exceedingly difficult. Theorem
1 provides a much more convenient approach.
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Propositions 3 (ii) and 6 (ii) imply that for a SAR model with symmetric W ,
ε ∼ SMN(0, In), and col(X) spanned by k linearly independent eigenvectors of W ,16

Pr(λ̂ML ≤ z) = Pr

(
T∑
t=1

dtt(z, λ)χ2
nt−nt(X) ≤ 0

)
, (5.1)

where the χ2
nt variates are independent, and, from expression (4.5), dtt(z, λ) =

2γt(z)(1 − zωt)2/ (1− λωt)2 . Here and elsewhere, χ2
ν denotes a (central) χ2 random

variable with ν degrees of freedom, and we use the convention that χ2
0 = 0. In the

rest of this section we focus, for simplicity, on the particular case of a pure model,
which we state as a theorem.

Theorem 2. In a pure SAR model with symmetric W and ε ∼ SMN(0, In), for any
z ∈ Λ,

Pr(λ̂ML ≤ z) = Pr

(
T∑
t=1

dtt(z, λ)χ2
nt ≤ 0

)
, (5.2)

where the χ2
nt variates are independent.

The number T of distinct eigenvalues of W must be at least two, by Assumption
A. If T = 2 (i.e., W has only two distinct eigenvalues), equation (5.2) gives

Pr(λ̂ML ≤ z) = Pr

(
Fn1,n2 ≤ −

n2d22(z, λ)

n1d11(z, λ)

)
, (5.3)

where Fν1,ν2 denotes a random variable with an F-distribution on (ν1, ν2) degrees of
freedom. Thus, when T = 2 the cdf is remarkably simple, and there is no point of
non-analyticity in this case (cf. Section 4.2.1 above). We will see in Section 5 that the
balanced Group Interaction model has this form. Moving to the case T > 2, Lemma
A.1 in Appendix A says that each coefficient dtt(z, λ), t = 2, ..., T − 1, changes sign
exactly once on Λ, at the point points zt where the eigenvalue γt(z) of Cz changes sign.
By an extension of the argument in Saldanha and Tomei (1996), this implies that the
distribution function of λ̂ML in pure SAR models with symmetric W is non-analytic
at these T − 2 points, and has a different functional form on each interval between
those points.17 We may now use this fact to obtain an explicit form for the cdf (5.2).

16To see this just note that ỹ ∼ SMN(0, In) and x ∼ SMN(0, (H ′H)−1). But H ′H = In if W is
symmetric. Also, note that if W and MXW are both symmetric, then col(X) must be spanned by k
linearly independent eigenvectors of W .

17Saldanha and Tomei (1996) consider a matrix with fixed eigenvalues, and vary the point at which
the cdf is to be evaluated. In our case, the point on the cdf is fixed (zero), but the eigenvalues are
(continuous) functions of z - they are the dtt(z, λ). Reinterpreted, their theorem says that, for any
fixed λ ∈ Λ, whenever an eigenvalue dtt(z, λ) changes sign as z varies, the cdf will be non-analytic at
the origin, the point of interest for us.
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Some new notation is needed. For a fixed z ∈ Λ at which none of the dtt(z, λ)
vanishes, let T1 and T2 denote the numbers of positive and negative terms dtt(z, λ),
respectively, in (5.2), with the T1 positive terms first. Let v1 :=

∑T1
t=1 nt and v2 :=∑T

t=T1+1 nt, with v1 + v2 = n. The numbers T1 and T2 vary with z, as do v1 and v2.
Next, let A1 be the v1 × v1 matrix diag(dtt(z, λ)Int ; t = 1, .., T1), and A2 the v2 × v2

matrix diag(−dtt(z, λ)Int ; t = T1 + 1, .., T ). Finally, we denote by Cj(A) the top-order
zonal polynomial of order j in the eigenvalues of a matrix A (Muirhead, 1982, Chapter
7). Given this notation, the following result gives an explicit formula for the cdf (5.2),
for any T ≥ 2.

Corollary 1. In a pure SAR model with symmetric W and ε ∼ SMN(0, In), for z
in the interior of any one of the T − 1 intervals in Λ determined by the points of
non-analyticity zt,

Pr(λ̂ML ≤ z) = [det (τ1A1) det (τ2A2)]−
1
2

×
∞∑

j,k=0

(
1
2

)
j

(
1
2

)
k

j!k!
Cj(Ã1)Ck(Ã2) Pr

(
Fv1+2j,v2+2k ≤

(v2 + 2k) τ1

(v1 + 2j) τ2

)
, (5.4)

where τi := tr(A−1
i ) and Ãi := Ivi − (τiAi)

−1, for i = 1, 2.

The top-order zonal polynomials in equation (5.4) can be computed very efficiently
by methods described recently in Hillier, Kan, and Wang (2009). Because the matrices
A1 and A2 vary as z varies over Λ, it is probably impossible to obtain the density
function of λ̂ML directly from (5.4), but we this problem can often be avoided by a
conditioning argument (see, for example, Section 5.3).

We now discuss some further consequences of Theorem 2. The spectrum of an
n × n matrix is defined to be the multiset of its n eigenvalues, each eigenvalue ap-
pearing with its algebraic multiplicity. Matrices with the same spectrum are called
cospectral. According to equation (5.2), the distribution of λ̂ML, and hence all of its
properties, depends on W only through its spectrum. Two illustrative applications of
this observation follow.

Example 6 (Complete Bipartite model). The spectrum of the weights matrix (2.3)
of a symmetric Complete Bipartite model depends on p and q only through their sum
n. Hence, the distribution of λ̂ML is the same for any pure symmetric mixed-Gaussian
Complete Bipartite model on n observational units, regardless of the partition of n
into p and q.

Example 7 (Star Graph). In case p or q in a Complete Bipartite model is 1 (i.e.,
the graph is a star graph), we may also consider the class of all symmetric weights
matrices that are “compatible” with a star graph on n vertices (i.e., matrices having
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positive (i, j)-th entry if and only if (i, j) is an edge of the star graph). It is a simple
exercise to show that all such weights matrices have (after normalization so that the
largest positive eigenvalue is 1) eigenvalues 0, with multiplicity n− 2, and −1, 1, and
hence are cospectral with the adjacency matrix of the graph. Hence, the distribution
of λ̂ML is the same for any pure mixed-Gaussian SAR model with symmetric weights
matrix compatible with a star graph.

Another consequence of representation (5.2) can be deduced for matrices W with
symmetric spectrum. The spectrum of a matrix is said to be symmetric if, whenever
ω is an eigenvalue, −ω is also an eigenvalue, with the same algebraic multiplicity. The
weights matrix of a balanced Group Interaction model with m = 2 is an example of
this type, as is that of the symmetric Complete Bipartite model.18

Corollary 2. In a pure SAR model with ε ∼ SMN(0, In), W symmetric, and the
spectrum of W symmetric about the origin, the density of λ̂ML satisfies the symmetry
property pdf λ̂ML

(z;λ) = pdf λ̂ML
(−z;−λ).

Note that this type of symmetry implies, in particular, that (subject to its exis-
tence) the mean of λ̂ML satisfies E(λ̂ML;λ) = −E(λ̂ML;−λ).

5.2 The Balanced Group Interaction Model

The general theory in this paper gives strikingly simple results for the balanced Group
Interaction model. This is mainly a consequence of the fact that the weights matrix
W = Ir ⊗Bm has only two distinct eigenvalues. Letting

θ(z) :=

(
z +m− 1

1− z

)2

,

for any z ∈ Λ, we obtain the following expressions for the cdf and pdf of λ̂ML.

Proposition 7. In the pure balanced Group Interaction model with ε ∼ SMN(0, In),

Pr(λ̂ML ≤ z) = Pr

(
Fr,r(m−1) ≤

θ(z)

θ(λ)

)
, (5.5)

and

pdf λ̂ML
(z;λ) =

2m [(m− 1)θ(λ)]
r(m−1)

2

B( r2 ,
r(m−1)

2 )

(1− z)r(m−1)−1 (z +m− 1)r−1

[(1− z)2(m− 1)θ(λ) + (z +m− 1)2]
rm
2

,

(5.6)
for any λ, z ∈ Λ.

18In fact, for any matrix W that is the adjacency matrix of a graph, it is known that the spectrum
is symmetric if and only if the graph is bipartite.
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Proposition 7 enables a complete analysis of the exact properties of λ̂ML, and the
results needed for inference based upon it. For example, exact expressions for the
moments and the median of λ̂ML, and exact confidence intervals for λ based on λ̂ML

can be obtained quite directly; see Hillier and Martellosio (2014a) for details.
Proposition 7 also immediately implies that a necessary condition for consistency

of λ̂ML is that Fr,r(m−1) →p 1. Hence, as already known in the literature, r → ∞ is

sufficient for consistency of λ̂ML, but m→∞may not.19 Indeed, if r →∞ is assumed,
Lee’s (2004) Assumptions 3 and 8’ are satisfied, as is his condition (4.3), so λ̂ML is
consistent and asymptotically normal by Lee’s Theorems 4.1 and 4.2. On the other
hand, if n→∞ because m→∞, Lee’s Assumption 3 is not satisfied, and his results
leave open that λ̂ML may be inconsistent in this case. This is an example of so-called
infill asymptotics. Equation (5.5), along with the known result v1Fv1,v2 →d χ

2
v1 as

v2 →∞, shows that, for fixed r,

Pr(λ̂ML ≤ z)
m→∞−→ Pr

(
χ2
r ≤ r

(
1− λ
1− z

)2
)
, −∞ < z < 1.

Thus, λ̂ML is inconsistent under infill asymptotics. The associated limiting density
as m→∞ with r fixed is

pdf λ̂ML
(z;λ)

m→∞−→ r
r
2 (1− λ)r

2
r
2
−1Γ( r2)(1− z)r+1

e−
r
2( 1−λ

1−z )
2

,

so λ̂ML converges to a random variable supported on (−∞, 1). It is clear from Figure
2 that increasing m but not r provides very little extra information on λ, at least as
embodied in the MLE, and that the effective sample size under this asymptotic regime
is r, and not n = rm. However, with the exact result now available, and simple, under
mixed-Gaussian assumptions there is no need to invoke either form of asymptotic
approximation.

Figure 2 displays the exact density (5.6) for λ = 0.5, and for m = 10 and various
values of r (left panel), and for r = 10 and various values of m (right panel). For
convenience the densities are plotted for z ∈ (−1, 1) ⊆ Λ. It is apparent that the
density is much more sensitive to r (the number of groups) than to m (the group
size). Analogs of these plots for other positive values of λ exhibit similar characteristics
(when λ is negative the density can be quite sensitive to m, mainly due to the fact
that the left extreme of the support of λ̂ML depends on m).

The results given in Proposition 7 for the pure balanced Group Interaction model
are modified only slightly in the case of an unknown constant mean. Indeed, for the

19E(Fr,r(m−1)) → 1 as either r or m → ∞, but var(Fr,r(m−1)) → 0 when r → ∞, but not when
m→∞.
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Figure 2: Density of λ̂ML for the Gaussian pure balanced Group Interaction model
with λ = 0.5, and with m = 10 (left panel), r = 10 (right panel).

balanced Group Interaction model with X = ιn and ε ∼ SMN(0, In), equation (5.1)
gives

Pr(λ̂ML ≤ z) = Pr

(
Fr−1,r(m−1) ≤

r

r − 1

θ(z)

θ(λ)

)
.

Extensions to more general matrices X and to the unbalanced case are considered
in Hillier and Martellosio (2014a). One important difference between balanced and
unbalanced cases is that distribution of λ̂ML is smooth over Λ in the former case, but
contains points of non-analyticity in the latter.

5.3 The Complete Bipartite Model

We now apply the general results to the Complete Bipartite model introduced in
Section 2.2. Section 5.3.1 discusses the pure case with symmetric W , which provides
a particularly simple illustration of the general theory. Then, in Section 5.3.2, we
consider the case of row-standardized W and constant mean (i.e., X = ιn). This
latter case provides an example of the restricted support phenomenon described in
Section 4.2.3.

5.3.1 Symmetric W , Zero Mean

In the symmetric Complete Bipartite model, W again has three distinct eigenvalues:
−1, 0, 1. According to Corollary 1, the pdf of λ̂ML in the pure Gaussian case is analytic
everywhere on Λ = (−1, 1) except at the point z2, and it is readily verified that
z2 = 0. Moreover, since the spectrum of W is symmetric, the symmetry established
in Corollary 2 may be used to obtain the density for z ∈ (−1, 0) from that for z ∈ (0, 1).
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Proposition 8. In the pure symmetric Complete Bipartite model with ε ∼ SMN(0, In),

Pr(λ̂ML ≤ z) = Pr(φ1χ
2
1 ≤ φ2χ

2
1 + 2zχ2

n−2), (5.7)

for −1 < z < 1, where

φ1 :=
(1− z)2 [n+ (n− 2) z]

(1− λ)2
, φ2 :=

(1 + z)2 [n− (n− 2) z]

(1 + λ)2
,

and the three χ2 random variables involved are independent.
For z ∈ (0, 1) the corresponding density is

pdf λ̂ML
(z;λ) =

B
(

1
2 ,

n
2

)
c

2πa
1
2 (1 + c)

n
2

[
αȧ

a
2F1

(
n

2
,
3

2
,
n+ 1

2
; η

)
+
βċ

c
2F1

(
n

2
,
1

2
,
n+ 1

2
; η

)]
, (5.8)

where a := φ2/φ1, c := 2z/φ1, η := φ1(φ2 − 2z)/[φ2(φ1 + 2z)], and 2F1(·) de-
notes the Gauss hypergeometric function. For z ∈ (−1, 0) the density is defined by
pdf λ̂ML

(z;λ) = pdf λ̂ML
(−z;−λ).

Proposition 8 confirms that the properties of λ̂ML, depends on p and q only through
their sum n - cf. Example 6. We also note that taking z = 0 in (5.7) gives Pr(λ̂ML ≤
0) = Pr (|ξ| ≤ (1− λ)(1 + λ)), where ξ has a Cauchy distribution. This very simple
formula for the probability that λ̂ML is negative does not depend on the sample size.

The asymptotic distribution as n → ∞ can be obtained easily, as follows. For
every fixed z ∈ Λ, the characteristic function of the random variable Vn := (φ1χ

2
1 −

φ2χ
2
1 − 2zχ2

n−2)/(n− 2) is easily seen to converge to that of

V̄n := φ̄1χ
2
1 − φ̄2χ

2
1 − 2z,

where φ̄1 := limn→∞(φ1/(n−2)) = (1−z)2(1+z)/(1−λ)2 and φ̄2 := limn→∞(φ2/(n−
2)) = (1 + z)2(1− z)/(1 + λ)2. Therefore, Vn →d V̄n, and so, from Proposition 8,

Pr(λ̂ML ≤ z)→ Pr
(
χ2

1 ≤ ψ1χ
2
1 + ψ2

)
,

with

ψ1 :=

(
1 + z

1− z

)(
1− λ
1 + λ

)2

, ψ2 :=
2z(1− λ)2

(1 + z)(1− z)2
,

for z ∈ (0, 1), and the two χ2
1 variates are independent. For z ∈ (0, 1), therefore, by

conditioning on q1 ≡ χ2
1,

Pr(λ̂ML ≤ z)→ Eq1 [G1(ψ1q1 + ψ2)] . (5.9)
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Thus, as in the case when m → ∞ in a balanced Group Interaction model, λ̂ML is
not consistent, but converges in distribution to a random variable as n → ∞. The
limiting density can be obtained from (5.9), but is omitted for brevity.

The density (5.8) is plotted in Figure 3 for λ = −0.5, 0, 0.5, for n = 5, 10, and
for n → ∞. It is clear from the plots that the density is again very insensitive
to the sample size, so in this model increasing the sample size yields little extra
information about λ. As a consequence, the non-standard asymptotic density is an
excellent approximation to the actual distribution under mixed-normal assumptions.
The expected non-analyticity at z = 0 is evident, and in fact for this model the density
of λ̂ML is unbounded at z = 0.
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Figure 3: Density of λ̂ML for the Gaussian pure symmetric Complete Bipartite model.

Given the cdf and pdf, other exact properties of λ̂ML can be derived following
techniques similar to those used in Hillier and Martellosio (2014a) for the Group
Interaction model, but this is not pursued here.

5.3.2 Row-Standardized W , Constant Mean

In a Complete Bipartite model with constant mean the support of λ̂ML is not the
entire interval Λ = (−1, 1), but the subset (−1, 0). This follows from Proposition 4,
because ιn spans the eigenspace of W corresponding to the only positive eigenvalue
of W . Hence, in this model λ̂ML can never be positive, regardless of the true value of
λ.

Proposition 9. For the row-standardized Complete Bipartite model with X = ιn and
ε ∼ SMN(0, In),

Pr(λ̂ML ≤ z) =

{
Pr (F1,n−2 > −(n− 2)g(z, λ)) , if z ∈ (−1, 0)
1, if z ∈ [0, 1),
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where

g(z, λ) :=
2z(1 + λ)2

(1 + z)2[n− (n− 2) z]
.

The corresponding density is

pdf λ̂ML
(z;λ) =

{
1

B( 1
2
,n−2

2 )
ġ(z,λ)

g(z,λ)
1
2 [1−g(z,λ)]

n−1
2
, if z ∈ (−1, 0)

0, if z ∈ [0, 1).
(5.10)

The limiting cdf and pdf as n→∞ can be obtained immediately from Proposition
9. Letting

h(z, λ) := lim
n→∞

[−(n− 2)g(z, λ)] = − 2z(1 + λ)2

(1 + z)2(1− z)
,

we obtain that under mixed Gaussianity, and for z ∈ (−1, 0),

Pr(λ̂ML ≤ z)→ Pr
(
χ2

1 > h(z, λ)
)
,

and

pdf λ̂ML
(z;λ)→ − ḣ(z, λ)√

2πh(z, λ)
e−

h(z,λ)
2 .

Again, λ̂ML is not consistent, but converges in distribution to a random variable
supported on the non-positive real line as n → ∞. Note that row-standardization
of W is critical here (maybe explain what goes wrong in terms of Lee’s theory): the
Complete Bipartite model with symmetric W and constant mean does satisfy the
assumptions for consistency and asymptotic normality in Lee (2004).

The density (5.10) is plotted in Figure 4 for λ = −0.5, 0, 0.5, for n = 5, 10, and
for n→∞. Note that the shape of the density for z < 0 is similar to the case of the
pure symmetric Complete Bipartite model (Figure 3).

6 Conclusion

We have proposed a novel approach to the study of the distributional properties of
the QMLE for the spatial autoregressive parameter λ, based on representing the cdf
of the estimator as the probability that a certain quadratic form is negative. This
paper has focused on exact properties of the QMLE. We have shown that under a
very general condition the profile likelihood of the model is single peaked. We have
also studied some general properties of the QMLE and we have been able to obtain
exact formulae for some relatively simple cases. The cdf representation appears to
be also useful to derive accurate approximations to the distribution of the QMLE,
for any W and any X, and for computational purposes, but these topics are left for
future research.
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Figure 4: Density of λ̂ML for the Gaussian row-standardized Complete Bipartite model
with constant mean.

Appendix A Auxiliary Results

Lemma A.1. Assume that all eigenvalues of W are real.

(i) For any z ∈ Λ, the distinct eigenvalues γ1(z), γ2(z), ..., γT (z) of Cz are in in-
creasing order (i.e., s > t implies γs(z) > γt(z) for any z ∈ Λ). For any
z ∈ Λ, γ1(z) < 0, γT (z) > 0, and, for any t = 2, ..., T − 1, γt(z) changes sign
exactly once on Λ.

(ii) For T ≥ 2, d11(z, λ) < 0 and dTT (z, λ) > 0 for all z, λ ∈ Λ. If T > 2, dtt(z, λ) >
0 if z < zt and dtt(z, λ) < 0 if z > zt, for any λ ∈ Λ, where zt denotes the
unique value of z ∈ Λ at which γt(z) = 0.

Proof of Lemma A.1. (i) Obviously, ωs > ωt implies gs(z) > gt(z) for all z ∈ Λ,
which in turn implies γs(z) > γt(z). If ωt = 0, gt(z) = 0 for all z ∈ Λ. For the nonzero
eigenvalues, since dgt(z)/dz = g2

t (z) > 0, each of these functions is strictly increasing
on Λ. The function g1(z) = ωmin/(1 − zωmin) is bounded at z = 1, and approaches
−∞ as z ↓ ω−1

min. Likewise, the function gT (z) = 1/(1 − z) is bounded at z = ω−1
min,

and approaches +∞ as z ↑ 1. The remaining functions gt(z) are all bounded at both
endpoints of the interval Λ. Now,

1

n
tr(Gz) =

1

n

T∑
t=1

ntgt(z).

Since this is a convex combination of the gt(z), t = 1, ..., T , tr(Gz)/n must be between
the smallest and largest of the gt(z), for all z ∈ Λ, i.e., g1(z) < tr(Gz)/n < gT (z),or
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γ1(z) < 0 < γT (z) for all z ∈ Λ. Next, the properties of the gt(z) imply that tr(Gz)/n
is monotonic increasing on Λ, going to −∞ as z ↓ ωmin, and to +∞ as z ↑ 1. It
follows that tr(Gz)/n crosses all T − 2 of the functions gt(z), for t 6= 1, T, at least
once, somewhere in Λ. To show that the two functions can only cross once, simply
observe that, at a point z where γt(z) = 0 (so that gt(z) = tr(Gz)/n),

dgt(z)

dz
= g2

t (z) =

(
1

n

T∑
t=1

ntgt(z)

)2

<
1

n

T∑
t=1

ntg
2
t (z) =

d

dz

(
1

n
tr(Gz)

)
(the inequality is strict because the gt(z) cannot all be equal, by Assumption A). That
is, at every point of intersection, tr(Gz)/n intersects gt(z) from below, which implies
that there can be only one such point. (ii) This follows from part (i) and the fact that
the signs of the dtt(z, λ) are those of the γt(z), for any λ ∈ Λ.

Lemma A.2. If, for any given y, X, W , the equation MXSλy = 0 is satisfied by two
distinct values of λ ∈ R, then it is satisfied by all λ ∈ R.

Proof of Lemma A.2. If MX(I−λ1W )y = MX(I−λ2W )y = 0 for two real numbers
λ1 and λ2, then (λ1 − λ2)MXWy = 0. If λ1 6= λ2, then MXWy = MXy = 0, which
in turn implies that MXSλy = 0 for all λ ∈ R.

Appendix B Proofs and Remarks

Proof of Proposition 1. If MX(ωIn −W ) = 0, then MXSλ = (1 − λω)MX , and
hence equation (3.2) reduces to

lp(λ) = ln (|det (Sλ)|)− n ln(|1− λω|)− n

2
ln(y′MXy). (B.1)

The first part of the proposition follows on noticing that the only term in equation
(B.1) that depends on y does not involve λ. Moving to the second part, assume that
MX(ωIn−W ) = 0 for some real nonzero eigenvalue ω of W . The profile log-likelihood
is a.s. defined by equation (B.1). Letting nκ denote the algebraic multiplicity of an
eigenvalue κ, and Sp(W ) the spectrum of W (defined as the set of distinct eigenval-
ues), we obtain

lp(λ) = ln


∣∣∣∏κ∈Sp(W ) (1− λκ)nκ

∣∣∣
(y′MXy)

n
2

− n ln(|1− λω|),

= ln


∣∣∣∏κ∈Sp(W )\{ω} (1− λκ)nκ

∣∣∣
(y′MXy)

n
2

− (n− nω) ln(|1− λω|), (B.2)
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The first term in equation (B.2) is a.s. bounded as λ → ω−1. The second term goes
to +∞ as λ → ω−1, because nω < n by Assumption A. Thus, limλ→ω−1 lp(λ) = +∞
a.s. Suppose now that MX(ωIn −W ) 6= 0 for some nonzero eigenvalue ω of W. Then
MX(ωIn −W )y is a.s. nonzero. For any y such that MX(ωIn −W )y 6= 0, the term
−(n/2) ln (y′S′λMXSλy) in equation (3.2) is defined in a neighborhood of λ = ω−1,
because it is defined at λ = ω−1 and, by Lemma A.2, cannot be undefined at more
than one value of λ 6= ω−1. Hence, −(n/2) ln (y′S′λMXSλy) is a.s. continuous at
λ = ω−1. The other term in equation (3.2), ln (|det (Sλ)|), goes to −∞ as λ → ω−1.
It follows that limλ→ω−1 lp(λ) = −∞ a.s.

Remark 1. The a.s. qualification in the second part of Proposition 1 is required
whether MX(ωIn −W ) is zero or not. Details are omitted for brevity, but it is easy
to show that, if MX(ωIn −W ) 6= 0, then there is a zero probability (according to
the Lebesgue measure on Rn) set of values of y such that limλ→ω−1 lp(λ) = +∞ . If
MX(ωIn −W ) = 0, then there is a zero probability set of values of y such that lp(λ)
is undefined for all values of λ.

Proof of Lemma 1. Let ωt, t = 1, ..., T, denote the distinct (possibly complex)
eigenvalues of W , ordered arbitrarily, let et = et(W ) denote the t-th elementary
symmetric function in the T distinct eigenvalues of W, and let et,j be that with the
j-th eigenvalue omitted. The polynomial

T∏
t=1

(1− λωt) =
T∑
t=0

(−λ)tet

is a generating function for the et, and we have accordingly e0 = 1, and er = 0 for
r > T. Correspondingly, the polynomial

T∏
t=1
t6=j

(1− λωt) =
T−1∑
t=0

(−λ)tet,j

is a generating function for the et,j , and it can easily be checked (by equating coeffi-
cients of suitable powers of λ) that

ωjet−1,j = et − et,j , (B.3)

for t = 1, ..., T − 1, and
ωjeT−1,j = eT . (B.4)

We can therefore write the first-order condition (see equation (3.3) as

n (b− aλ)
T∑
t=0

(−λ)tet −
(
aλ2 − 2bλ+ c

) T∑
j=1

njωjT−1∑
t=0
t 6=j

(−λ)tet,j

 = 0, (B.5)
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where a := y′W ′MXWy, b := y′W ′MXy, and c := y′MXy. We now show that the
polynomial equation (B.5) has degree T . Using (B.4) and

∑T
j=1 nj = n, the coefficient

of λT+1 is

na(−1)T+1eT + (−1)Ta

T∑
j=1

njωjeT−1,j = 0.

On the other hand, the coefficient of λT is

a(−1)T

neT−1 −
T∑
j=1

njωjeT−2,j

+ nb(−1)T−1eT ,

which, on using (B.3), reduces to

a(−1)T

 T∑
j=1

njeT−1,j

+ nb(−1)T−1eT .

This will a.s. not vanish: the term eT can vanish if one eigenvalue is zero, but at least
one term in the sum in the first term will not vanish, since only one eigenvalue can
be zero.

Remark 2. In many applications, W is the adjacency matrix of a (unweighted and
undirected) graph. It is well known in graph theory that the number of distinct
eigenvalues of an adjacency matrix is related to the degree of symmetry of the graph
(see Biggs, 1993). On the other hand, in algebraic statistics the degree of the score
equation is regarded as an index of algebraic complexity of ML estimation (see Drton
et al., 2009). Thus Lemma 1 establishes a connection between the algebraic complexity
of λ̂ML and the degree of symmetry satisfied by the graph underlying W .

Proof of Lemma 2. Recall that we are assuming that MX(ωIn −W ) 6= 0 for any
real nonzero eigenvalue ω of W . Hence, by Proposition 1, lp(λ) → −∞ a.s. at the
extremes of Λ. Then, because it is a.s. continuous on Λ, lp(λ) must a.s. have at least
one maximum on Λ. Since it is also a.s. differentiable on Λ, all maxima must be
critical points. We now show that lp(λ) has a.s. exactly one maximum, and no other
stationary points, on Λ. The second derivative of lp(λ) can be written as

l̈p(λ) =
−n(ac− b2)

(aλ2 − 2bλ+ c)2
+

n(b− aλ)2

(aλ2 − 2bλ+ c)2
− tr(G2

λ),

where a := y′W ′MXWy, b := y′W ′MXy, and c := y′MXy. But at any point where
l̇p(λ) = 0,

n(b− aλ)2

(aλ2 − 2bλ+ c)2
=

1

n
[tr (Gλ)]2 ,
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so that, at any critical point,

l̈p(λ) =
−n(ac− b2)

(aλ2 − 2bλ+ c)2
+

1

n
[tr(Gλ)]2 − tr(G2

λ)

=
−n(ac− b2)

(aλ2 − 2bλ+ c)2
− tr(C2

λ) (B.6)

By the Cauchy-Schwarz inequality the first term in (B.6) is nonpositive. Hence, if
tr(C2

λ) > 0 for all λ ∈ Λ, we have that l̈p(λ) < 0 at every point where l̇p(λ) = 0, that
is, lp(λ) has a.s. exactly one point of maximum in Λ, and no other stationary points.

Proof of Lemma 3. Assume W is nonnegative. For any λ ∈ [0, 1), Gλ can be
expanded as

∑∞
r=0 λ

rW r+1, which shows that Gλ is nonnegative too. Then, for any
λ ∈ [0, 1), all off-diagonal entries of Cλ are nonnegative, and hence tr(C2

λ) ≥ 0. Since
tr(C2

λ) cannot be zero (cf. footnote 8), it follows by (B.6) that any stationary point
of lp(λ) in [0, 1) must be a maximum.

Proof of Theorem 1. By Lemma 2, Pr(λ̂ML ≤ z) = Pr(l̇p(z) ≤ 0), for any z ∈ Λ.
The desired result follows using expression (3.4), since y′S′zMXSzy is a.s. positive for
any z ∈ Λ.

Proof of Proposition 2. Using the decomposition W = HDH−1 we find that
Cz = HD1H

−1, and SzS
−1
λ = HD2H

−1, with

D1 := diag (γt(z)Int , t = 1, ..., T ) ,

and

D2 := diag

(
1− zωt
1− λωt

Int , t = 1, ..., T

)
.

As pointed out in the text, if W is similar to a symmetric matrix, Theorem 1 applies,
and the matrixA(z, λ) in (4.2) can be decomposed as (H ′)−1D2 (D1M +MD1)D2H

−1.
The proof is completed by expressing D2 (D1M +MD1)D2 as the block matrix
(dst(z, λ)Mst; s, t = 1, ..., T ).

Proof of Proposition 3. (i) Under the assumption that W is similar to a symmetric
matrix, the off-diagonal blocks in M vanish if and only if MD = DM, where D
contains the eigenvalues of W and M = H ′MXH is as in the text, because the
eigenvalues in the decomposition of D are distinct. One can then easily check that
this is so if and only if MXW = W ′MX . (ii) If W is symmetric, H is orthogonal, and
hence Mij = h′iMXhj , where hi denotes the i-th column of H. The diagonal entries
Mii are 0 if hi ∈ col(X), 1 if hi /∈ col(X). Under the assumption that MXW is also
symmetric col(X) is spanned by k linearly independent eigenvectors of W . Hence, for
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each j = 1, ..., n, MXhj equals either 0 (if hj ∈ col(X)) or hj (if hj /∈ col(X)). Since
h′ihj = 0 for any i 6= j, it follows that all off-diagonal entries of M are zero, which
completes the proof.

Remark 3. Proposition 3 (ii) can also be obtained directly from equation (4.2), since,
under the relevant assumptions, the dtt (z, λ) are eigenvalues of A(z, λ).

Proof of Proposition 4. Starting from part (i) and recalling that M := H ′MXH,
under the stated condition all diagonal blocks Mss for s > t vanish. Since, by Proposi-
tion 3 (ii), dss (z, λ) < 0 for s ≤ t, z > zt, and for any λ ∈ Λ, it follows by Proposition
3 (i) that Pr(λ̂ML ≤ z) = 1 for z ≥ zt. By the same argument, part (ii) is proved by
showing that in that case Pr(λ̂ML ≤ z) = 0 for z ≤ zt.

Proof of Proposition 5. For simplicity, assume that all densities exist. We need
to show that the distribution of the maximal invariant v := y(y′y)−1/2 ∈ Sn−1 under
scale transformations in the sample space is invariant under scale mixtures of the
distribution of y. Let f(y) denote the density of y ∈ Rn, and let q := (y′y)1/2 > 0. We
may transform y → (q, v), setting y = qv. The volume element (Lebesgue measure)
(dy) on Rn decomposes as (dy) = qn−1dq(v′dv), where (v′dv) denotes (unnormalized)
invariant measure on Sn−1 (see Muirhead, 1982, Theorem 2.1.14 for a more general
version of this result). The measure on Sn−1 induced by the density f(y) for y is
therefore defined, for any subset A of Sn−1, by

Pr(v ∈ A) =

∫
A

{∫
q>0

qn−1f(qv)dq

}
(v′dv).

Now let κ be a random scalar independent of y with density p(κ) on R+. The density
of y∗ := κy is then given by the mixture

g(y∗) :=

∫
κ>0

κ−nf(y∗|κ)p(κ)dκ

The measure induced by g(·) for v(y∗) = v(y) is therefore∫
q>0

qn−1g(qv)dq =

∫
q>0

∫
κ>0

qn−1κ−nf(qv|κ)p(κ)dκdq

=

∫
q>0

qn−1f(qv)dq

on transforming to (q/κ, κ) and integrating out κ. That is, for any (proper) density
p(·), g(·) induces the same measure on Sn−1 as does f(·), as claimed.

Remark 4. For a formal treatment of the argument used to establish Proposition 5
- averaging over a group - see also Eaton (1989), particularly Chapters 4 and 5.
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Proof of Proposition 6. Because of the presence of the scale parameter σ, the
SAR model (1.1) is invariant with respect to the scale transformations y → κy,
κ > 0, for any W and X. If the distribution of ε does not depend on β or σ2, the
transformation y → κy induces the transformations (β, λ, σ2, θ) → (κβ, λ, κ2σ2, θ) in
the parameter space, with maximal invariant (β/σ, λ, θ). Since, as pointed out earlier
in the text, λ̂ML itself is invariant to scale transformations of y, its distribution can
depend on (β, λ, σ2, θ) only through a maximal invariant in the parameter space (see,
e.g., Lehmann and Romano, 2005, Theorem 6.3.2). In fact, if col(X) is an invariant
subspace of W , and only in that case, the SAR model (1.1) is invariant under the
larger group GX of transformations y → κy + Xδ, for any κ > 0, any δ ∈ Rk; see
Hillier and Martellosio (2014b). The condition that col(X) is an invariant subspace
of W is equivalent to the existence of a k × k matrix A such that WX = XA.
Since the eigenvalues of A must be a subset of the eigenvalues of W , WX = XA
if and only if S−1

λ X = X(Ik − λA)−1, for any λ such that Sλ is invertible. The
group, say GX , induced by GX on the parameter space is that of the transformations
(β, λ, σ2, θ)→ (κβ+(Ik−λA)δ, λ, κ2σ2, θ). Now, it is easy to see from the profile score
equation that (under the conditions stated above) λ̂ML is invariant under GX . Since
GX acts transitively on the parameter space for (β, σ2), and leaves (λ, θ) invariant, it
follows that the distribution of λ̂ML cannot depend on (β, σ2), and depends only on
(λ, θ) .

Remark 5. Proposition 6 implicitly assumes that all parameters β, λ, σ2, θ are iden-
tifiable. Identifiability is required for the application of the invariance argument in
the proof of the Proposition.

Proof of Theorem 2. In the pure case k = 0 and nt(X) = 0 for all t = 1, ..., T , so
the result follows from equation (5.1).

Proof of Corollary 1. Partition the vector x in Proposition 3 (ii) into (x′1, x
′
2), with

xi of dimension vi × 1, for i = 1, 2, and let Qi := x′iAixi, for i = 1, 2. The statistics
Q1 and Q2 are linear combinations of central χ2 random variables with positive co-
efficients. By Theorem 2, Pr(λ̂ML ≤ z) = Pr(Q1 ≤ Q2) = Pr (Q1/Q2 ≤ 1), with Q1

and Q2 independent of each other. We shall now use the following slight modification
of a result due to James (1964) for the density of a positive definite quadratic form in
standard normal variables: If Q :=

∑S
i=1 aiχ

2
ni is a linear combination of independent

χ2
ni random variables with positive coefficients ai, the density of Q is given by

pdfQ(q;A) =
exp

(
−1

2τq
)
q
n
2
−1

2
n
2 Γ(n2 ) (det (A))

1
2

1F1

(
1

2
;
n

2
;
q

2
A∗
)

(B.7)

where n =
∑S

i=1 ni, A := diag(aiIni , i = 1, ..., S), τ := tr(A−1), and A∗ := τIn −A−1.
The confluent hypergeometric function here is of matrix argument (see Muirhead,
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1982), but, importantly, only top-order zonal polynomials are involved. Using this
result for both Q1 and Q2, transforming to (Q1/Q2, Q2), and integrating out Q2

termwise gives an expression involving only r (it is straightforward to check that the
term-by-term integration involved is justified). Integrating this over 0 < r < 1 gives
the result.

Remark 6. It is easily confirmed that the cdf in Corollary 1 is a bivariate mixture of
the distributions of random variables that are conditionally, given the values of two
independent non-negative integer-valued random variables J and K, say, distributed
as Fv1+2j,v2+2k. The probability Pr(J = j) is the coefficient of tj in the expansion of
(det[tIv1 + (1− t)τ1A1])−1/2, with a similar expression for Pr(K = k).

Proof of Corollary 2. For notational convenience, let us rename the coefficients
dtt (z, λ) as dωt (z, λ), for all t = 1, ..., T . Since dωs (z, λ) = −d−ωs (−z,−λ), from
expression (5.2) we have

Pr(λ̂ML ≤ z;λ) = Pr

(
T∑
t=1

−d−ωt (−z,−λ)χ2
nt ≤ 0

)
,

which is equal to Pr(λ̂ML ≥ −z;−λ) = 1−Pr(λ̂ML ≤ −z;−λ) if the spectrum of W is
symmetric. The stated result follows on differentiating Pr(λ̂ML ≤ z;λ) = 1−Pr(λ̂ML ≤
−z;−λ) with respect to z.

Proof of Proposition 7. For the pure balanced Group Interaction model, W is
symmetric, T = 2, n1 = r, n2 = r(m − 1), ω1 = 1, ω2 = −1/(m − 1). Also,
by direct computation, tr(Gz)/n = (rm)−1 [r/(1 − z) − r(m − 1)/ (z +m− 1)] =
z/[(1 − z)(z + m − 1)], and hence d11(z) = 2(m − 1)(1 − z)/[(1 − λ)2(z + m − 1)]
and d22(z, λ) = −2(z + m − 1)/[(λ + m − 1)2(1 − z)]. Equation (5.3) now gives
Pr(λ̂ML ≤ z) = Pr(Fr,r(m−1) ≤ θ(z)/θ(λ)). On differentiating with respect to z, we
obtain

pdf λ̂ML
(z;λ) =

1

θ(λ)

∂θ(z)

∂z
pdfFr,r(m−1)

(θ(z)/θ(λ)),

from which the stated expression for pdf λ̂ML
(z;λ) obtains.

Proof of Proposition 8. For a symmetric Complete Bipartite model tr(G−1
z ) =

−1/(1+z)+1/(1−z) = 2z/
(
1− z2

)
, and hence γ1(z) = −[n− (n−2)z]/[n

(
1− z2

)
],

γ2(z) = −2z/[n
(
1− z2

)
], and γ3(z) = [n+(n−2)z]/[n

(
1− z2

)
]. The stated expression

for the cdf then follows from equation (5.2). For z ∈ (0, 1) the density is obtained as
an application of the conditioning argument in Hillier and Martellosio (2014a) for the
case T = 3, with γ = 1, α = n− 2, β = 1, a(z) = 2z/φ1, and c(z) = φ2/φ1. The proof
is completed using Corollary 2.
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Proof of Proposition 9. For the row-standardised Complete Bipartite model the
matrix H is

H =

[
ιp/
√
n ιp/

√
n Lp,p−1 0

ιq/
√
n −ιq/

√
n 0 Lq,q−1

]
,

where Lp,p−1 (p× (p− 1)) satisfies L′p,p−1ιp = 0 and L′p,p−1Lp,p−1 = Ip−1. Thus,

M = H ′MιnH =

 0 0 0

0 4pq
n2 0

0 0 In−2

 .
This is certainly block-diagonal, as expected, and in addition the (1, 1) block also
vanishes. The mean of x = H−1ỹ is E(x) = β

√
n(n, 0, 0)′. Therefore, from equation

(4.4), we have

Pr(λ̂ML ≤ z) = Pr
(
d22(z, λ)χ2

1 + d33(z, λ)χ2
n−2 ≤ 0

)
= Pr

(
−2
(
φ2χ

2
1 + 2zχ2

n−2

)
≤ 0
)
.

But, if z ≥ 0, both coefficients here are non-negative, so for z ≥ 0, Pr(λ̂ML ≤ z) = 1.
This yields the stated result for the cdf. The density is obtained by differentiation,
as in the proof of Proposition 7.
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