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Abstract

Variations in repo haircuts play a crucial role in leveraging (or deleveraging) in security

markets, as observed in the two major economic events that happened so far in this century,

the US housing bubble that burst into the great recession and the European sovereign debts

episode. Repo trades are secured but recourse loans. Default triggers insolvency. Collateral

may be temporarily exempt from automatic stay but creditors’ final reimbursement depends

on the bankruptcy outcome. We address existence of bankruptcy equilibria, characterize it

and infer how haircuts are related to asset or counterparty risks.
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Portugal (grant BD 74704/2010). Páscoa and Ramı́rez were supported by project PTDC/IIM-ECO/5360/2012
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1 Introduction

In a repo trade, a security is pledged as collateral for a cash loan and can then by reused by

the cash lender, that is, pledged in a another contract or short-sold. The reuse of the collateral

makes repo trades quite different from mortgage loans where the durable good collateral stays

put. The resulting leverage was studied in detail by Bottazzi, Luque and Páscoa (2012), under

the assumption that agents always fulfilled their financial obligations.

Leverage played a major role in the recent financial crisis of 2008. Leading to the crisis, it

was not only households that were highly indebted but also large financial institutions. These

large institutions turned to the shadow banking system to finance themselves (see e.g. Gorton

and Metrick (2010)). The repo market is a crucial part of this system. The haircut applied to the

loan given in a repo trade is inversely related to how much agents can build up their positions

in a security by using the repo market as a means of financing security positions. Security

and repo trades can be combined in way that allows security positions to be increased, as the

security gets pledged as collateral in repo, then repledged or short sold by the creditor (then

again pledged by the counterparty of the short seller and so on). How do collateral reuse and

haircuts determine what leverage is? The former may be an ingredient but does not determine

by itself what leverage is (and limitations on reuse do not automatically translate into targeted

reductions in leverage). For long agents to lever up to haircut potential, the reuse of the collateral

only becomes necessary when the wealth of these agents is high enough and the haircut is low

enough that the resulting aggregate leveraged long positions exceed aggregate initial holdings

of the security. It is ultimately the haircut that determines what leverage is (and it could be

the shorts being leveraged instead). More recently, in the sovereign debt crisis of 2010-12, there

was substantial deleverage (also of those short selling) caused by the consecutive hikes in repo

margins on bonds issued by several European governments.

Given that leverage and the haircut are inversely related, it is crucial to understand how

the latter is determined. The haircut is the difference between the values of the collateral and

the respective cash loan, at the time when the repo trade starts. It is usually expressed as



1 INTRODUCTION 3

a percentage (less than or equal to 1) of the collateral value. Equivalently, the initial margin

captures that difference by expressing the collateral value as a percentage (greater than or equal

to 1) of the cash loan. A repo trade has a purchase leg and then a repurchase leg at a repurchase

price that is locked in at the first leg. The difference between the purchase price (the cash loan)

and the repurchase price is the repo interest rate, agreed upon in advance. Hence, in the absence

of default, there would be no reason to charge a haircut. The haircut reflects the cash lender’s

perceived risk of loss in the event of the cash borrower’s default.

In this article we model the limited commitment involved in repo trades. In this respect, also,

there is a key difference by comparison with what happens in many (but not all) mortgages, as

captured in the GE collateral literature. Repo trades are recourse loans, whereas many (but

not all) mortgages are non-recourse. If an household that has signed a non-recourse mortgage

decides to default, it would just surrender the house and walk away without suffering any other

penalties. That is not the case in recourse loans: in the event of default, creditors can be repaid

above the collateral liquidation value by forcing the bankruptcy of the faulty borrower and then

becoming claimants in the partition of the borrower’s estate. It may also happen that creditors

end up recovering less than the collateral liquidation value, when that is the outcome from the

partition of the estate among all creditors. Repo collateral is exempted from certain provisions

of the US Bankruptcy Code that normally apply to pledges, in particular, the automatic stay

on enforcement of collateral in the event of insolvency. That is, creditors can keep the collateral

that had been pledged to them (and can sell it) but, when the bankruptcy court takes the final

decisions, they may get more or less than what their claim was (the promised repayment) and

this may be different from the liquidation value of the collateral.

It should be noted that when an agent goes bankrupt, it is not just the repayment of the cash

borrowed in repo that is at stake. If a security happened to be pledged to this agent in repo,

then this collateral will not be given back to the cash borrowers - a ”fail” occurs as a result of

bankruptcy - and the respective manufactured dividends due to the beneficial owner will not be

paid also.
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Default is a very serious event and needs to be modeled by taking into consideration the whole

bankruptcy process. It is not a decision that can be taken asset by asset, comparing promised

payments and collateral values. Debtors can’t be assumed to be repaying the minimum of these

two, contrary to what happens in non-recourse loans, as shown in a long standing literature

emerging from the work by Geanakoplos and Zame in the nineties (see Geanakoplos (1997),

Geanakoplos and Zame (1997) and Geanakoplos and Zame (2014)). For the same reason,

default can’t be avoided by designing contracts so that collateral values never fall below promised

payments, as was the case in a contemporaneous literature dating back to Kiyotaki and Moore

(1997). Garnishable estates must now be set against total debts (net of credits that the defaulter

may be entitled to). This creates a non-convexity in the borrower’s budget set that seems to

have put off previous research efforts.

There are however interesting results that can be established, in spite of the intrinsic non-

convexity of individual decision problems. We consider binomial economies, where just two states

of nature, U or D, may occur after the initial node (and each of these states may be followed

without uncertainty into a third date). Our paper focus on over-the-counter (OTC) repo, that

is, trades that are not centrally cleared through an exchange (or central clearing counterparty,

CCP), and bilateral (as opposed to tri-party where collateral selection, payment, custody and

settlement are outsourced to a third-party agent). Our finite-agent model does not let us explore

the convexifying effect of large numbers that has been used in continuum of agents models in

several contexts, including in consumer bankruptcy problems with unsecured loans (see Araujo

and Pascoa (2002) and Sabarwal (2003)). However, modeling the agents set as a continuum

is not appropriate in a context of OTC repo where each trader should anticipate counterparty

bankruptcy risk and choose repo haircuts accordingly2.

For equilibrium to exist, leverage should be bounded. Here there is another important dis-

tinction between credit backed by securities and credit backed by houses or productive resources.

2A bankruptcy analysis might be doable also for centrally cleared repo, but aggregate default risk should take

the place of counterparty risk. The OTC case seems to be more informative and easier to relate to the applied

literature on the determinants of repo haircuts.
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In the latter, the aggregate supply of collateral is fixed and, therefore, under exogenous collateral

margins, borrowing becomes bounded. In the former, the collateral supply is endogenous since

it includes short-sales and, therefore, there are no a priori bounds on secured borrowing, even

under exogenous margins. However, repo and security positions must be related in another way:

the net security title balance held by each agent must be non negative. This is known as the

box constraint and says that in to order to pledge the agent must be long in the security and in

order to short-sell the agent must be long in repo (the security being pledged to him). In the

one-security case, the box constraint suffices to bound secured borrowing (and leverage), but in

the multi-security case other constraints should be added with the purpose of bounding repo and

security trades3.

In order to gain intuition and allow for a full characterization of equilibria, we start by

examining a one-security and two-agent case. In this simple case, equilibria dispense with any a

priori bounds on financial positions and we show that bankuptcy can only occur in one of the two

states and for only one of the two agents (the leveraged secured borrower). Then, we contemplate

the multi-security and multi-agent case and establish existence of equilibria under some bounds

on the value of repo positions, more precisely, on what agents can pledge as collateral.

The non-convexity is dealt with by constructing a generalized game where the decision process

of each agent of the original economy is now being decomposed into decisions taken by three

different fictitious agents: one solves the no-bankruptcy problem, the second assumes bankruptcy

has to occur and the third compares the two solutions. Mixing on these two solutions can be

avoided if these do not involve being on different vertices of the budget set, as ensured by the

bounds on repo trades.

Having characterized and established existence of equilibria, we address the determinants

of the repo haircut. On this issue, there are different views in the applied literature. Gorton

and Metrick (2012) argue that haircuts depend both on the underlying asset and on who is

3see Bottazzi, Luque and Páscoa (2012) on bounds that result from the segregation of haircuts or the distinction

between dealers and non-dealers and Bottazzi, Luque and Páscoa (2017) on bounds that follow from equity

requirements in the spirit of the Basel regulation of banks.
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the counterparty in a repo transaction but that, particularly in times of crisis, the latter gains

importance. In contrast, Krishnamurty et al. (2014) report little variation of haircuts across

counterparties and place much more weight on the underlying asset. Infante (2015) argues

that these observed differences on haircuts arise because two different markets are studied: the

bilateral and tri-party repo.

The loss that a lender may suffer from counterparties’ default may be related to the collateral

falling in value (or being sold in a fire sale) but, since the loan is recourse, the loss cannot be

associated to that asset risk in such a simple way. It may happen that there is no asset risk but

the counterparty risk will nevertheless govern what the lender gets back, which does not have to

be equal to the collateral liquidation value. What a secured creditor recovers in the bankruptcy

process depends on what is the liquidation value of the whole estate of the defaulter and how it

will be partitioned among all creditors, even though the exemption from automatic stay allows

the creditor to sell the collateral while waiting for the final outcome of the bankruptcy process.

We characterize how haircuts respond to asset and counterparty risks. Suppose there are

many traders in the repo market of each security, repo rates are security-specific but haircuts

are specific to each pair of traders. In such competitive setting, we should expect counterparty

bankruptcy risk to affect pair-specific haircuts but not the repo rate, as opposed to what happens

in the two-agent example. Say state D is the state where bankruptcy may occur. Suppose an

agent i is solvent in state D and is, in terms of the whole portfolio, a net creditor to a counterparty

j (in state D) and the expected repayment rate of this counterparty decreases (an increased

counterparty risk). Then, agent i would like to raise (lower) the haircut charged to counterparty

j when accepting collateral from j, for securities whose repo repayment exceeds (falls below) the

collateral value. That is, when the asset is risky from the creditor’s perspective, haircuts tend

to move in the same direction as the counterparty risk. But for the other securities (risky from

the debtors’ point of view, wary of a repo fail), haircuts move in the opposite direction.

Quite differently, in the two-agent and one-security example, counterparty risk affects the repo

rate and his effect is strong enough to make bankruptcy rates decrease as the haircut increases.
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In a small numbers context, it is now the other direction that may become more relevant: how

are overall solvency rates affected when the haircut charged in one security changes? That is

why in such extreme non-competitive case, haircuts and expected repayment rates may move

together, contrary to our results for the competitive case. To summarize, the way counterparty

risk may impact haircuts depends on how competitive the repo market is and to understand how

that impact works in the competitive case we need to couple this risk with asset risk. When

faced with a rise in counterparty risk, competitive creditors tend to ask for higher haircuts for

securities that exhibit an asset risk from the creditors’ perspective, but lower haircuts may arise

if the security involves the opposite risk (a fail rather than a default risk).

2 The Model

2.1 Fundamentals

We consider a binomial economy with three dates. At an initial date (date 0) there is only one

node in the event tree, followed by nodes U and D at the second date. Each second date note

has a unique successor at the third date: U+ and D+ are the successors of U and D, respectively.

As we will see, the third date just serves to guarantee that securities retain value at the second

date, when borrowing and lending transactions are settled (and we may want to dispende with

the third date in some cases, as discussed below).

Figure 1: Events tree of the binomial economy.
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Binomial models have been used to study the leverage cycle in economies with default on

non-recourse loans (see e.g., Fostel and Geanakoplos (2012) and Fostel and Geanakoplos (2014)).

Given that repo trades constitute recourse loans, we will model default as a bankruptcy process.

There is only one consumption good. Markets for this commodity open at each event. We

denote the price this good at event e by pe. There is a finite set of I ≥ 2 agents, indexed by i.

A bundle of commodities consumed by agent i is denoted by xi = (xi0, x
i
U , x

i
D, x

i
U+ , xiD+). There

are also F real securities indexed by f , each one being characterized by a vector of non-negative

real returns Rf = (RfU , RfD, RfU+ , RfD+). Given spot prices pe, the nominal return of security

f is peRfe
4.

Trading of securities occurs at the first and second dates. Each agent chooses a securities

portfolio φi ∈ R3F consisting of positions in the F securities at the initial nodes and nodes U

and D. Security prices are denoted by q ≡ (qfe ) ∈ R3F . Agents’ endowments of commodities are

ωi ∈ R5
+, with ωis > 0 in both states. Agents have initial holdings, at date 0, of each security

f , oif > 0. Preferences are described by utility functions U i : R5
+ → R. For each security f , we

normalize its positive net supply to be one:
∑
i o
i
f = 1.

For the moment, we assume local non-satiation agents’ preferences5 and that U i is concave,

twice continuous differentiable and such that second date marginal utilities DsU
i are positive

valued on the interior of the positive orthant.

2.2 Repo markets

Agents can have negative positions in securities, short-sales are permitted. Short-selling, however,

is not the same as issuing (which we take as given this model, having occurred prior to date 0).

In order to short-sell a security, an agent must go first in the repo market and borrow the desired

amount of securities. This is the way short-selling is actually done in reality.

Borrowing of securities actually consists in buying the security and promising to resell it to

4We could have considered nominal securities instead.
5in the following sense: for any consumption plan xi and any node e, there is some x̄i arbitrarily close to xi

that satisfies x̄i
e′ = xi

e′ for all e′ 6= e, and U i(x̄i) > U i(xi).
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the lender, at a future date and at a predetermined price. There is a difference between the

price at which a security is bought, in the first leg of the transaction, and the price at which it is

resold to its original owner, in the second leg of the transaction, at a future date. This difference

is captured by the repo rate. The highest repo rate within its class of securities is referred to as

the general collateral rate (GC).

The borrower of a security acquires possession rights associated with the security. However,

any coupon or dividend paid to the borrower during the term of the transaction is passed through

to the original owner; this is called a manufactured payment or a manufactured dividend.

A repo transaction is actually a collateralized loan. If agent i buys security f from j in the

first leg of the transaction, i is at the same time the borrower of the security and a lender of

cash, and j is the lender of the security and borrower of cash. A haircut (1− hijf ) is applied to

the market value of the security to compensate the lender of funds for the risk associated to the

transaction, so that the cash loan may be lower than the value of the collateral. Haircut is such

that 0 < hijf ≤ 1.

For simplicity, repo trading takes place only at date 0. We denote by zijf agent i’s repo

position, with counterparty j, on security f . If zijf > 0, it means that i is the lender of cash and

borrower of the security and we say that he is long in repo. At the same time, since markets

must clear, we should expect that zjif < 0, which means that agent j is a borrower of cash, a

lender of the security, and we say that he is short in repo.

Given that a haircut is applied to every repo transaction, the amount of funds that can be

borrowed by pledging one unit of security f in the repo market, in a transaction with counter-

parties i and j, is given by hijf qf0. As a matter of notation, we use both hijf and hjif to denote

the haircut applied to transactions in the repo market involving security f and counterparties i

and j, regardless of which one of the agents is long in repo for security f and which one is short.

Denote by ρf the repo rate of a loan backed by security f and let rf = 1 + ρf .

An important feature of a repo transaction is that the borrower of the security has the right

to lend it in the repo market or short-sell it in the security market. That is, the collateral can be
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rehypothecated directly or indirectly, and this process may occur many times over for the same

settlement period. This is an important feature of repo markets as it it the reuse of the collateral

that allows agents to leverage their portfolio positions or their cash loans beyond what would be

possible if collateral was used only once.

There is a constraint that captures both the need to pledge collateral when borrowing cash

in repo and the need to borrow a security (accept it as collateral) when short-selling it. This

is the box constraint. This restriction states that the agent must hold a nonnegative amount of

the security in his possession. That is, the sum of security position and repo trades must be

nonnegative. At the initial date (the only node where repo markets are open) the box constraint

for security f is:

(1) φife +
∑
j 6=i

zijf ≥ 0

At second date nodes, repo markets are not open and the box constraints reduce to plain no-

short-sales constraints:

(2) φifU ≥ 0, φifD ≥ 0

When there is more than one security, without any further assumptions on portfolio or repo po-

sitions, leverage can be unbounded (see Bottazzi, Luque and Páscoa (2012) on some institutional

arrangements that bound leverage). In this paper we take the simple approach of imposing some

bounds on repo positions whenever there is a need to bound leverage6.

2.3 Bankruptcy and feasible market plans

Given market prices and repo rates, (p, q, r), agents decide on a plan (xi, φi, zi), consisting

of consumption and portfolios in the securities and repo markets. Let us define the budget

constraints that these plans must satisfy. At date 0, the repo market opens and agents have

6In the one-security example in Section 3, leverage will be bounded and no further constraints will be imposed

on financial positions.
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initial endowments of goods and securities. Agent i’s budget constraint at this date is:

p0(xi0 − ωi0) +
∑
f

qf0(φif0 − oif ) +
∑
f

∑
j 6=i

qf0h
ij
f z

ij
f ≤ 0(3)

Repo markets do not open at the second date but agents can still trade in securities, using real

payments from their previous securities positions. We allow for the possibility of agents not

fulfilling their obligations in the second date. This only happens if agents become insolvent.

For every agent, we need to see how do assets set against liabilities, in each state of the second

date. On the assets’ side we have a first component which is the new market value plus returns

associated with the actual amount of each security that the agent has in his possession when he

enters that node. This (non-negative) amount is what the agent had in his date 0 box for the

corresponding security. By adding up the current market value and returns, across all securities,

we get assets’ component pertaining to the value of the past box positions:

Ξis =
∑
f

(
φif0 +

∑
j 6=i

zijf

)
(qfs + psRfs)

To evaluate assets or liabilities resulting from repo positions taken at the previous node, we need

to remember that repo positions consist of securities that the agent has received (borrowed) or

pledged (lent) as collateral backing a cash loan. If agent i borrowed security f from agent j at

the initial node (zijf > 0), he must return the security together with the respective returns to its

original owner, that is, pass on the non-negative value zijf (qfs+psRfs) to agent j but at the same

time agent j must repay (at the gross rate rf ) to i the cash loan he obtained before. Conversely,

a repo short agent repays the cash loan and gets back the value of the security he pledged as

collateral. The settling of all of agent i’s repo transactions with agent j as counterparty is

captured by the following term:

Iijs =
∑
f

zijf

[
qf0h

ij
f rf − (qfs + psRfs)

]
If all repo transactions are settled as was agreed upon at the initial date, that is, if every agent

is solvent in state s, agent i’s corresponding budget constraint is:

ps(x
i
s − ωis) +

∑
f

qfsφ
i
fs ≤ Ξis +

∑
j 6=i

Iijs =
∑
f

(
φif0 (qfs + psRfs) +

∑
j 6=i

zijf qf0h
ij
f rf

)
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Since repos are recourse loans, insolvency will occur in state s only if the agent’s assets are

insufficient to cover his liabilities. The assets include the value of the past box positions, plus

the positive settlements of his repo transactions, plus the garnishable portion (according to

some coefficient β) of his commodity endowment in that state. Liabilities consist in the negative

settlements of his repo trades. That is, insolvency will occur if, and only if, the following condition

is satisfied:

βpsω
i
s + Ξis +

∑
j 6=i

ηjsI
ij+
s ≥

∑
j 6=i

Iij−s

Here, Iij+s and Iij−s denote the positive and the negative parts7, respectively, of Iijs , while ηjs

denotes the portion of all of agent j’s financial obligations that he effectively repays given his

income in that state. That is, ηjs = 1 if j is solvent in state s and ηjs < 1 when he declares

bankruptcy. In words, agent i declares bankruptcy in state s if, and only if, the garnishable

portion of his commodity endowment (βpsω
i
s), plus the value of the securities in his possession

at the beginning of the second date (Ξis), plus the positive repo repayments the agent gets from

all his counterparties (
∑
j 6=i η

j
sI
ij+
s ) is not sufficient to repay all of agent i’s repo obligations

(Iij−s ).

Once we allow bankruptcy, agent i’s budget constraint in state s of the second date is:

ps(x
i
s − ωis) +

∑
f

qfsφ
i
fs ≤ max

{
− βpsωis , Ξis +

∑
j 6=i

Iij+s ηjs − Iij−s
}
,(4)

where

ηis =


1 , βpsω

i
s + Ξis +

∑
j 6=i η

j
sI
ij+
s ≥

∑
j 6=i I

ij−
s

βpsω
i
s+Ξi

s+
∑

j 6=i η
j
sI

ij+
s∑

j 6=i I
ij−
s

, otherwise

(5)

At the last date there is no trading of securities. Agents consume from their commodity en-

dowments and security payments according to their security positions constituted at the previous

nodes

(6) ps+(xis+ − ω
i
s+) ≤

∑
f

φifsps+Rfs+

7Iij+s = max{0, Iijs } and Iij−s = −min{0, Iijs }.
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Given parameters (p, q, r), an agent’s plan of consumption, of securities, and of repo positions

(xi, φi, zi), will be called feasible if xi ≥ 0 and conditions (1), (2), (3), (4) and (6) hold. We

denote by Bi(p, q, r) the set of all feasible plans for agent i, and by Bi?(p, q, r) the subset of utility

maximizing plans in Bi(p, q, r).

2.4 Equilibrium

For this economy, equilibrium is defined as follows:

Definition 1 (Equilibrium). An equilibrium is an allocation of bundles, securities and repo

positions (x, φ, z) together with prices (p, q, r) and haircuts implied by h = (hijf ), such that:

(a) for each agent i, (xi, φi, zi) ∈ Bi?(p, q, r, h),

(b) commodity markets clear:
∑
i

(
xi0 − ωi0

)
= 0,

∑
i

(
xis − ωis

)
=
∑
f Rfs for s = U,D, and∑

i

(
xis+ − ω

i
s+

)
=
∑
f Rfs+ for s+ = U+, D+,

(c) security markets clear:
∑
i φ

i
fe = 1 at each event e = 0, U,D,U+, D+,

(d) repo markets clear: zijf + zjif = 0 for all i, j and f .

3 A one-security and two-agent model

We can now take our base model and consider the simplest of economies. Suppose there are

only two dates, only one security (F = 1 and we dispense with the index f for the security)

and only two agents indexed i and j with ωi0 = ωj0 = 0 and oi = oj = 1. Agents utilities

are simply the expected consumption at the second date: U i(xiU , x
i
D) = aixiU + (1− ai)xiD and

U j(xjU , x
j
D) = ajxjU +(1−aj)xjD. To simplify we have dispensed with the third date and assumed

repo to maturity8, that is, both repo trades are settled at the maturity date of the security (even

though the security does not have a price at the second date it can still serve as collateral, since

its second date value consists in its returns given by Rs).

8This type of repo trades occurs in reality, although some agents (in particular, central banks) are not willing

to engage in it.
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As there is only one security and one pair of agents, we simplify notation by letting h =

hij = hji, zi = zij and zj = zji. Suppose RU > RD and that agents’ subjective probabilities

are different enough as to guarantee trade in the repo market: EiR > EjR, where EiR ≡

aiRU + (1− ai)RD. This is the same as assuming that ai > aj .

Figure 2: Economy with 2 dates. Security’s price and payments.

Normalizing prices so that the security price is one, we can write agent i’s constraints as:

φi + hzi = oi, (First date)

φi + zi ≥ 0⇔ oi + (1− h)zi ≥ 0, (Box constraint)

xis = ωis + max
{
− βωis, (oi + (1− h)zi)Rs

+ηjs[(hr −Rs)zi]+ − [(hr −Rs)zi]−
}
, (Second date, state s)

If we substitute xiU and xiD into agent i’s utility function, we can write his problem as:

Maximize

Eiωi + ai max
{
− βωiU , (oi + (1− h)zi)RU + ηjU [(hr −RU )zi]+ − [(hr −RU )zi]−

}
+ (1− ai) max

{
− βωiD, (oi + (1− h)zi)RD + ηjD[(hr −RD)zi]+ − [(hr −RD)zi]−

}
s. t.

oi + (1− h)zi ≥ 0

The only decision variable in the problem is zi and the agent only needs to decide whether to be

long (zi > 0) or short (zi < 0) in repo. Given our assumption on security payments and utilities,
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it is reasonable9 to search for equilibria in which hr ∈ (EjR,EiR). It is easy to see that if such

an equilibrium exists, it is necessary for agent i to be repo short (zi < 0), and for j to be repo

long (zj > 0). Being short in repo, agent i can potentially transfer consumption from state D

to state U , which gives him comparatively more utility. However, taking a short repo position is

not guaranteed to increase his consumption in state U , or to yield an increase in overall utility,

since this depends on the agent’s counterparty effective repayment rate in state U (ηjU ). We can

however rule out agent i taking a long repo position as this would transfer consumption from a

high utility state to a state with low utility. An analogous argument justifies agent j taking a

long repo position.

If agent i decides to be short in repo, his position will be determined by the box constraint:

zi = − oi

1− h
(7)

Note that the magnitude of the position in equation (7) can be many times higher than the

total initial supply of the security in the economy (oi + oj). Agent i is able to build such a

(large) position because of the re-usability of collateral in repo markets. At the same time, the

position is not unbounded because of the haircut10: how much an agent can leverage his initial

endowment of the security is related inversely to the haircut applied in the repo market. This is

one good reason to define the asset specific leverage as the inverse of the haircut applied to the

security when used as collateral in the repo market: 1
1−h .

The next thing to note is that agents i and j are solvent in states U and D, respectively.

In fact, in state U agent i has a non-negative financial income: (oi + (1 − h)zi)RU + ηjU [(hr −

RU )zi]+− [(hr−RU )zi]− = (oi+(1−h)zi)RU +ηjU (RU −hr)|zi| ≥ 0 > −βωiU . Therefore, agent

i does not become insolvent, actually makes xiU ≥ ωiU (and analogously for agent j in state D).

However, agent i is decreasing consumption in state D and we cannot be sure of his solvency

in that state. The same applies for agent j in state U . If we let αis = 1 iff agent i is solvent in

9In fact, it is easy to see that if hr > EiR or hr < EjR both agents will want to take either long or short repo

positions, and there cannot be market clearing.
10See Bottazzi, Luque and Páscoa (2012) for a complete example of how these positions are built in repo markets

with one security.
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state s and αis = 0 when he declares bankruptcy, we have four possible cases to consider:

Case αiU αiD αjU αjD

1 1 0 0 1

2 1 0 1 1

3 1 1 0 1

4 1 1 1 1

Before we proceed studying each case, it will be useful to write the necessary11 first order con-

ditions for agents i and j problems. If we let µi be the multiplier for agent i’s box constraint,

the conditions are as follow12:

(zi < 0) :

ai[(1− h)RU + ηjU (hr −RU )] + (1− ai)αiD[(1− h)RD + (hr −RD)] + µi(1− h) = 0(8)

(zj > 0) :

ajαjU [(1− h)RU + (hr −RU )] + (1− aj)[(1− h)RD + ηiD(hr −RD)] = 0(9)

From these conditions, it follows that there is no equilibrium in which agent j declares bankruptcy

in state U . If that were the case, equation (9) would imply:

(1− h)RD + ηiD(hr −RD) = 0

This is not possible since we have assumed h < 1 and hr > RD. This immediately rules out

cases 1 and 3. This is interesting enough to be written as a proposition:

Proposition 1. In this economy, if bankruptcy occurs, it occurs only in one state. Moreover,

it can only be the agent that is long leveraged in the security (and short in repo) who may go

bankrupt.

11Necessity follows from Slater’s condition (as an interior point for the constraint set can be constructed by

making z = 0). However, first order conditions are not sufficient, due to the non-convexity.
12Notice some agent must have the box constraint not binding. It must be the long in repo and short-selling

the security. In fact, if his box were binding, this joint operation would generate cash at the initial date (due to

the benefit of charging haircut) but there is no way to spend it, since there is no consumption at this date.
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Let us then study the equilibrium where bankruptcy occurs. We have two equations from

the first order conditions:

ai[(1− h)RU + ηjU (hr −RU )] + µi(1− h) = 0(10)

aj [(1− h)RU + (hr −RU )] + (1− aj)[(1− h)RD + ηiD(hr −RD)] = 0(11)

We also have the equation that determines the effective bankruptcy rate of agent i in state D

(equation (14)). Since we know that this agent’s position is zi = − oi

1−h = − 1
1−h , this equation

can be written as:

ηiD =
βωiD(1− h)

(hr −RD)
(12)

It seems like we have a nonlinear system with three equations ((10), (11), (12)) and four unknowns

(µi, h, r, ηiD). In fact, equation (10) provides little information: given values for h and r, it

simply says that µi = aih/(1 − h)(RU − r). Since µi must be non-negative we can at most say

that a necessary condition for optimality is having RU > r, a condition that is not guaranteed

by our initial assumption that EiR > hr.

Given that equation (10) does not pin down the exact value of any variable, we can focus on

the nonlinear system of two equations ((11), (12)) and three unknowns (h, r, ηiD). There is still

indeterminacy. Equilibrium repo rates and repayment rates are related to equilibrium haircuts

by the following equations:

(13) r =
1

h
[RU − (1− h)

EjR+ βωiD
aj

]

(14) ηiD =
βωiD

RU−RD

1−h − EjR+βωi
D

aj

We can for example, study an economy with initial parameters:

β = 0.35 RU = 1.4 ωiU = 4 ωjU = 6 ai = 0.9

RD = 0.1 ωiD = 2 ajD = 4 aj = 0.2
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The following are examples of equilibrium values of h, r and ηiD:

h r ηiD φ+

0.89 1.0045 0.0969 9.09

0.90 1.0444 0.0833 10

0.91 1.0835 0.0711 11.11

The third column reports leverage 1/(1 − h), which is the long position in the security. Short

sales are given by 2− φ+, which in the three outcomes is equal to 7.09, 8 and 9.11, respectively.

To check the consistency of the equilibrium, we need to check that the value of βωjU + 2RU −

(RU − hr)/(1 − h) is positive, which means that agent j is solvent in state U , as we assumed

before computing the equilibrium. This expression is indeed positive in the three cases reported

in the table (equal to 0.3, 0.2999 and again 0.3, respectively).

It is also necessary to check that for all these equilibria, hr ∈ (EjR,EiR) and that r < RU .

All these conditions are satisfied by the equilibria shown on the table.

Observe that haicuts move together with repayment rates (this must always happen in this

2-agent and 1-security economy, as seen in equation (14)). The way repo rates (r − 1) change

allows for this outcome, which is not surprising in a two-agent and one-security case. A higher

haircut makes the repo short become more solvent. His solvency rate is ηiD =
βωi

D

|zi|(rh−RD) . An

increase in the haircut 1 − h reduces leverage 1
1−h = |z|. To reinforce this, hr is decreasing in

the haircut (even though r might not always be decreasing), as seen in equation (23).

As we will see in section 5, in a competitive setting, where many agents trade many securities,

the impact of the haircut in one security on the insolvency of an agent becomes less noticeable.

It is the other direction that becomes more relevant: haircuts rise in response to lower repayment

rates of the counterparty, for securities that involve a risk from the creditor’s point of view (have

a collateral liquidation value below the promised repo loan settlement). That is, in a competitive

setting, creditors tend to focus on how to protect their individual credits rather than trying to

influence the solvency of the counterparty.
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4 Existence of equilibrium in the general case

In this section we strengthen our assumptions on agents’ characteristics,

Assumption 1. Agents characteristics. For every agent i, (ωi0, (ω
i
s)) >> 0 and marginal

utilities ratios DU is/DU
i
0 have positive minimum on {x;U i(x) ≥ U i(ωi) ∧ x ≤

∑
i ω

i}.

Notice that the bankruptcy rule ensures strict positivity of consumption in each state of the

second date. This assumption has to be extended to the third date when repo is not done up

to maturity and that date is needed: (ωis+)) >> 0 and marginal utilities ratios DU is+/DU
i
s have

positive minimum on the same set.

Lemma 1. Under assumption 1, there are positive-real-valued functions M̂ i
f defined on repo

rates, date 0 security prices and date 1 commodity prices, such that there is an equilibrium under

the constraints qf0z
ij
f ≥ −θM̂ i

f (pU , qf0, rf ), ∀i, j, f , and ∀θ ∈ (0, 1].

Proof. See the Appendix.

Theorem 1. Under assumption 1, there are constants M̄ i
f > 0 (i = 1, · · · , I and f = 1, · · · , F )

such that, for all 0 < N̄ ≤ mini,f{M̄ i
f}, there are positive bounds N i

f < N , such that there is

equilibrium under the constraints:

qf0z
ij
f ≥ −N

i
f , ∀i,∀j,∀f

Proof. From Lemma 1, under Assumption 1, there is an equilibrium (x, φ, z, p, q, r, h) in which

for each i, j and f , the market value of the repo position zijf satisfies the constraint:

qf0z
ij
f ≥ −M̂

i
f (pU , qf0, rf )

Let M̄ i
f ≡ M̂ i

f (pU , qf0, rf ), then (x, φ, z, p, q, r, h) is also an equilibrium under the constraints:

qf0z
ij
f ≥ −M̄ i

f , ∀i, ∀j,∀f . Now, setting fixed bounds qf0z
ij
f ≥ −N̄ i

f , ∀i, ∀j, ∀f , in the proof of

Lemma 1, we find an equilibrium (x′, φ′, z′, p′, q′, r′, h′) that satisfies:

q′f0z
ij
f ≥ −min{M̂ i

f (p′U , q
′
f0, r

′
f ), N̄ i

f}
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If we now let N i
f ≡ min{M̂ i

f (p′U , q
′
f0, r

′
f ), N̄ i

f} and we have that (x′, φ′, z′, p′, q′, r′, h′) is an

equilibrium under the constraints q′f0z
ij
f ≥ −N i

f , ∀i,∀j,∀f .

5 Haircuts

Haircuts in pairwise repo trades are endogenously determined in the equilibrium that we defined

and whose existence was just established (and characterized for the 2-agent and 1-security case).

We discuss now what may govern haircuts, that is, how should we expect haircuts to be set

in equilibrium, depending on what are the parameters and other equilibrium variables for the

relevant pair of repo traders.

Suppose agent i has a possession value for security f at the initial node, that is, a binding

box constraint for security f at the initial node - more precisely, the shadow value µif0 of this

constraint is positive. Denoting by λie agent i’s multiplier for the budget constraint at each

node e and νijf the multiplier for the lower bound on repo positions value, from the first order

conditions for agent i’s problem, we get the following expression for hijf

hijf =
τ ijf (p, q) +

νij
f

λi
0

1− rf
∑
s
λi
s

λi
0
αisκ

ij
s

(15)

where

τ ijf (p, q) =


∑
s
λi
s

λi
0
αis(1− κijs )

(qfs+psRfs)
qf0

, if µif0 = 0

1−
∑
s
λi
s

λi
0
αisκ

ij
s

(qfs+psRfs)
qf0

, if µif0 > 0

and κijs = γijs η
j
s + (1− γijs ), γijs = 1 if Iijs > 0, γijs = 0 if Iijs < 0, αis = 1 if agent i is solvent in

state s, αis = 0 if i goes bankrupt in state s, and ηis satisfies (14).

It is worth recalling that ηjs is the effective percentage of his debt that agent j pays to all of

his counterparties, so it can be used as a measure of counterparty risk: the lower ηjs is, the riskier

(or less solvent) agent j is in state s, and this must be taking into account by agents deciding

having j and counterparty and, in particular, in setting the terms of repo contracts (hijf ).

Equation (15) is true in any equilibrium and can be used to study the incentives that coun-

terparties i and j have to either increase or decrease the haircut (1 − hijf ) associated to their
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repo transactions in response to an increase in the risk of one of the counterparties. Let’s look

at the derivative of hijf with respect to ηjD, under the assumption that agents’ marginal rates of

income substitution remain unchanged. To be more precise,

Assumption (Λ): agent i’s marginal rates of substitution of income across the first two dates,

λis/λ
i
0, are not affected by a change in the counterparty j’s effective repayment rate ηjD.

Although we might not want to take this assumption literally, it is useful to get a sense of

how haircuts move with counterparty risk in a context where agent i is trading in many securities

and has many counterparties, so that a small variation in the default rate of one of them in some

state won’t affect the optimal inter-nodes deflators of agent i.

This assumption holds for linear utilities (recall that the bankruptcy structure ensures the

positivity of consumption in each state, which implies that DU is(x
i) = λisps) in the case of repo

to maturity (dispensing with the third date and allowing for ps = 1) and provided that agent i

is consuming at the initial date (so that DU i0(xi) = λi0p0) and that the equilibrium commodity

price p0 is not affected by a small change in the effective repayment rate ηjD of counterparty j

in state D.

∂hijf

∂ηjD
=

−αiDγ
ij
D ·

1
qf0
· λ

i
D

λi
0
· [(qfD + pDRfD)− hijf qf0rf ] + hijf

∂rf

∂ηjD

∑
s

λi
s

λi
0
αisκ

ij
s

1− rf
∑
s

λi
s

λi
0
αisκ

ij
s

(16)

When most of the response to a variation in counterparty risk is channeled into a change in

haircuts, rather than a change in the repo rate, we can be more specific about the direction of

change. We say that repo rates are competitive if actions by a pair of agents i and j, in particular

actions that change their solvency rates (ηis and ηjs) do not affect equilibrium repo rates. This is

a reasonable assumption if there are many agents (and therefore, many pairs of counterparties)

in the economy, but not to be expected in an economy with only two (or very few) agents, as in

the example of section 3. We have,

Proposition 2. Suppose repo rates are competitive. Let us evaluate the impact of ηjD on hijf ),

under a scenario where agents’ marginal rates of substitution are not affected. Say IijD > 0 (i is

a net creditor in the repo market with respect to j) and i is solvent in state D (αiD = ηi2 = 1). If
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agent j’s expected repayment rate ηjD decreases, agent i will want to:

• Increase the haircut (1−hijf ) he charges (pays) in his repo long (short) positions with agent

j, of securities f such that hijf qf0rf > qfD + pDRfD.

• Decrease haircuts paid to (charged to) agent j for his short (long) repo positions in securities

g such that hijg qg0rg < qgD + pDRgD.

If IijD < 0 (i is a net debtor in the repo market with respect to j), or if i is insolvent in state D,

he has no incentives to increase or decrease the haircut (1− hijf ) in response to expected changes

in ηjD.

Remark 1. The last part of the proposition reflects the fact that if i were a net debtor to agent

j instead, he would not be entitled to any share in the liquidation of agent j’s estate in the event

of agent j’s bankruptcy. Note that as long as agents i and j trade in the repo market, one of

them must be a net creditor and proposition 2 applies to either i or j, as long as the agent is

solvent in state D.

Proof. See the appendix.

Suppose that i is a net creditor with counterparty j, and that zijf > 0, and that hijf qf0rf >

qfD + pDRfD. If agent i anticipates a decrease in j’s expected repayment rate, ηjD, then i would

like to charge j a higher haircut (by lowering hijf ). To understand why this is so, note that the

magnitude of j’s net debt to i, is given by zijf [qf0rfh
ij
f − (qfD + pDRfD)] and lowering hijf would

reduce this debt and, therefore, the loss resulting from agent j’s bankruptcy.

Now suppose hijf qf0rf < qfD + pDRfD. If everything else is as in the previous paragraph,

a decrease in ηjD will be an incentive for i to collect a lower haircut from j (by raising hijf ).

Even though agent i is a net creditor to agent j when adding up all of his repo transactions

with j, he has now a debt to j associate to his position on security f with absolute value

zijf [(qfD+pDRfD)−qf0rfh
ij
f ]. That is, the collateral kept by i when lending cash to j has now a

higher market value than what j owes to i. If hijf increases, he gets to keep more of the collateral

in the event of j’s bankruptcy.
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In both cases, i has incentives to respond in a way that counteracts the loss in income when

j becomes more insolvent in state D. The appropriate response depends on the relationship of

the value of j’s debt (qf0rfh
ij
f ) with the market value of the collateral (qfD + pDRfD). This

relationship is what is usually understood as asset risk, the risk is precisely that the value of

the collateral might decrease in some future date and become insufficient to cover the value of

the debt that it is backing. In practice, haircuts are set so that it is expected that13 hijf qf0rf <

(qfD+pDRfD). This should be considered the most relevant case in the context the proposition.

Proposition 2 is useful to understand agents’ incentives when a perceived increase in coun-

terparty risk occurs. It should not be interpreted as a comparative statics analysis. One should

expect to observe different haircuts but also different repo positions in equilibria with different

repayment rates. One could expect that even the roles of net creditor and net debtor might get

reversed when repayment rates change.

6 Conclusions

Repo markets have attracted a lot of attention in the applied macro and finance literatures,

particularly since the 2008 financial crisis. These literatures have focused on how leverage in

these markets has impacted on the whole economy, how this leverage depends on repo haircuts

and what determines these margins. However, at the theoretical level, these important issues had

not been addressed yet, possibly due to the complexity and intrinsic non-convexities involved in a

bankruptcy model where counterparty risk could be understood and margins could be explained

as endogenous variables.

We contribute in that direction, providing an example, adressing existence of equilibrium

and charactering how counterparty and asset risks interact to determine repo haircuts. Full

recognition of the recourse nature of repo loans is crucial. This implies also that default must

be modelled in terms of insolvency and according to bankruptcy rules. The model can be made

13Or if the value of the collateral decreases and doesn’t cover the value of the debt, a margin call is issued by

the lender of funds.
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richer, incorporating more detailed institutional aspects, or allowing also for centrally cleared

repo, but the main drivers of margins seem to identifiable already in a simple model. Com-

petitiveness versus small numbers of traders or asset risk in a creditor’s perspective (suggesting

default tensions) versus a debtor’s risk perspective (concerned with repo fails instead) are some

of the key issues in assessing how counterparty risk impacts on repo haircuts and the resulting

leverage.
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A Appendix

Lemma 2. Let 0 < β̂ < β. A sufficient condition that guarantees that no agent goes bankrupt

in s = U is that the value of agents’ repo positions is bounded as follows:

qf0z
ij
f ≥ −M̂

i
f (pU , qf0, rf ) ≡ − qf0β̂pUω

i
U

(I − 1)[F +
∑
f (RfU + rf )]

(17)

To prove this lemma, recall that the net income from agent i’s securities and repo positions at

s = U is given by
∑
f (φif0(qfU +pURfU )+

∑
j 6=i z

ij
f qf0rfh

ij
f ). From the bilateral market clearing

conditions, if repo positions are bounded from below by −M , they are bounded from above by

M . From the box constraint, short security positions are bounded from below by −(I − 1)M .

When this is the case, the magnitude of the debt is then bounded from above by:

∑
f

(
|φif0|(qfU + pURfU ) +

∑
j 6=i

|zijf |qf0rfh
ij
f

)
≤
∑
f

(I − 1)M [(qfU + pURfU ) + qf0rfh
ij
f ]

≤(I − 1)M [F +
∑
f

(RfU + rf )]

where the last inequality follows from the fact that (pU , qU ) is in the simplex, qf0 ≤ 1 and

hijf ≤ 1. We want any possible debt in s = U to be covered by the garnishable income of the

agent in that state, that is, we want βpUω
i
U > (I − 1)M [F +

∑
f (RfU + rf )]. This will certainly

be achieved if the lower bound for the value of repo positions satisfies condition (17).

Proof of Lemma 1.

1. The n-th Auxiliary economy.

We will construct a sequence of auxiliary economies E(n). The economy will be truncated in

such a way that agents’ consumption plans go beyond the corresponding attainability bounds by

a small amount ε > 0. These attainability bounds exist as long as repo positions are bounded

from below (see part 3 of this proof).

Now we need to make some change of variables (and extend what repo trades might be)

together with modifying some constraints in order to prove the lower semi-continuity of the

constraint correspondence of each agent. First, suppose that at least a small portion of the repo
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transactions agent i has with agent j as counterparty can be done under the same terms each of

the other agents get when dealing with j. More precisely, for all k 6= j, agent i is allowed to hold

the repo position zikjf in exchange for a cash loan with haircut (1− hkj) = (1− hjk) instead of

(1− hij). Remember that, as a matter of notation, hlkf and hklf both denote the same haircut.

Next, we note that repo rates are decided at the initial date, when repos are negotiated.

Define Pf ≡ 1/rf and make the following change of variables: z̃ikjf = qf0rfz
ikj
f for all i, j, k,

and f .

After these changes of variables and new bounds on repo positions, we modify agent i’s budget

constraints. At the first date we have:

p0(xi0 − ωi0) +
∑
f

qf0(φif0 − oif ) +
∑
f

Pf
∑
j 6=i

∑
k 6=j

hkjf z̃
ikj
f ≤ 0

The box constraint is rewritten in term of the new variables and relaxed a bit:

qf0φ
i
f0 +

∑
j 6=i

∑
k 6=j

Pf z̃
ikj
f ≥ −1/n

Agent i’s net income from his repo positions with counterparty j, at state s is given by:

Iijs (z̃i) =
∑
f

∑
k 6=j

z̃ikjf

[
hkjf −QfsPf

]
Where the price Qfs will be set as close as possible (and for some n onward will be exactly

equal) to (qfs + psRfs) /qf0. This will become apparent after we define who sets this price and

the criterion that is used to set it.

Payments from the agent’s possession of securities at the beginning of the second date, in state

s, are given by:

Ξis =
∑
f

φif0 (qfs + psRfs) +
∑
f

∑
j 6=i

∑
k 6=j

z̃ikjf QfsPf

Agents behave as if bankruptcy in each state is given. The decision is taken by a fictitious agent

that sets the variable αis = 1 when the agent is solvent and αis = 0 when the agent declares

bankruptcy, according to the following criterion:

(ηis, α
i
s) =


(1, 1) , Ξis +

∑
j 6=i[η

j
sI
ij+
s − Iij−s ] ≥ −βpsωis(

βpsω
i
s+Ξi

s+
∑

j 6=i η
j
sI

ij+
s∑

j 6=i I
ij−
s

, 0

)
, otherwise

(18)
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Note that we have also written the criterion that defines the repayment rate of the agents in

each state. The repayment of agent i in state s is defined by ηis ∈ [0, 1], taken as given by each

agent. We can write the budget constraint for the second date, state s, as:

ps(x
i
s − ωis) +

∑
f

qfsφ
i
fs ≤ αis

(
Ξis +

∑
j 6=i

ηjsI
ij+
s − Iij−s

)
+ (1− αis)

(
− βpsωis

)
(19)

We make an additional modification to equation (19). Suppose that there is a fictitious agent

that sets γijs = 1 if Iijs > 0 and γijs = 0 if Iijs ≤ 0. Then Iij+s = γijs I
ij
s , Iij−s = −(1 − γijs )Iijs .

Agent i takes γijs as given for each j 6= i and we rewrite state s’s budget constraint as:

ps(x
i
s − ωis) +

∑
f

qfsφ
i
fs ≤ αis

(
Ξis +

∑
j 6=i

κijs I
ij
s

)
− (1− αis)

(
βpsω

i
s

)
where κijs = γijs η

j
s + (1− γijs ) ∈ [0, 1]. Agent i’s box constraint for the second date is:

φifs ≥ −1/n

Budget constraints at the third date remain unaltered, given by (6). The value of agent i’s repo

trade with counterparty j is constrained in the following manner:

Pf z̃
iij
f ≥ −M

i
f (pU , qf0, Pf ) + Pf/n, ∀j 6= i(20)

where

M i
f (pU , qf0, Pf ) =

qf0β̂pUω
i
U

(I − 1)
(
F +

∑
f (RfU + 1/(Pf + 1/n)

)
and β̂ ∈ (0, β) is fixed and given. For the moment, we impose also exogenous bounds:

z̃iijf ≥ −n,

and z̃ikjf ∈
[
− 1

n
,

1

n

]
, ∀j 6= i,∀k ∈ {1, · · · , I}\{i, j}(21)

Remark 2. Note that, as n → ∞, M i
f (pU , qf0, Pf ) → M̂ i

f (pU , qf0, rf ). In the limit Pf z̃
iij
f ≥

−M i
f (pU , qf0, Pf ) ⇔ qf0z

iij
f ≥ −M̂ i

f (pU , qf0, rf ).

2. Definition of quasi-equilibrium for the n-th auxiliary economy.

A quasi-equilibrium is an allocation of bundles, securities and modified repo positions (x, φ, z̃)

together with prices (p, q, P ) and haircuts implied by h, such that:
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(a) for each agent i, the plan (xi, φi, z̃i) is optimal, given the values of the bankruptcy viariables

α = (αis) i = 1, · · · , I and s = U,D, that he observes,

(b) commodity markets clear:
∑
i

(
xi0 − ωi0

)
= 0 and

∑
i

(
xis − ωis

)
=
∑
f Rfs,

∑
i

(
xis+ − ω

i
s+

)
=∑

f Rfs+ for all s,

(c) stock markets clear:
∑
i φ

i
fe = 1 at each event e,

(d) repo markets clear:
∑
k 6=j z

kij +
∑
l 6=i z

lji = 0 for each i < I and j > i.

It is important to note that a consumption plan that is optimal in an auxiliary economy, where

agents take bankruptcy as given and out of their hands, might not be optimal in the original

economy, where agents decide their own bankruptcy in each state. This problem will disappear

in the limit.

3. If repo positions are bounded as in (21), then individually-feasible and market clearing allo-

cations are bounded.

To see this, let M be such that z̃iijf ≥ −M , ∀i. From the market clearing condition in repo

markets we have that:

z̃jjif = −
∑

l 6∈{i,j}

z̃ljif −
∑

k 6∈{i,j}

z̃kijf − z̃iijf ≤ 1/n(I − 2) + 1/n(I − 2) +M = M + 1/n[2(I − 2)]

From the box constraint we have that:

qf0φ
i
f0 ≥ −1/n−

∑
j 6=i

z̃iijf −
∑
j 6=i

∑
k 6∈{i,j}

z̃ikjf ≥ −
[
(I − 1)M + 1/n

[
3(I − 1)(I − 2) + 1

]]
≡ −Mn

Then qf0φ
i−
f0 ≤ Mn. For any attainable node 0−market-clearing portfolio allocation we have

qf0φ
i
f0 + qf0

∑
j 6=i φ

j
f0 ≡ qf0φ

i
f0 +

∑
j 6=i

(
qf0φ

j+
f0 − qf0φ

j−
f0

)
= qf0. So we have qf0φ

i
f0 ≤ qf0 +∑

j 6=i qf0φ
j−
f0 ≤ qf0+(I−1)Mn. At node s we have 0 ≤ φifs ≤ 1. Finally, attainable consumption

is bounded by: 0 ≤ xi0 ≤
∑
i ω

i
0, by 0 ≤ xis ≤

∑
i ω

i
s +

∑
f Rfs and by 0 ≤ xis+ ≤

∑
i ω

i
s+ +∑

f Rfs+ .

4. Generalized game for the n-th auxiliary economy.



A APPENDIX 29

We define a generalized game played by consumers, auctioneers and some additional agents

whose choice sets and objectives we describe now:

An auctioneer at the first date chooses (p0, q0, P ) in the simplex ∆1+2F
+ to maximize:

p0

∑
i

(xi0 − ωi0) +
∑
f

qf0

∑
i

(φif0 − oif ) +
∑
f

Pf
∑
i<I

∑
j>i

hijf

∑
k 6=j

z̃kijf +
∑
l 6=i

z̃ljif


Since repo markets are bilateral and must clear for each pair of agents, while repo rates are

assumed to be just security-specific, we still at the first date, and for each security f , another

auctioneer choosing hf = (hijf )i<I,j>i on the simplex ∆
I(I−1)/2
+ to maximize:

∑
i<I

∑
j>i

hijf

∑
k 6=j

z̃kijf +
∑
l 6=i

z̃ljif


At state s of the second date, there are several agents to consider. First, an auctioneer chooses

(ps, qs) in the simplex ∆1+F
+ to maximize:

ps

[∑
i

(xis − ωis)−Rfs

]
+
∑
f

qfs
∑
i

(φifs − φif0)

For each f , there is an agent that chooses Qfs in the set
[
0,

(qfs+psRfs)
qf0+1/2n + 2n

]
∩
[
0, 2n+1

]
to

minimize:

(qf0Qfs − (qfs + psRfs))
2

To deal with the budget non-convexity caused by bankruptcy, for each agent i, there are three

added fictitious agents in state s. Each of these agents take the choices of every other agent in

the whole economy as given; this includes the bankruptcy variable for consumer i in state s′ 6= s.

(i) The first of these agents, which we denote i0s, solves consumer i’s problem under the pre-

sumption that i declares bankruptcy in state s. That is, i0s has the same utility function

and endowments as consumer i, but the budget constraints differ, only in state s, where

i0s assumes that the state s bankruptcy variable α
i0s
s takes value 0. Let’s denote the utility

obtained by this agent when he solves his problem by U
i0s
?s
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(ii) The second of these agents, i1s, solves consumer i’s problem while being solvent in state s,

taking the value of the own bankruptcy variable α
i1s
s to be 1. Denote this agent’s maximal

utility by U
i1s
?s

(iii) A third agent chooses αis in [0, 1] in order to maximize:

αis

[
U
i1s
?s − U

i0s
?s

]
(22)

Finally we need to construct the effective payments, which depend on reimbursement rates. For

each pair (i, j), there is a fictitious agent that chooses γijs in [0, 1] in order to maximize:

γijs I
ij
s

For each i, and each s, there is a fictitious agent that chooses ηis in [0, 1] in order to minimize∑
j 6=i

(1− γijs )Iijs

 ηis −
βpsωs + Ξis +

∑
j 6=i

γijs η
j
sI
ij
s

2

At date 2, state s+, we can set ps+ = 1.

Finally, consumers choose plans (xi, φi, z̃i) satisfying the budget and box constraints, in the

above modified forms, in order to maximize utility. Note that the consumers only take into

account the given values of the bankruptcy variables αis (i = 1, · · · , I and s = U,D), that is,

they only consider the values obtained in (22).

5. αis is such that:

αis


= 1

∈ (0, 1)

= 0

⇒
Ξis +

∑
j 6=i

[ηjsI
ij+
s − Iij−s ]



≥

=

≤

− βpsωis
This will ultimately imply that αis is such that the condition in equation (18) is satisfied.

Denote by RHSi the expression Ξis+
∑
j 6=i[η

j
sI
ij+
s −Iij−s ] evaluated at the at plan agent i picks

once αis has been chosen for him (as in (22)). Denote by RHSi
0
s and RHSi

1
s the same expression

but now evaluated at the plans that agents i0s and i1s pick, respectively (taking for α
i0s
s and α

i1s
s

the values 0 and 1, respectively).
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Consider first the case when αis = 1. By the way αis is chosen, we know that it must be

the case that U
i1s
?s ≥ U

i0s
?s. If RHSi < −βpsωis then agent i0s could choose the same plan as

the one chosen by agent i when solving his own problem (where α
i0s
s = 0). Indeed, this plan

would satisfy all budget constraints in agent i0s’s problem but, crucially, would yield strictly

more consumption in state s. Denote by Û
i0s
s the utility attained by i0s when choosing this plan.

Since utilities are monotone and, in particular, utilities increase with consumption in state s, we

would have Û
i0s
s > U

i1s
?s ≥ U

i0s
?s. This contradicts the optimality of U

i0s
?s.

The case when αis = 0 is analogous and we conclude that, if αis = 0, we cannot have RHSi >

−βpsωis.

If αis ∈ (0, 1) it is necessary that U
i1s
?s = U

i0s
?s. In this case both arguments apply and RHSi

can neither be strictly lower, nor strictly greater than −βpsωis.

In short, the monotonicity of agents’ preferences have the consequence that even though, for

each i and s, αis is chosen using a utility criterion, it is consistent with a choice made using a

solvency criterion (as in (18)).

6. Consumers’ constraint correspondence is continuous and the generalized game has a an equi-

librium.

Upper semi-continuity of constraint correspondences is immediate. To prove the lower semi-

continuity it suffices to show that, any parameters, the interior of the consumers’ constraint set

is non-empty, since consumers have now a modified constraint set (taking the values of αis as

given) which is convex. We proceed to find a plan that belongs to this interior:

If p0 6= 0 take xi = 0, φi = 0 and z̃i = 0.

If p0 = 0 and q0 6= 0, there is at least one security f such that qf0 > 0. Let

φmin ≡ −
1

2
min
f,s

{
min{1, ps+ωis+}

max{1, ps+Rfs+} · n · F

}
Choose the consumption plan xi = 0 and repo positions z̃i = 0. At date 0 choose the portfolio

φig0 = 0 for all g 6= f , φif0 = oif/2. Finally, at date 1 set φigs = φmin ∀g, s.

If p0 = 0 and q0 = 0, then there is some f such that Pf > 0. There is some k < I and some
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j > k such that14 hkjf > 0. Now, κijs ∈ [0, 1] implies PfQfs(1 − κijs ) + κijs h
kj
s ≤ [PfQfs + hkjs ].

Let xi = 0; z̃ilvg = 0, ∀(l, v, g) 6= (k, j, f); φig0 = 0, ∀g; φigs = φmin, ∀g∀s, and make

z̃ikjf = −1

2
min
s

{
min{1, (1− β)psω

i
s − φmin

∑
f qfs}

max{1, PfQfs + hkjf } · n

}

Notice that (qs, ps) ∈ ∆1+F
+ ensures that the numerator of the fraction is positive.

Existence of equilibrium for the generalized game follows from the continuity of the constraint

correspondences, by a standard argument.

7. First order conditions.

At an equilibrium for the generalized game, the following first order conditions of consumers’

optimization problems must hold (since the reverse-convex constraint qualification holds, as

the modified constraints are linear, once the values for αis are taken as given): there exist nλie

(multiplier for agent i’s budget constraint in node e), nµife (multiplier for the box constraint for

security f in node e), and nν̄ z̃ikj
f

, nν z̃ikj
f

(multipliers for the upper and lower bound for z̃ikjf such

that:

nxie :
∂U i(nxi)

∂nxie
≤nλienpe, with “=” if nxie > 0

nφif0 : nqf0 =
∑
s

nαis ·
nλis

nλi0 − nµif0

·
(
nqfs + npsRfs

)
nφifs : nqfs =

nλis+
nλis

nps+Rfs+ +
nµifs
nλis

nz̃ikjf : nP f =

∑
s
nαis

nλis κ
ij
s
nhkjf + nν z̃ikj

f
− nν̄ z̃ikj

f

nλi0
nhkjf −

∑
s
nαis

nλis

(
1− nκijs

)
nQfs − nµif0

,with nν̄ z̃ikj
f

= 0 if k = i

The last equation can be written also as:

nλi0
nhkjf

nP f −
∑
s

nαis
nλis

(
1− nκijs

)
nP f

nQfs − nP f
nµif0 =

∑
s

nαis
nλis

nκijs
nhkjf + nν z̃ikj

f
− nν̄ z̃ikj

f

14Note that if we hadn’t extended repo trades to include zikjf (which we will eventually get rid off), we could

not guarantee the positivity of some hkj for some agent k. The extension allowed us to assume that h is in a

simplex.
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The first order conditions for agents i0s and i1s are analogous, with the values for the respective

αi
0

s and αi
1

s set as explained in part 4.

From the problem of the agent that chooses Qfs we have that:

nQfs =
(nqfs + npsRfs)

nqf0

+
1

2 · (nqf0)2
(nν − nν̄)

8. The equilibrium for the generalized game is such that markets clear in the n-th auxiliary

economy.

Prices in the n-th auxiliary economy clear markets. For now, lets ignore the superscripts n.

The usual arguments apply to commodities and securities markets. We focus our attention

on repo markets. For each f , we must have
∑
i<I

∑
j>i h

ij
f

(∑
k 6=j z̃

kij
f +

∑
l 6=i z̃

lji
f

)
= 0. If the

expression on the left hand side were strictly positive, the auctioneer would choose Pf = 1 and

Walras’ law would not hold. On the other hand, if it were strictly negative, the auctioneer would

choose Pf = 0 leading agents positions z̃ikjf to its upper bound (see part 7 of this proof), which

would imply
∑
i<I

∑
j>i h

ij
f

(∑
k 6=j z̃

kij
f +

∑
l 6=i z̃

lji
f

)
> 0, a contradiction.

Now, haircuts are such that, for each pair (i, j) we have
(∑

k 6=j z̃
kij
f +

∑
l 6=i z̃

lji
f

)
= 0. If

we had that for some pair
(∑

k 6=j z̃
kij
f +

∑
l 6=i z̃

lji
f

)
> 0, then the auctioneer that sets haircuts

would choose hijf = 1 and we would have a contradiction with what we showed in the previous

paragraph. If we had
(∑

k 6=j z̃
kij
f +

∑
l 6=i z̃

lji
f

)
< 0, the auctioneer would set hijf = 0, which

would imply that all agents set z̃kijf equal to the allowed upper limit (again, see part 7 of this

proof), which in turn would imply
(∑

k 6=j z̃
kij
f +

∑
l 6=i z̃

lji
f

)
> 0, a contradiction.

9. Consumers’ consumption plans are optimal (taking bankruptcy in each state as given) if we

remove the bounds that truncate the n-th auxiliary economy.

Here the usual argument applies15: consumption plan (xi, φi, zi) is optimal for the problem

where consumption and securities positions are not bounded from above. If this was not the case,

there would be (x̄i, φ̄i, z̄i) that would be budget feasible at prices (p, q, P,Q) and U i(x̄i) > U i(xi).

A convex combination of the plans (t · xi + (1− t) · x̄i, t · φi + (1− t) · φ̄i, t · zi + (1− t) · z̄i) with

15Recall that consumers’ problems have convex constraint sets since the second date budget constraints have

been modified by taking as given the values of αi
s.
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t ∈ (0, 1) and close enough to 1 would still be strictly preferred by agent i to (xi, φi, zi), would

be budget feasible and would satisfy the upper bounds imposed in the auxiliary economy. This

would contradict the optimality of (xi, φi, zi) in the auxiliary economy.

Given that markets clear and agent’s choices are optimal (when taking bankruptcy in each

state as given), we have found a quasi-equilibrium for the n-th auxiliary economy.

10. The sequence of quasi-equilibria for the auxiliary economies has a cluster point.

Let n → ∞. We will prove that there is a cluster point for the sequence of equilibria

(nx, nφ, nz̃, np, nq, nP , nQ, nh). First, by compactness, (nx, nφ, np, nq, nh) has a cluster point.

Now we argue that np0 → p0 > 0. Otherwise, denoting by E0 the canonical vector in the

direction of node 0, the consumption plan (1 − np0/(
np0 +

∑
f
nqf0)) · (nx, nφ, nz̃) + bE0 would

be budget feasible for b = min{ωi0, oi10, · · · , oiF0}. To see this, note that at date 0, this new

consumption plan will be feasible if

np0 · b ≤
np0

(np0 +
∑
f
nqf0)

·

np0 · nx
i
0 +

∑
f

nqf0
nφif0 +

∑
f

nP f
∑
j 6=i

∑
k 6=j

hkjf
nz̃ikjf


≤

np0

(np0 +
∑
f
nqf0)

·

∑
l

np0 · ωi0 +
∑
f

nqf0o
i
f


Which is satisfied when b = min{ωi0, oi10, · · · , oiF0}. Clearly, the new portfolio satisfies repo

bounds and budget constraints at first and second dates. The box constraint is also satisfied since∣∣∣(1−np0/(
np0+

∑
f
nqf0))·

(
nqf0

nφif0 +
∑
j 6=i
∑
k 6=j

nP f
nz̃ikjf

) ∣∣∣ ≤ ∣∣∣nqf0
nφif0+

∑
j 6=i
∑
k 6=j

nP f
nz̃ikjf

∣∣∣.
So if np0 → 0 we have that for n big enough, the utility that agent i gets from consuming

(1 − np0/(
np0 +

∑
f
nqf0)) · (nx, nφ, nz̃) + bE0 would be strictly greater than the utility from the

quasiequilibrium plan (nx, nφ, nz̃), which contradicts the optimality of the latter.

An analogous argument shows that, for s = U,D, nps → ps > 0. In the case of the sequence

nps, we would be able to show that for some n large enough, the consumption plan (1−nps/(nps))·

(nx, nφ, nz̃) + ωiks · Es would be preferable to the equilibrium consumption plan.

We also have that nqf0 → qf0 > 0. To see this, take an agent that consumes at note s+ and
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notice that from the first order conditions (see part 7) we have that:

nqfs =
nλis+
nλis

nps+Rfs+ +
nµifs
nλis

⇒ nqfs ≥
nλis+
nλis

nps+Rfs+

Since
nλi

s+

nλi
s

=
Ds+U

i(nxi)

DsUi(nxi)

nps
nps+

. Given Assumption 1,
Ds+U

i(nxi)

DsUi(nxi) has a positive minimum on

{x;U i(x) ≥ U i(ωi) ∧ x ≤
∑
i ω

i}. On the other hand we have shown that the cluster point

for nps is strictly greater than zero. We conclude that the cluster point for nqfs is also strictly

positive. An analogous argument applies to the sequence nqf0 but in this case consider the first

order conditions of the agent i1U and note that:

nqf0 =
∑
s

nαi
1
U
s ·

nλ
i1U
s

nλ
i1U
0 − nµ

i1U
f0

·
(
nqfs + npsRfs

)
≥

nλ
i1U
U

nλ
i1U
0

·
(
nqfU + npURfU

)
Then the argument continues as before. We can use almost the exact same argument to show

that nP → P > 0 (by taking i such that xi0 > 0). From agent i1U ’s first order condition on nz̃
i1U i

1
U j

f

(see part 7 of this proof) we have that:

nP f =
∑
s

nλi
1
U
s

nλ
i1U
0

nαi
1
U
s

nκi
1
U j
s +

nP f

nh
i1U j

f

·

∑
s

nλi
1
U
s

nλ
i1U
0

nαi
1
U
s

nQfs (1− nκi
1
U j
s ) +

nµ
i1U
f0

nλ
i1U
0

+

nν
z̃
i1
U

i1
U

j

f

nh
i1U j

f
nλ
i1U
0

Which implies that along the sequence we must have:

nP f ≥
∑
s

nλi
1
U
s

nλ
i1U
0

nαi
1
U
s

nκi
1
U j
s ≥

nλ
i1U
U

nλ
i1U
0

We have already shown that the sequence
nλ

i1U
U

nλ
i1
U

0

is bounded away from zero so that the cluster

point for nP f is strictly positive. Since the sequence nP f has a non-zero limit, we have by (20)

that the sequence nz̃ikjf is bounded and it has a cluster point z̃ikjf .

Finally note that since the sequences nqf0, nqfs and nps all have positive limits, the se-

quence
(nqfs+npsRfs)

nqf0
converges and for n large enough we have nQfs =

(nqfs+npsRfs)
nqf0

and nQfs →
(qfs+psRfs)

qf0
.

11. The cluster point is a quasi-equilibrium for the limit of the auxiliary economies.

A quasi-equilibrium for the limiting economy, as n → ∞, is defined by the same conditions

that were enumerated in part 2. The fact that a cluster point of quasi-equilibria for the n-auxiliary

economies is quasi-equilibrium for the limiting economy follows from the following considerations:
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1. Market clearing along the sequence implies market clearing in the limiting economy.

2. Given assumption 1 on utilities, we have that for each i, the (sufficient) first order conditions

of the problems of the agents i1U , i
0
U , i

1
D, i

0
D are satisfied in the limit and the choices of these

agents are optimal.

3. For each i and s, the sequence nαis also has a cluster point αis that maximizes (22): for

example, if αis = 1, this means that for n large enough, nαis > 0, which in turn means that

nU
i1s
?s ≥ nU

i0s
?s, so that U

i1s
?s ≥ U

i0s
?s. This implies in particular that what was shown in part 5

of this proof also applies to αis.

4. For each i, again by assumption 1, first order conditions are satisfied in the limit and

consumers choices are optimal when taking as given the value of each αis, s = U,D.

12. The quasi-equilibrium in the cluster point is an equilibrium for the original economy.

Revert to the original variables: rf = 1/Pf and zikjf = z̃ikjf /(qf0rf ) for all i, j, k, and f . Let

zij = ziijf . The plans of the agents in the cluster point are feasible in the original economy. In

particular, the condition qf0z
ij
f ≥ M̂ i

f (pU , qf0, rf ) is satisfied. From Lemma 2 in the Appendix,

this implies that no agent can declare bankruptcy in state U .

Market clearing according to the definition of quasi-equilibrium implies market clearing ac-

cording to the equilibrium definition in the original economy. This follows because zikj = 0 for

every k 6= i. Securities and good markets also clear.

The final thing to note is that consumers’ plans are optimal, according to the definition of

equilibrium. This follows from the fact that bankruptcy cannot occur in state U and the optimal

decision of agent i in the original economy, where the agent decides whether or not to declare

bankruptcy in state s = D, coincides with the decision taken by the same agent in the quasi-

equilibrium, when he takes the value of αiD as given. This is true because of how αiD was chosen:

for example if αiD = 1 it means that the consumption plan and porfolio of agent i are such that

there is no bankruptcy (see part 5 of this proof) and that the utility attained dominates the

utility he could get by declaring bankruptcy. In fact, these two utilities where compared when
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αiD was chosen. The agent takes the bankruptcy decision as given but it coincides with the

decision he himself would have taken.

A final note: The last argument is valid because bankruptcy can only occur in one of the

states. If bankruptcy were possible in both states, αiU and αiD would be optimal for the respective

agents that choose their values but not necessarily for agent i. In that case the optimal decision

for i involves deciding bankruptcy in both states at the same time, while the agents that choose

αiU and αiD make the decision taking the decision of the other as given, and coordination problems

can arise.

Proof of Proposition 2. From (16), if rf is competitive, the derivative of hijf with respect to

ηjs reduces to:

∂hijf

∂ηjD
= −αiDγ

ij
D ·

1

qf0
· λ

i
D

λi0
·

(qfD + pDRfD)− hijf qf0rf

1− rf
[λi

U

λi
0
αiUκ

ij
U +

λi
D

λi
0
αiDκ

ij
D

]
Moreover, we have that

dhij
f

dηjs
has the same sign as [hijf qf0rf − (qfs + psRfs)] and

d(1−hij
f )

dηjs
has

the same sign as [(qfs + psRfs) − hijf qf0rf ]. To see that this is the case, look at the first order

condition of agent i’s problem with respect to zijf :

rf =
λi0∑

s λ
i
sα

i
sκ
ij
s

− 1

qf0h
ij
f

·
∑
s λ

i
sα

i
s[(1− κijs )(qfs + psRfs)]∑

s λ
i
sα

i
sκ
ij
s

− 1

hijf
·

(µif0/qf0) + νijf∑
s λ

i
sα

i
sκ
ij
s

(23)

Lets focus on the term in the middle of the right hand side of (23):

λiUα
i
U [(1− κijU )(qfU + pURfU )] + λiDα

i
D[(1− κijD)(qfD + pDRfD)]

λiUα
i
Uκ

ij
U + λiDα

i
Dκ

ij
D

(24)

In an equilibrium as the one which existence we have proven, we have αiU = 1. The theorem

assumes that i is a net creditor so we have γijD = 1. We have that agent j is solvent in state U .

We must have κijU = 1. We have assumed that i is solvent in state D, so that αiD = 1, we can

suppose that ηjD ∈ (0, 1) (so that j was risky to begin with and so that it makes sense to take

the derivative with respect to ηjD which belongs in the set [0, 1]). From all these considerations,
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we have that (24) is actually positive:

λiD[(1− ηjD)(qfD + pDRfD)]

λiU + λiDη
j
D

> 0(25)

We can conclude from equation (23) that rf < λi0/
∑
s λ

i
sα

i
sκ
ij
s as long as at least one of the

following conditions holds:

(a) Agent i values the possession of security f (µif0 > 0).

(b) Agent i’s position zijf has a market value at the lower bound.

(c) Counterparty j is somewhat risky in state D (ηjD ∈ (0, 1)).

When at least one of the conditions is satisfied we have rf
∑
s
λi
s

λi
0
αisκ

ij
s < 1.
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