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Abstract: The paper studies spatial autoregressive models with group interaction struc-

ture, focussing on estimation and inference for the spatial autoregressive parameter λ. The

quasi-maximum likelihood estimator for λ usually cannot be written in closed form, but

using an exact result obtained earlier by the authors for its distribution function, we are

able to provide a complete analysis of the properties of the estimator, and exact inference

that can be based on it, in models that are balanced. This is presented first for the so-called

pure model, with no regression component, but is also extended to some special cases of

the more general model. We then study the much more difficult case of unbalanced models,

giving analogues of some, but by no means all, of the results obtained for the balanced

case earlier. In both balanced and unbalanced models, results obtained for the pure model

generalize immediately to the model with group-specific regression components.

1 Introduction

One important application of spatial autoregressive (SAR) models is to the analysis of

social networks, particularly for the case when an outcome variable is observed on a prede-

termined network; see, for instance Bramoullé, Djebbari and Fortin (2009), Lee, Liu and

Lin (2010), and de Paula (2016).1 Consider a fixed network of n individuals, represented

by a n × n weights matrix W . The matrix W could be a (0, 1) adjacency matrix, a row-

standardized adjacency matrix, or could more generally be specified in such a way that the

general entry Wi,j is a measure of the strength of interaction between individuals i and j.

A popular specification of a SAR model for the determination of an n× 1 outcome vector

y, given the network and an n× k matrix X of covariates, is

y = λWy +Xβ +WXδ + σε, (1.1)

1For extensions of SAR models that allow for endogenous network formation, see, e.g., Hsieh and Lee

(2016).
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where λ is a scalar autoregressive parameter, β and δ are k × 1 parameters, σ is a scale

parameter, and ε an n × 1 error term. In the peer effects literature, λ captures the

endogenous effect, and δ the exogenous effect; see Manski (1993). In addition to social

networks, model (1.1) has been applied to several other cross-sectional contexts. Also,

when W is block-diagonal, model (1.1) can be seen as a panel data model with cross-

sectional dependence - see for instance the recent paper by Robinson and Rossi (2015),

and references therein.2

A fundamental, at least conceptually, specification for the matrix W in the social

network literature is given by the equal weights matrix Bn := (n− 1)−1 (ιnι
′
n− In), where

ιn denotes the n× 1 vector of ones. In that case, model (1.1) postulates that the outcome

variable for individual i is explained by the “leave-own-out” mean (n− 1)−1∑
j 6=i yj , the

regressors, and the leave-own-out means of the regressors; see, e.g., Moffitt (2001). The

weights matrix Bn may be appropriate when all individuals are equally affected by all

other individuals, or when no information on how individuals interact is available.

A more general assumption is that individuals interact in groups, with each group

member being equally affected by all the other members in that group, and with no links

across groups. This results in W having a block diagonal structure, with equal weights

matrices as blocks. More precisely, letting mi be the distinct group sizes, for i = 1, ..., p,

and ri the number of groups of size mi, for i = 1, ..., p, the (row-standardized) group

interaction weights matrix is

W = diag(Iri ⊗Bmi , i = 1, .., p). (1.2)

Such matrices were used, for example, in Case (1992), Kelejian, Prucha, and Yuzefovich

(2006), and Lee (2007), and is the structure we shall consider in this paper.

We focus on inference on λ, which is often the key parameter in applications, and, for

simplicity (but without loss of generality), take δ = 0 in (1.1). We call a model

y = λWy +Xβ + σε, (1.3)

with weights matrix (1.2) a Group Interaction model. If the group sizes are all equal (i.e.,

p = 1) the Group Interaction model is said to be balanced, otherwise, when p > 1, it is

unbalanced. We assume throughout that mi ≥ 2 for all i. In the balanced case W consists

of r :=
∑p

i=1 ri copies of Bm, so, letting m be the common group size,

W = Ir ⊗Bm. (1.4)

The sample size is thus n =
∑r

i=1 rimi, in general, and n = rm in the balanced model. If

β = 0 in equation (1.3) we call this a pure model.

The class of Group Interaction models was discussed briefly in Hillier and Martellosio

(2013) (hereafter H&M), and some exact results given for the pure balanced case. After

2A special case of the model in Robinson and Rossi (2015) is discussed in Section 3.6.1 below.
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some preliminaries, given in the next section, in Section 3 we provide a complete analysis

of the properties of λ̂ML, and of exact inference procedures based upon it, for the pure

balanced model. Results for the balanced model are of interest for their own sake, but also

because this model is often used to illustrate theoretical results in the literature (see Lee

(2004), (2007), and Lee, Liu, and Lin (2010), for instance). However, the balanced model is

certainly of limited practical importance, so in Section 4 we go on to discuss the unbalanced

model. For reasons to be explained, results for this model are much more complex than

those for the balanced model. Thus, although we do give some general results, we often

confine ourselves to the case of just two group sizes (p = 2) for simplicity. Proofs of the

main formal results are in Appendix A, and Appendix B contains some additional figures.

2 Preliminaries

For the present, let W be any matrix assumed to have at least one negative, and one

positive, eigenvalue, and normalized to have largest eigenvalue unity. The parameter

space for λ is taken to be the largest interval containing the origin within which the matrix

Sλ := In − λW remains non-singular. Letting ωmin denote the smallest real eigenvalue of

W, the parameter space will thus be

Λ := (ω−1
min, 1).

We assume that the parameters are estimated by (quasi-) maximum likelihood (QML),

where the likelihood adopted is that which would apply if, in equation (1.3), ε ∼ N(0, In).

We define the QMLE of λ (assuming it exists), λ̂ML, by

λ̂ML := arg max
λ∈Λ

lp(λ),

where lp(λ) is the profile (quasi) log-likelihood for λ after maximization with respect to

(β, σ2). This estimator is, in general, a zero of a high degree polynomial in λ, and thus

cannot be written in closed form. However, it is shown in H&M that, if W has real

eigenvalues - which will be the case in the present paper - the profile likelihood lp(λ) is

single-peaked on Λ. This means that, for each z ∈ Λ, the event that λ̂ML ≤ z is identical

to the event that the profile score at z, l̇p(z), is negative. Thus, notwithstanding its

unavailability in closed form, an exact expression for the distribution function (cdf) of

λ̂ML can be written down immediately:

Pr(λ̂ML ≤ z;λ) = Pr(l̇p(z) ≤ 0), (2.1)

where, here and throughout, Pr(λ̂ML ≤ z;λ) denotes the cdf of λ̂ML at the point z ∈ Λ

when the true parameter value is λ ∈ Λ. This result is the basis for all of the results in

this paper.

In addition to this single-peaked property, it also easy to see that l̇p(z)→ −∞ as z → 1

(from the left), and l̇p(z) → +∞ as z → ω−1
min (from the right). Thus, Pr(λ̂ML ≤ z;λ) =

3



Pr(l̇p(z) ≤ 0) → 1 as z → 1, and Pr(l̇p(z) ≤ 0) → 0 as z → ω−1
min. In other words, the

inequality Pr(l̇p(z) ≤ 0) does indeed define a distribution function supported on Λ, as one

would expect. Note that this argument holds whatever the distribution of y, provided only

that the random variable l̇p(z) is supported on the entire interval Λ.

In the analytical results to follow we take the distribution of ε to be N(0, In) (that is,

the likelihood is correctly specified), but, as discussed in H&M, all results obtained under

this assumption continue to hold under scale mixtures of the N(0, In) distribution, the

family we denote by SMN(0, In). For symmetric pure SAR models, equation (2.1) provides

the following representation of the cdf of the MLE:3

Pr(λ̂ML ≤ z;λ) = Pr

(
T∑
t=1

dtt(z, λ)χ2
nt ≤ 0

)
, (2.2)

where the χ2
nt variates are independent. Here, nt is the algebraic multiplicity of the

eigenvalue ωt of W, T denotes the number of distinct eigenvalues of W, and the coefficient

functions dtt(z, λ) are given by

dtt(z, λ) := 2

(
1− zωt
1− λωt

)2

(gt(z)− ḡ(z)) . (2.3)

Here,

gt(z) :=
ωt

1− zωt
, (2.4)

for t = 1, ..., T, are the distinct eigenvalues of Gz := WS−1
z , where Sz := In − zW, while

ḡ(z) := (1/n)
∑T

t=1 ntgt(z) = (1/n)tr(Gz) is the average of all eigenvalues of Gz. In what

follows we use the notation that, for any matrix A of full column rank, PA := A(A′A)−1A′,

and MA := I −PA. Also, col(A) denotes the column space of a matrix A. All matrices are

assumed to be real.

3 The Balanced Model

In this section we first of all provide a complete analysis of the exact properties of λ̂ML,

and inference procedures based upon it, for the pure balanced model. Then, we consider

some generalizations of these results to balanced models with regressors: we show that,

for certain special choices of X, the results obtained for the pure model apply with only

minor modifications. We note that in the pure balanced Group Interaction model, because

the profile score is a quadratic in λ, λ̂ML is in fact available in closed form. However, its

distribution theory is most easily obtained by using equation (2.2), and this also leads

naturally to generalizations to the unbalanced model, when the estimator is typically not

available in closed form.

3If normality is not assumed equation (2.2) involves T quadratic forms in nt-dimensional vectors; see

H&M.
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3.1 Distribution Function and Density

For the pure balanced model we have T = 2, n1 = r(m − 1), n2 = r, Λ = (−(m − 1), 1),

and the coefficients in equation (2.2) are given by

d11 = −2

(
z +m− 1

λ+m− 1

)2 1

(λ+m− 1) (1− λ)
< 0,

d22 = 2

(
1− z
1− λ

)2 (m− 1)

(λ+m− 1) (1− λ)
> 0.

Eliminating irrelevant scalars in (2.2), we obtain

Pr(λ̂ML ≤ z;λ) = Pr
(

(m− 1)χ2
r ≤ c(z, λ)χ2

r(m−1)

)
,

where

c(z, λ) :=

(
(1− λ) (z +m− 1)

(1− z) (λ+m− 1)

)2

. (3.1)

Thus, as stated in H&M, in the pure balanced Group Interaction model with ε ∼
SMN(0, In), the cdf of λ̂ML is, for any z, λ ∈ Λ,

Pr(λ̂ML ≤ z;λ) = Pr(Fr,r(m−1) ≤ c(z, λ)), (3.2)

where Fν1,ν2 denotes a random variable distributed as an F distribution with ν1 and ν2

degrees of freedom. The corresponding density function is

pdf λ̂ML
(z;λ) =

2mτ r(m−1)

B
(
r
2 ,

r(m−1)
2

) (1− z)r(m−1)−1 (z +m− 1)r−1(
τ2 (1− z)2 + (z +m− 1)2

) rm
2

, (3.3)

where τ := θ(λ)
√
m− 1, with

θ(λ) = θ :=
λ+m− 1

1− λ
> 0, (3.4)

Note that c(z, λ) = (θ(z)/θ(λ))2 , and that c(z, λ) is monotonic increasing in z. In fact,

c(z, λ)→∞ as z → 1, while c(z, λ)→ 0 as z → −(m−1). Hence, as noted in the comments

following equation (2.1), equations (3.2) and (3.3) define a cdf and pdf supported on Λ.

In addition, Pr(λ̂ML ≤ z;λ) → 0 for all z ∈ Λ as λ → 1, because c(z, λ) → 0, and

Pr(λ̂ML ≤ z;λ) → 1 for all z ∈ Λ as λ → −(m − 1), because c(z, λ) → ∞. That is,

the distribution of λ̂ML becomes degenerate, i.e., var(λ̂ML) → 0, as λ approaches either

endpoint of Λ.

Finally, observe that, since c(λ, λ) = 1, the probability that λ̂ML underestimates λ,

Pr(λ̂ML ≤ λ;λ), is given by Pr(Fr,r(m−1) ≤ 1), which does not depend on λ. The fact that

Pr(λ̂ML ≤ λ;λ) does not converge to 1 as λ → 1, as might have been anticipated, is a

consequence of the degeneracy of the distribution of λ̂ML just discussed.
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Remark 3.1. Gaussian pure SAR models - equation (1.3) with the regression compo-

nent deleted - are members of the 2-parameter exponential family, with parameters (λ, σ2),

sufficient statistics the three quadratic forms

q1 := y′y, q2 := y′W ′Wy, q3 := y′(W +W ′)y,

and canonical parameters

η1 := − 1

2σ2
, η2 := − λ2

2σ2
, η3 :=

λ

2σ2
.

Thus, pure SAR models are, in the notation of Barndorff-Nielsen (1980), at worst, (3, 2)-

curved exponential models. In the balanced model with W = Ir ⊗Bm these three sufficient

statistics are not minimal, and can be written in terms of just two statistics,

s1 := y′(Ir ⊗Mιm)y, s2 := y′(Ir ⊗ Pιm)y.

Specifically, q1 = s1 + s2, q2 = s1/(m − 1)2 + s2, and q3 = 2(s2 − s1/(m − 1)). Collecting

coefficients, the canonical parameters become

η∗1 := − 1

2σ2

(
λ+m− 1

m− 1

)2

, η∗2 := −(1− λ)2

2σ2
.

The pure balanced model is thus a regular exponential model, and it is this that makes it

amenable to exact inference. We will see later that the unbalanced model cannot be reduced

in this way, and so is genuinely curved. It can easily be checked that the two sufficient

statistics s1 and s2 are independent in the balanced model, and

s1(λ+m− 1)2

σ2(m− 1)2
∼ χ2

r(m−1),
s2(1− λ)2

σ2
∼ χ2

r .

3.1.1 First Consequences

The function c(z, λ), defined on Λ × Λ, is strictly decreasing in λ and strictly increasing

in z. The first fact means that the distribution functions for different values of λ do not

cross, so λ1 < λ2 implies that the cdf for λ = λ1 lies entirely above that for λ = λ2. That

is:

Property 1. In a pure balanced Group Interaction model with ε ∼ SMN(0, In), Pr(λ̂ML ≤
z;λ1) > Pr(λ̂ML ≤ z;λ2), for any λ1, λ2 ∈ Λ such that λ1 < λ2, and for any z ∈ Λ, that

is, λ̂ML when λ = λ2 stochastically dominates λ̂ML when λ = λ1.

Since, in our present setup, the mean of λ̂ML is −(m − 1) plus the area above the cdf,

Property 1 implies:

Property 2. The mean of λ̂ML is a monotonic increasing function of λ.
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The second property of the function c(z, λ) implies that Pr(λ̂ML ≤ z;λ) = Pr(c(λ̂ML, λ) ≤
c(z, λ)) = Pr(Fr,r(m−1) ≤ c(z, λ)), or that c(λ̂ML, λ) ∼ Fr,r(m−1). Thus, for the MLE of θ,

θ̂ML :=
λ̂ML +m− 1

1− λ̂ML

, (3.5)

we have established:

Proposition 3.1. In the pure balanced Group Interaction model with ε ∼ SMN(0, In),

θ̂ML
∼= θ
√

Fr,r(m−1).

Alternatively, we could write

θ̂ML
∼= τ

√
fr,r(m−1),

where the random variable fr,r(m−1) := χ2
r/χ

2
r(m−1) has density

pdffr,r(m−1)
(f) =

f
r
2
−1(1 + f)−

rm
2

B
(
r
2 ,

r(m−1)
2

) .

The parameter θ defined in (3.4) is a 1-1 function of λ, and it is clear from equation

(3.2) that the properties of λ̂ML depend on λ only through θ. This key parameter can be

interpreted as just another way of locating the point λ in the interval Λ, i.e., as a different

parameterization of the model.

Remark 3.2. The result in Proposition 3.1 provides a very efficient method of simulating

any properties of λ̂ML (or functions of λ̂ML) that are not available exactly, or are too

complicated, by simply drawing samples from the Fr,r(m−1) distribution.

Remark 3.3. The parameter θ is closely related to the canonical parameters in the expo-

nential family representation of the model, specifically, by θ2 = (m− 1)2η∗1/η
∗
2.

3.1.2 Asymptotics Under Mixed-Normality

In the case r →∞ with m fixed (fixed-domain asymptotics), the asymptotic distribution of

λ̂ML is covered by the results in Lee (2004): λ̂ML is consistent and asymptotically normal

as r → ∞ with large-r variance (based on the information matrix, assuming normality)

given by

vλ :=
(1− λ)2(λ+m− 1)2

2rm(m− 1)
. (3.6)

Note that, as λ goes to either extreme of Λ, this exhibits the same degeneracy as does the

exact variance - see Section 3.1. Lee’s paper does not fully study the asymptotic properties

of λ̂ML when r is fixed and m → ∞ (infill asymptotics). Both the large r and the large
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m asymptotics are easily deduced, under our present mixed-normal assumptions, from

Proposition 3.1, from the following two representations of the Fr,r(m−1) random variable

involved:

Fr,r(m−1) =
(m− 1)

(
1
r

∑r
i=1 χ

2
1

)
1
r

∑r
i=1 χ

2
m−1

=
χ2
r

1
m−1

∑m−1
i=1 χ2

r

,

where all χ2 variates are independent. From the first of these expressions, together with

the fact that, from Proposition 3.1, θ̂ML
∼= θ
√

Fr,r(m−1), we see easily that Fr,r(m−1)
p−→ 1

as r →∞ with m fixed, which implies that θ̂ML
p−→ θ, and hence that λ̂ML

p−→ λ, a simple

example of Lee’s (2004) much more general results. Application of the delta method also

produces, from the first of these expressions, the known asymptotic normality result under

fixed-domain asymptotics. However, the second expression shows that, as m → ∞ with

r fixed, Fr,r(m−1)
d−→ χ2

r/r. Thus, in fact λ̂ML converges to a random variable under this

regime, so is inconsistent under infill asymptotics. We have:

Property 3. In a pure balanced Group Interaction model with ε ∼ SMN(0, In), the limiting

cdf of λ̂ML as m→∞ with r fixed is,

lim
m→∞

Pr(λ̂ML ≤ z;λ) = Pr

(
χ2
r ≤ r

(
1− λ
1− z

)2
)
, −∞ < z < 1,

for any λ, z ∈ Λ, and the associated limiting density is

lim
m→∞

pdf λ̂ML
(z;λ) =

r
r
2 (1− λ)r

2
r
2
−1Γ( r2)(1− z)r+1

e−
r
2( 1−λ

1−z )
2

. (3.7)

The large-m asymptotic moments of λ̂ML can be obtained easily from this asymptotic

density, and are given, for s < r, by

lim
m→∞

E(λ̂sML) =

s∑
j=0

(
s

j

)
hrj(λ− 1)j ,

where

hrj :=
(r

2

) j
2 Γ( r−j2 )

Γ( r2)
,

with hr0 := 1. Thus, the large-m distribution has mean

lim
m→∞

E(λ̂ML) = 1 + hr1(λ− 1),

and variance

lim
m→∞

var(λ̂ML) = (hr2 − h2
r1)(1− λ)2. (3.8)

The limiting bias is thus limm→∞E(λ̂ML − λ) = (1 − λ)(1 − hr1), which is negative for

all r and λ, but diminishes rapidly as r increases. The limiting variances under the two
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asymptotic regimes can be very different, and we shall see later that neither approximates

the exact variance very well.

Figure 1 plots the exact density (3.3) and large-r approximation when r = m = 10,

for z ∈ (−1, 1), and λ = −0.5, 0, 0.5. Here and elsewhere we focus on the interval (−1, 1)

because it seems to be most relevant in applications. These plots and similar graphical

evidence suggest the tentative conclusion that the density of λ̂ML seems, in general, to

be well-centered on the true value of λ. The large-r asymptotic approximation seems

unsatisfactory even for this sample size, which is essentially what motivates an exact

analysis based on the density (3.3).

−1 −0.5 0 0.5 1
0

0.5

1

1.5

λ = 0

−1 −0.5 0 0.5 1
0

0.5

1

λ = −0.5

−1 −0.5 0 0.5 1
0

1

2

3

λ = 0.5

exact

large-r approx

Figure 1: Density of λ̂ML for the pure balanced Group Interaction model with ε ∼
SMN(0, In), when r = m = 10.

In Figure 2 we also plot the exact density and the large-m approximation (3.7) when

m = 5, 50 and r = 10 (in this case we plot two different values of m, since the large-

m approximation (3.7) is the same for all values of m). Note that when λ is positive

the density of λ̂ML is quite insensitive to m, and the large-m density gives an excellent

approximation when λ is positive (despite the MLE not converging in probability to a

constant as m→∞). This is due to the fact that in this model information about λ grows

very slowly with m. The approximation is less accurate when λ is negative.

3.2 A Median Unbiased Estimator

A second consequence of Proposition 3.1, along with the fact that θ is a monotonic func-

tion of λ, is that the median of λ̂ML is defined, in an obvious notation, by the identity

med(θ̂ML) = θ
√

med(Fr,r(m−1)). Solving this equation yields:
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−1 −0.5 0 0.5 1
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−1 −0.5 0 0.5 1
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1

2

3

λ = 0.5

exact, m = 5

exact, m = 50

large-m approx

Figure 2: Density of λ̂ML for the pure balanced Group Interaction model with ε ∼
SMN(0, In), when r = 10.

Proposition 3.2. In the pure balanced Group Interaction model with ε ∼ SMN(0, In), the

median of λ̂ML is

med(λ̂ML) = 1− m

1 + θ
√

med(Fr,r(m−1))
. (3.9)

Thus, the median of λ̂ML is a simple function of the median of the F distribution. The

median bias of λ̂ML is, for any λ ∈ Λ,

bmed(λ) := med(λ̂ML)− λ =
m

1 + θ
− m

1 + θ
√

med(Fr,r(m−1))
. (3.10)

The properties of bmed(λ) are summarized in the next result, proved in Appendix A.

Proposition 3.3. In a pure balanced Group Interaction model with ε ∼ SMN(0, In), λ̂ML

is median-unbiased for all λ when m = 2. For m > 2,

(i) bmed(λ) < 0 for all λ ∈ Λ;

(ii) bmed(λ)→ 0 as λ→ −(m− 1) and as λ→ 1, and also as r →∞ with m fixed;

(iii) bmed(λ) is convex on Λ, and |bmed(λ)| is maximized at

λ =
1− (m− 1)ζr,m

1 + ζr,m
, (3.11)

where ζr,m := (med(Fr,r(m−1)))
1/4, with corresponding maximum m (1− ζr,m) /(1 +

ζr,m).

Note that, since ζr,m > 0, the point of maximum (3.11) is negative for any r and for

any m > 2.4 The asymptotic median bias as m → ∞ can be derived from the fact noted

4Also, note that, in terms of θ, the point of maximum is θ = 1/ζr,m.
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above that Fr,r(m−1)
p−→ χ2

r/r as m→∞. Thus, (3.9) gives

lim
m→∞

med(λ̂ML) = 1− (1− λ)

√
r

med (χ2
r)
.

Figure 3 displays the exact median bias and the large-m median bias of λ̂ML in a Gaussian

pure balanced Group Interaction model, obtained from Proposition 3.3, for a range of

values of r and m, and plotted against λ. The absolute value of the median bias is large

when the number r of groups is small and the group size m is large, and it appears to be

decreasing in m and increasing in r.

−4 −3 −2 −1 0 1

−0.10

0.00

m = 5

r = 5

r = 10

r = 20

large-r approx

−1 −0.5 0 0.5 1

−0.10

0.00

r = 5

m = 5

m = 10

m = 20

large-m approx

Figure 3: Median bias of λ̂ML for the pure balanced Group Interaction model with ε ∼
SMN(0, In).

Clearly, there can be circumstances in which the median bias of λ̂ML is important,

but fortunately this median bias can be eliminated completely by exploiting the fact that

med(λ̂ML) is known to be a monotonically increasing function of λ. In fact, recalling that

θ̂ML
∼= θ

√
Fr,r(m−1), we have that med(θ̂ML/

√
med(Fr,r(m−1))) = θ, i.e., the corrected

estimator θ̃ML := θ̂ML/
√

med(Fr,r(m−1)) is exactly median-unbiased for θ. Since θ is a

monotonically increasing function of λ, we can assert the following:

Proposition 3.4. In the pure balanced Group Interaction model with ε ∼ SMN(0, In), the

estimator

λ̂med :=
θ̃ML −m+ 1

1 + θ̃ML

=
θ̂ML − (m− 1)

√
med(Fr,r(m−1))

θ̂ML +
√

med(Fr,r(m−1))
(3.12)

is exactly median-unbiased for λ.

See Andrews (1993) for a closely related argument in the AR(1) model, but note that

here we have the advantage that the median function is known exactly, and is known to

be strictly monotonic.

3.3 Exact Confidence Interval for λ

Another consequence of the fact that θ̂ML
∼= θ
√

Fr,r(m−1) is that exact confidence sets for

λ are immediate. For, from the result in Proposition 3.1, and denoting the α-quantile of

11



the F distribution with (v1, v2) degrees of freedom by Fv1,v2;α, we have5

Pr

(
θ̂ML√

Fr,r(m−1),1−α/2
< θ <

θ̂ML√
Fr,r(m−1),α/2

)
= 1− α.

Turning this into a confidence interval for λ, we obtain:

Proposition 3.5. In the pure balanced Group Interaction model with ε ∼ SMN(0, In), a

100 (1− α) % exact confidence interval for λ is(
−(m− 1) +

mθ̂ML

θ̂ML +
√

Fr,r(m−1),1−α/2
, 1−

m
√

Fr,r(m−1),α/2

θ̂ML +
√

Fr,r(m−1),α/2

)
. (3.13)

Figure 4 plots some confidence bands (3.13), as a function of the observed λ̂ML, for

λ̂ML ∈ Λ, and for α = 0.05, m = 5, and a series of values of r. When r is small the exact

confidence intervals are very wide, but quickly shrink towards λ̂ML (dotted 45 degree line)

as r increases.

−4 −3 −2 −1 0 1
−4

−2

0

λ̂ML

r = 1

r = 2

r = 5

r = 10

r = 20

Figure 4: Exact equal-tailed 95% confidence bands for λ in the pure balanced Group

Interaction model with ε ∼ SMN(0, In), when m = 5.

A commonly used 100 (1− α) % large-r confidence interval for λ, based on the asymp-

totic normality of λ̂ML, is (
λ̂ML − cα

√
vλ̂ML

, λ̂ML + cα
√
vλ̂ML

)
, (3.14)

where vλ̂ML
is the large-r variance (3.6) evaluated at the MLE, and cα is the appropriate

critical value from the standard normal distribution. Figures 5 compares the confidence

intervals (3.14) with the exact confidence intervals (3.13), when r = 5, for m = 5, 50, and

for λ̂ML ∈ (−1, 1). The general conclusion from this plot, and from similar ones that we

do not report, is that, as long as r > 1, the asymptotic confidence intervals provide a good

approximation to the equal-tailed exact ones if λ̂ML ∈ (−1, 1). The large-r approximation

may be inaccurate for smaller values of λ̂ML, but such values of λ̂ML are rare in applications.

5As usual, there are many choices for such an interval at a given confidence level. Here we give an

interval with equal tail areas, which is not necessarily the shortest, of course.
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Figure 5: Equal-tailed 95% exact (solid lines) and large-r (dashed lines) confidence bands

for λ based on λ̂ML, for λ̂ML ∈ (−1, 1), when r = 5.

3.4 Exact Moments

We first discuss the moments of the MLE for θ, θ̂ML, and, since λ is likely to remain

the main parameter of interest, then go on to discuss the moments of λ̂ML itself. From

Proposition 3.1 it is easily seen that θ̂ML has moments (subject to existence) given by

E(θ̂sML) = τ sE
(
f
s
2

r,r(m−1)

)
. (3.15)

Evaluating the expectation gives the following result.

Proposition 3.6. In the pure balanced Group Interaction model with ε ∼ SMN(0, In), the

s-th moment of θ̂ML exists only for s < r(m− 1), and in that case is given by

E(θ̂sML) = ks(r,m)τ s, s < r(m− 1),

with

ks(r,m) = ks :=
Γ( r+s2 )Γ( r(m−1)−s

2 )

Γ( r2)Γ( r(m−1)
2 )

.

Thus, although θ̂ML itself is biased, the bias, because it is linear in θ, is easily removed,

and the variance of the corrected estimator easily computed. Turning to λ̂ML itself, since

the sample space for λ̂ML is bounded (and the density is bounded), it is clear that the

moments of all orders of λ̂ML exist. However, it is difficult to express the integral defining

the moments in terms of the density (3.3) in a useful closed form. It is possible, though,

to use the integral expressions to plot the exact mean and variance as functions of λ, and

we use these for comparison.

Before considering the moments of λ̂ML itself, we note the following. The mean of θ̂ML

is a known, monotonically increasing, function of λ, namely (k1

√
m− 1)θ. Inverting that

function gives a modified “indirect” estimator of the same form as the median-unbiased

13



estimator λ̃ML defined above, namely6

λ̂mean :=
θ̂ML − (m− 1)k1

√
m− 1

θ̂ML + k1

√
m− 1

.

This correction might be expected to reduce the bias in λ̂ML, and is exactly analogous to

the median correction given in equation (3.12) above, except that
√

med(Fr,r(m−1)) is here

replaced by k1

√
m− 1.7 This suggests that we consider a family of estimators of the form

λ̂φ :=
θ̂ML − (m− 1)φ

θ̂ML + φ
, (3.16)

where φ is a constant (possibly dependent on (r,m)) to be chosen.8 The MLE λ̂ML itself

corresponds to φ = 1, the median unbiased estimator to φ =
√

med(Fr,r(m−1)), and the

indirect estimator to φ = k1

√
m− 1. Note that for both λ̂med and λ̂mean, φ→ 1 as r →∞,

so all three estimators are equivalent under fixed-domain asymptotics. We shall consider

the moments of λ̂φ generally, thereby covering all three cases.

Taylor expansion of λ̂φ as a function of θ̂ML about the mean of θ̂ML, k1τ, gives:

λ̂φ = 1− mφ

φ+ k1τ
− mφ

φ+ k1τ

∞∑
i=1

(−1)i

(
θ̂ML − k1τ

φ+ k1τ

)i
.

To simplify the notation, put

α :=
mφ

φ+ k1τ
, x :=

θ̂ML − k1τ

φ+ k1τ
, µi := E(xi),

so that µ1 = 0, and

λ̂φ = 1− α− α
∞∑
i=1

(−1)ixi.

Truncating the series at the third order term, and taking expectations using Proposition

3.6, gives9

E(λ̂φ) ' 1− α(1 + µ2 − µ3). (3.17)

Similarly, the expansion for var(λ̂φ) up to terms of order 4, is

var(λ̂φ) ' α2
(
µ2 − 2µ3 +

(
3µ4 − µ2

2

))
. (3.18)

6Kyriakou, Phillips, and Rossi (2014) consider a different indirect estimator for λ based on the OLS

estimator.
7The two correction terms seem to be fairly close, except when r is very small, and it seems that√

med(Fr,r(m−1)) < k1
√
m− 1.

8Note that λ̂φ is supported on Λ for any φ .
9The approximation cannot be extended to the entire Taylor expansion, because the moments of θ̂ML

exist only up to order r(m − 1) − 1. However, only the first few terms are needed to obtain an excellent

approximation, so this is unimportant.
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In these expressions the usual formulae for moments about the mean in terms of raw

moments give:

µ2 =
(k2 − k2

1)τ2

(φ+ k1τ)2 , µ3 =
(k3 − 3k1k2 + 2k3

1)τ3

(φ+ k1τ)3
, µ4 =

(k4 − 4k1k3 + 6k2
1k2 − 3k4

1)τ4

(φ+ k1τ)4
.

Fucussing now on the MLE (the case φ = 1), including only the term µ2 in (3.17)

reproduces very accurately the exact mean, over the entire parameter space Λ, and for any

r and m. For the variance, using only the first two terms is inadequate, but the three term

approximation given in (3.18) reproduce the exact variance very well. Figure 6 plots the

exact variance of λ̂ML (obtained by numerical integration) for λ ∈ (−1, 1), along with three

different approximations: the third order approximation (3.18), the large-r approximation

(3.6) and the large-m approximation (3.8). The third order approximation seems to be

vastly superior to the two asymptotic ones.
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Figure 6: Exact variance of λ̂ML, as a function of λ, along with three different approxima-

tions.
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3.4.1 Bias and Bias Correction

From equation (3.17), omitting the final term µ3, the approximate bias of λ̂ML is, to this

order,

bmean(λ) := − (α+ λ− 1 + α(1 + µ2)) ,

where α and µ2 are evaluated with φ = 1. Evidently, the bias is negative for all λ if

α+λ− 1 > 0, or k1

√
m− 1 < 1, which is so if m ≥ 4. Thus, based on this approximation,

λ̂ML is negatively biased for all λ if m ≥ 4. As might be expected, for moderate r the

estimator is almost unbiased for small m, but can be quite biased when m is larger: the

matrix W becomes more “dense” as m increases for fixed r.

An alternative approach to bias-correcting λ̂ML is to simply subtract an estimate of

the approximate bias bmean(λ) from λ̂ML, replacing λ by λ̂ML in bmean(λ). Denoting the

estimates of α and µ2 by α̂ and µ̂2, this means using

λ̂BC := 2λ̂ML − 1 + α̂(2 + µ̂2). (3.19)

We call this a direct bias correction.10 The variance of the corrected estimator can also be

obtained by the same methods, but we omit the details. Instead, in Figure 9 in Appendix

B we plot the mean bias, for λ ∈ (−1, 1), of λ̂ML, and of the three bias-reducing estimators

we have introduced, λ̂med, λ̂mean, λ̂BC. This is obtained by straightforward simulation (cf.

Remark 3.2). Figures 10 and 11 in Appendix B do the same for the RMSE function and

the median bias function.

These figures show that λ̂ML can be significantly biased, but that direct bias correction

(λ̂BC) essentially removes the entire mean bias. However, λ̂BC performs poorly in terms

of the median bias. The estimator λ̂med does not perform as well as λ̂BC in terms of mean

bias, but it does reduce a good portion of the mean bias of λ̂ML, and is median unbiased

by construction. These differing effects reflect the fact that the distribution of λ̂ML can

be quite skewed. the estimator λ̂mean appears to be dominated by λ̂med in terms of both

mean and median bias. The variances of the four estimators are all virtually identical, and

the three bias corrected estimators appear to have lower RMSE than λ̂ML, at least when

λ ∈ (−1, 1). To conclude, then, bias correction does seem desirable, particularly when

r is small and/or m is large, and several methods are available to accomplish this, with

varying degrees of success. Which to choose obviously depends on one’s preferences.

3.5 Hypothesis Testing: Best Invariant Test

As we have seen, the pure balanced model is a two-parameter regular exponential model.

In the canonical parameterization of Remark 3.1 the two sufficient statistics are s1 :=

10In greater detail, putting a :=
√
m− 1, the bias-corrected estimator is

λ̂BC = λ̂ML +
mθ̂ML

1 + ak1θ̂ML

(
1− ak1
1 + θ̂ML

+
a2(k2 − k21)θ̂ML

(1 + ak1θ̂ML)2

)
.
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y′(Ir ⊗Mιm)y, and s2 := y′(Ir ⊗ Pιm)y, with the distribution properties stated in Remark

3.1. The problem of testing H0 : λ = 0 is invariant under the group of scale changes

s1 → as1, s2 → as2, a > 0, applied to the sufficient statistics, and under this group the

statistic s2/s1 is a (single) maximal invariant. The MLE λ̂ML is itself invariant, therefore

also maximal, since both are one-dimensional. The class of invariant tests in this model

therefore coincides with the class of tests based on λ̂ML.
11 Since we know the distribution

of λ̂ML (under the SMN(0, In) assumption), we can apply the Neyman Pearson Lemma to

the distribution of λ̂ML to obtain the uniformly most powerful invariant (UMPI) test of

H0 against each one-sided alternative. The resulting test can be shown to coincide with

the Moran test (see King (1981), who gives an analogous result for the case r = 1).12

The Neyman-Pearson Lemma applied to the density of λ̂ML given in (3.3) gives a best

critical region consisting of large values of the likelihood ratio

pdf λ̂ML
(z;λ)

pdf λ̂ML
(z; 0)

∝

(
1 + 1

m−1U(z)

1 + m−1
θ2

U(z)

) rm
2

,

where U(z) := ((z + m − 1)/((m − 1)(1 − z)))2. This ratio is increasing or decreasing in

U(z) as θ/(m − 1) ≷ 1, so the best invariant test rejects H0 against alternatives λ > 0

when U(λ̂ML) = (θ̂ML/(m − 1))2 is large, and rejects against alternatives λ < 0 when

U(z) is small. The critical values for a two-sided test can be derived directly from the

Fr,r(m−1) distribution, since, under H0, U(z) ∼ Fr,r(m−1). Noting that, in the canonical

representation of the model, (m− 1)s2/s1 is the MLE for the parameter (θ/ (m− 1))2, we

can therefore state:

Proposition 3.7. In the pure balanced Group Interaction model with ε ∼ SMN(0, In), the

UMPI test of H0 : λ = 0 against alternatives H+
1 : λ > 0 (H−1 : λ < 0) rejects H0 when

U(λ̂ML) = (m − 1)s2/s1 is large (small).13 The test is exact, and critical values can be

obtained from the fact that, under H0, U(λ̂ML) ∼ Fr,r(m−1).

When H0 is false the test statistic U(λ̂ML) has the distribution

U(λ̂ML) ∼
(

λ+m− 1

(m− 1)(1− λ)

)2

Fr,r(m−1),

so that, for any critical value tα,

Pr
(
U(λ̂ML) > tα

)
= Pr

(
Fr,r(m−1) > tα

(
(m− 1)(1− λ)

λ+m− 1

)2
)
, (3.20)

11The likelihood ratio test is also invariant, therefore also based on s1/s2, or λ̂ML, as can be shown

directly. The same applies to a test based on a Studentized version of λ̂ML, using, say, the estimated

asymptotic variance as r →∞.
12As usual, of course, there is no uniformly best test against two-sided alternatives.
13The last equality here follows from the fact that, in the canonical representation of the model, (m −

1)s2/s1 is the MLE for the parameter (θ/ (m− 1))2.
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with a similar expression for the other tail. For the one-sided test against H+
1 : λ > 0,

therefore, it is clear that the power → 1 as λ→ 1, and the analogous conclusion holds as

λ→ −(m− 1) for a one-sided test against H−1 : λ < 0. Exact power curves for the test(s)

are easily obtained from equation (3.20).14

3.6 Balanced Models with Regressors

The exact results derived above for the pure model do not generalize easily to the case of

an arbitrary regressor matrix X. However, extensions are straightforward under certain

specific assumptions on X, and we give some examples of this next. These examples are

important in their own right, but also because they might suggest approximations for the

case of an arbitrary X. Before continuing, we note that some care is required in dealing

with the models with regressors, because there are choices for X that mean that the number

of sufficient statistics is less than the number of parameters, in which case inference (on

the full parameter) is impossible. See Arnold (1979), Lee (2007), and H&M for further

discussion of this issue. This problem arises in the present balanced model when col(X)

contains either of the two eigenspaces of W , which are col(Ir⊗ ιm) and col(Ir⊗Lm), where

Lm is a matrix whose columns span the orthogonal complement of ιm.
15 To rule this out

we need the following assumption.

Assumption A. Neither col(Ir ⊗ ιm) nor col(Ir ⊗ Lm) is in col(X).

Note that Ir ⊗ ιm is the group fixed effect matrix. Hence, Assumption A requires, in

particular, that the model does not contain group fixed effects. In the general model (1.3)

with regressors the random part of the log-likelihood is, under Gaussian assumptions,

(Sλy −Xβ)′ (Sλy −Xβ) = (y − λWy)′(y − λWy) + β′X ′Xβ − 2β′X ′(y − λWy).

In general this cannot be written in terms of fewer than 2k + 3 sufficient statistics, but in

certain special cases reduction is possible. In the balanced Group Interaction model the

first component can, as we have seen, be written in terms of s1, s2. The last term is in

general a combination of both X ′y and X ′Wy, but it can be reduced to a single k-vector

if W ′X = XA for some k× k matrix A (including A = 0), that is, if col(X) is an invariant

subspace of W ′. In this case the statistic X ′y is sufficient. The case A = 0 requires that the

column space of X is orthogonal to the column space of W, which, assuming X is of full

column rank k, can only be so if rank(W ) ≤ n − k. This possibility therefore does not

arise for the models studied in this paper, in which W has full rank. But, for the balanced

model, the column space of X can indeed be an invariant subspace of W ′.

14An alternative approach would be to apply the NPL to the distribution of the statistic s2/s1 directly.

It is straightforward but tedious to show that this yields exactly the same test as λ̂ML itself.
15If, for instance, col(X) contains col(Ir ⊗ ιm), the only terms in the profile log-likelihood that involve λ

are −n log(λ+m− 1) + log(det(Sλ)), so the profile score does not depend on the data.
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The simplest example of this is, as noted in H&M, the case of a constant mean, i.e.,

k = 1 and X = ιn = ιr ⊗ ιm. We then have

W ′X = (Ir ⊗Bm) ιn = ιr ⊗Bmιm = ιr ⊗ ιm = X,

because ιm is an eigenvector of Bm corresponding to the eigenvalue 1. More generally, we

may have X = (Ir ⊗ ιm)R, for some r × k matrix R (k < r), in which case

W ′X = (Ir ⊗Bm) (Ir ⊗ ιm)R = (Ir ⊗Bmιm)R = (Ir ⊗ ιm)R = X,

for the same reason. These cases entail that col(X) is spanned by eigenvectors of W

associated to the unit eigenvalue. Alternatively, col(X) may be spanned by eigenvectors

associated to the eigenvalue −1/(m − 1), or more generally, some combination of the

two. If so we will have X = (X1, X2), say, with X1 of dimension n × k1 (k1 < r),

col(X1) ⊆ col(Ir⊗ιm), andX2 of dimension n×k2 (k2 < r(m−1)), col(X2) ⊆ col(Ir⊗Lm).16

In this circumstance the term (y − λWy)′MX(y − λWy) that appears in the profile

likelihood, and yields all of the results discussed earlier for the pure model, can instead be

written as a linear combination of the two statistics

s̃1 := ỹ′1MX̃1
ỹ1, s̃2 := ỹ′2MX̃2

ỹ2,

with the same coefficients as earlier. Here, ỹ := H ′y and X̃ := H ′X, where H := (Ir ⊗
Lm, Ir ⊗ lm), with lm := ιm/

√
m, is the orthogonal matrix of eigenvectors of W. Thus,

X̃1 = (Ir ⊗ Lm)′X1 is r(m− 1)× k1, and X̃2 = (Ir ⊗ lm)′X2 is r × k2. It is easily checked

that
s̃1(λ+m− 1)2

σ2(m− 1)2
∼ χ2

r(m−1)−k2 ,
s̃2(1− λ)2

σ2
∼ χ2

r−k1 .

Thus, the only changes needed to all of the above results, for models of this structure, are

to the respective degrees of freedom of the F - variate involved in the expressions for the

cdf. Thus, we have established the following general result.17

Proposition 3.8. Suppose Assumption A holds. In the balanced Group Interaction model

with ε ∼ SMN(0, In), if col(X) ⊂ col(Ir ⊗ ιm) ∪ col(Ir ⊗ Lm), with k1 := dim(col(X) ∩
col(Ir ⊗ ιm)) < r, and k2 := k − k1 < r(m− 1), then the cdf of λ̂ML is, for any λ, z ∈ Λ,

Pr(λ̂ML ≤ z;λ) = Pr

(
Fv1,v2 ≤

v2

v1

c(z, λ)

m− 1

)
,

with v1 := r − k1 and v2 := r(m− 1)− k2, and the corresponding density is

pdf λ̂ML
(z;λ) =

2mτv2

B
(
v1
2 ,

v2
2

) (1− z)v2−1 (z +m− 1)v1−1(
τ2 (1− z)2 + (z +m− 1)2

)n−k
2

. (3.21)

16The inequalities k1 < r and k2 < r(m− 1) must be strict for Assumption A to be satisfied.
17Alternatively Proposition 3.8 can be derived directly using results in H&M. Note that if v1 = 1 the

limit of the density (3.21) as z ↓ −(m− 1)−1 is not zero. This is because the case v1 = 1 is “close” to the

degenerate case v1 = 0, in which case lp(λ) is unbounded in a neighborhood of −(m− 1)−1.
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It is certainly true that the conditions needed in Proposition 3.8 are restrictive, but

they are met in some simple cases of practical interest, in addition to the constant mean

case X = ιn. We briefly describe two of these next.

Remark 3.4. Another consequence of the condition that col(X) ⊂ col(Ir ⊗ ιm) ∪ col(Ir ⊗
Lm), but Assumption A holds, is that the Cliff-Ord test for H0 : λ = 0 is UMPI against

a one sided alternative in a mixed-Gaussian Group Interaction model. Here invariance is

with respect to the group of transformations y → κy + Xδ in the sample space, for any

κ > 0, any δ ∈ Rk; see King (1981).18

3.6.1 Individual Fixed Effects

The model is

yi = λBmyi + µ+ εi, i = 1, .., r, (3.22)

where yi ∈ Rm, for each for i = 1, .., r, is the subvector of y corresponding to i-th group,

µ is m× 1, so the groups (districts) have a common mean (Im−λBm)−1µ, and a common

autoregressive parameter λ. This is model (1.3) with W = Ir ⊗ Bm, X = ιr ⊗ Im, and

β = µ. Proposition 3.8 applies with k1 = 1 and k2 = m− 1, and gives

Pr(λ̂ML ≤ z;λ) = Pr
(
Fr−1,(r−1)(m−1) ≤ c(z, λ)

)
. (3.23)

That is, as one might have expected, this case is analogous to a pure model having r − 1

rather than r copies of a complete graph on m vertices. The asymptotics are thus the same

as in Section 3.1.2: λ̂ML is consistent and asymptotically normal as r →∞, and converges

in distribution to a random variable as m→∞ with r fixed.

The model (3.22) is a special case of the spatial/panel model studied in the recent

paper by Robinson and Rossi (2015), the difference being that in their paper Bm in (3.22)

is replaced by a general weights matrix W, common to the blocks, our µ is their c, and

our (r,m) are their (T, n). Under Robinson and Rossi’s assumptions, λ̂ML is consistent

and asymptotically normal as (their) n goes to infinity, and they are able to obtain an

Edgeworth expansion for the distribution of λ̂ML. These results do not conflict with those

just discussed, because, crucially, the matrix Bm does not satisfy the key assumption,

Assumption 3 (iv) in Robinson and Rossi (2015).

3.6.2 Group-Specific Regressions

Consider now consider a balanced Group Interaction model with group specific β coeffi-

cients:

yi = λBmyi +Xiβi + εi, i = 1, .., r, (3.24)

18If Assumption A does not hold, the Cliff-Ord statistic is degenerate, in the same sense as the profile

score is. As a consequence, the final paragraph of King (1981) needs to be interpreted with great care.
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where the matrices Xi are m × ki, with ki ≤ m, for all i. In this case X =
⊕r

i=1Xi (
⊕

denoting matrix direct sum), k =
∑r

i=1ki, and β′ = (β′1, .., β
′
r) in equation (1.3). For each

group one can check that the ki+ 3 statistics s1i = y′iMιmyi, s2i = y′iPιmyi, X
′
iyi, and ι′myi

are sufficient for the ki+2 parameters. The sums s1 =
∑r

i=1 s1i and s2 =
∑r

i=1 s2i, together

with the X ′iyi, i = 1, .., r, are therefore sufficient in the full model. If col(Xi) contains ιm the

statistic ι′myi is already accounted for in X ′iyi, so under this condition the model is regular

for a single group. However, the condition ιm ∈ col(Xi) cannot be permitted for every i, for

this would mean that col(Ir⊗ ιm) were a subspace of col(X), violating Assumption A. The

alternative that also produces a regular model is that for those i for which ιm /∈ col(Xi),

col(Xi) ⊂ col(Lm). In this case the term involving ι′myi does not appear, and X ′iyi is

sufficient, again giving a regular model for that group. Note that col(Xi) ⊂ col(Lm)

would hold, for instance, if the elements of Xi were deviations of the raw data from their

respective within-group sample means. Assuming, therefore, that ιm ∈ col(Xi) for r − s
groups, with s > 0, and that, for the remaining s groups, col(Xi) ⊂ col(Lm), the conditions

of Proposition 3.8 are satisfied with k1 = r − s, k2 = k − r + s. The cdf is therefore

Pr(λ̂ML ≤ z;λ) = Pr

(
Fs,rm−k−s ≤

rm− k − s
s(m− 1)

c(z, λ)

)
. (3.25)

The asymptotics are then easily established. As m→∞, λ̂ML converges in distribution

to a random variable (because Fs,rm−k−s
d−→ χ2

s/s). When r →∞, consider first the case

when both s and rm − k − s diverge. Then Fs,rm−k−s
p−→ 1. We distinguish two cases,

according to whether (rm− k − s) /s is bounded or not as r →∞. In the former case, let

ρ := limr→∞ (rm− k − s) /(s(m− 1)), and define γ := ρ−1/2θ. Then, for any z, λ ∈ Λ,

lim
r→∞

Pr(λ̂ML ≤ z;λ) = I (1 ≤ ρc(z, λ)) = I

(
z ≥ γ −m+ 1

1 + γ

)
,

where I(·) is the indicator function, taking value 1 when its argument is true and 0

otherwise. Thus, if limr→∞ (rm− k − s) /s is bounded, λ̂ML
p−→ (γ −m+ 1) /(1+γ) ∈ Λ.

Thus, we have convergence in probability, but to an (in general) incorrect point in Λ.

If, on the other hand, (rm− k − s) /s → ∞, then the representation (3.25) implies that

Pr(λ̂ML ≤ z;λ)→ 1, for any λ, z ∈ Λ, that is, λ̂ML
p−→ − (m− 1). Finally note that the re-

sult λ̂ML
p−→ − (m− 1) is also obtained if s is fixed as r →∞ (because Fs,rm−k−s

d−→ χ2
s/s

and (r(m− 1)− s)/(s(m− 1))c(z, λ)→∞).

We shall see below that in the unbalanced case there is no need to rule out the presence

of group specific fixed effects. This will enable us to obtain a general exact representation

of the cdf of λ̂ML in the case of group specific regressions.

3.7 Conclusion on the Balanced Model

The balanced Group Interaction model, the key property of which is that the spatial design

matrix W has just two distinct eigenvalues, is obviously a “toy” model, of the same status,

21



perhaps, as the simple Gaussian regression model, and the AR(1) model in the time-series

literature. Indeed, within the class of models in which W is the adjacency matrix of a

graph, it is the only model with just two distinct eigenvalues. Its practical relevance is

obviously limited, but, as with the other examples mentioned, one hopes that study of its

properties will be informative more generally. It goes without saying that one can only

hope to obtain exact results under very restrictive assumptions, and we make no apology

for beginning the study of inference in this class of models with its simplest member.

However, in the interests of pragmatism, we now move on to the much more realistic, and

therefore more complicated, unbalanced case.

4 The Unbalanced Model

The unbalanced Group Interaction model - with groups of different sizes - presents a much

greater challenge, even for the pure model. In this section we present an exact result for

the distribution of λ̂ML, and some approximations to it. But, so far, we are unable to

extend the detailed inference results obtained above for the balanced model to this more

difficult case. The key difficulty is that some of the coefficients dtt(z, λ) in the expression

for the cdf in equation (2.2) change sign as z varies in Λ. This means that there are points

in Λ at which the cdf is non-analytic, and that the distribution has a different functional

form in different sub-intervals of Λ. This makes analytical work with the exact distribution

extremely difficult, if not impossible. Nevertheless, it is possible to make some progress

by other means.

On the other hand, the presence of groups of different sizes has a favorable consequence:

contrary to the balanced case, inference about λ remains possible if (all) group specific

fixed effects are included in the regression. We shall see that this immediately implies a

simple representation of the cdf of λ̂ML that holds for general regressors, provided only

that all β parameters are group specific and that group specific fixed effects are included.

In Sections 4.1-4.4 we restrict ourselves to the pure case, and often, for simplicity, we

focus on the case of two group sizes. As is clear in equation (1.3), the interest-parameter λ

is still assumed constant across groups. The case of group specific regressions is discussed

briefly in Section 4.7.

Remark 4.1. As noted in Remark 3.1, the (Gaussian) unbalanced model is also a member

of the curved exponential family. Indeed the likelihood is the product of p versions of that

for the balanced model, with different group sizes, and different multiplicities. Each of these

has sufficient statistics and canonical parameters of the same type as those given earlier

for the balanced model. That is, the exponent of the exponential part of the likelihood is of

the form

η1

p∑
i=1

(s1i + s2i) + η2

p∑
i=1

(
s2i +

s1i

(mi − 1)2

)
+ 2η3

p∑
i=1

(
s2i −

s1i

(mi − 1)

)
.
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It is not possible to rewrite this as a linear combination of two statistics with constant

coefficients, so the model is a (3, 2) curved model, as mentioned. In this representation of

the model the statistics s1i, s2i are all independent of each other, and are proportional to

χ2 variates. Note that the sum can be written as

− 1

2σ2

(
(1− λ)2 s2 +

p∑
i=1

s1i

(
λ+mi − 1

mi − 1

)2
)
,

with s2 =
∑p

i=1 s2i, a linear combination of p+ 1 independent multiples of χ2 variates.

Remark 4.2. The estimating equation l̇p(λ) = 0 is, in this case, a polynomial of degree

p+ 1 in λ, and has no explicit solution if p > 3. It must be solved numerically. However,

the fact that the equation is known to have a single zero in Λ makes this a much simpler

task than it would otherwise be.

4.1 Exact Representation

In the unbalanced Group Interaction model each different group size introduces an extra

distinct eigenvalue of W. If there are ri groups of distinct sizes mi, i = 1, ..., p, with m1

the smallest group size, the eigenvalues of W are: 1, with multiplicity r =
∑p

i=1ri, and,

for each i = 1, .., p, −1/(mi− 1) with multiplicity ni = ri(mi− 1).19 The total sample size

is n =
∑p

i=1rimi, and the number of distinct eigenvalues of W is T = p + 1. Since, for

any group-interaction model, W is symmetric, the cdf of λ̂ML is, under mixed-Gaussian

assumptions on ε, given by (2.2).

We will need the following property of the coefficient functions gt(z)− ḡ(z) in equation

(2.3), proved in H&M for any W having only real eigenvalues: for any z ∈ Λ, the coefficients

gt(z)− ḡ(z), t = 1, .., T, are in increasing order (i.e., s > t implies gs(z) > gt(z)). For any

z ∈ Λ, g1(z)− ḡ(z) < 0, gT (z)− ḡ(z) > 0, and, for any t = 2, ..., T − 1, gt(z)− ḡ(z) changes

sign exactly once on Λ.

We can divide the left-hand term in the inequality in (2.2) by the (positive) coefficient

in the final term in the sum, giving the equivalent exact representation of the cdf,

Pr(λ̂ML ≤ z;λ) = Pr

(
T∑
t=1

ct(z, λ) (gt(z)− ḡ(z))χ2
nt ≤ 0

)
, (4.1)

where, for the Group Interaction model considered here,

ct(z, λ) :=

(
(1− λ)(z +mt − 1)

(1− z)(λ+mt − 1)

)2

, t = 1, .., p, (4.2)

and cT (z, λ) := 1, all reducing to c(z, λ) in equation (3.1) when the model is balanced.

Since some of the gt(z)− ḡ(z) are positive and some are negative, for any given z ∈ Λ, it

19The corresponding eigenspaces are col(
⊕p

i=1 (Iri ⊗ ιmi)) associated to the eigenvalue 1 and col(Iri ⊗
Lmi) associated to −1/(mi−1), i = 1, ..., p. It is easily verified that when p = 1 the eigenstructure reduces

to the one given in Section 3.
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follows that, for any z ∈ Λ,
∑T

t=1 ct(z, λ)(gt(z)− ḡ(z))χ2
nt reduces to the difference between

two positive linear combinations of independent χ2 variates.

Remark 4.3. Notice that, for all z ∈ Λ, ct(z, λ) → 0 as λ → 1, for each t = 1, .., p,

while cT (z, λ) = 1. Since gT (z) − ḡ(z) > 0 for all z, Pr(λ̂ML ≤ z;λ) → 0 as λ → 1.

Likewise, as λ → −(m1 − 1), all coefficients in (4.1), other than the first, remain finite,

while c1(z, λ)→∞ for all z ∈ Λ. Since g1(z)− ḡ(z) < 0 for all z, Pr(λ̂ML ≤ z;λ)→ 1 as

λ→ −(m1− 1). Thus, as in the balanced case, the distribution of λ̂ML becomes degenerate

as λ approaches the endpoints of Λ.

The eigenvalues of Gz are gt(z) = −1/(z+mt−1), t = 1, .., p, and gp+1(z) = 1/(1− z),
so that

ḡ(z) =
z

n(1− z)

p∑
i=1

rimi

z +mi − 1
,

and

gt(z)− ḡ(z) = − 1

n(1− z)

p∑
i=1

(
rimi

(
1− z

z +mt − 1
+

z

z +mi − 1

))
, (4.3)

for t = 1, .., p, while

gp+1(z)− ḡ(z) =
1

n(1− z)

p∑
i=1

rimi(mi − 1)

z +mi − 1
.

Note that ḡ(z) has the sign of z, and ḡ(0) = 0. As noted earlier, g1(z) − ḡ(z) < 0 for all

z ∈ Λ, gp+1(z)−ḡ(z) > 0 for all z ∈ Λ, and the remaining terms all change sign exactly once

as z traverses Λ. Thus, the number of positive and negative terms in the representation

(4.1) varies with z. If the model is balanced (p = 1) the exact representation given here

reduces to the result for the balanced case discussed earlier.

For any p ≥ 2, let zt denote the unique point in Λ at which gt(z)− ḡ(z) = 0, for each

t = 2, ..., p. The distribution of λ̂ML is non-analytic at the points zt, and has a different

functional form in each interval between successive points. The number of positive and

negative terms in (4.1) remains the same within an interval, but the numbers of each differ

in the different intervals.

Example 1 (Two Group Sizes). In the case p = 2 we have, after simplification,20

g1(z)− ḡ(z) = −n(m2 − 1) + z(n− r2m2 (m2 −m1))

n(1− z)(z +m1 − 1)(z +m2 − 1)

g2(z)− ḡ(z) = −n(m1 − 1) + z(n+ r1m1 (m2 −m1))

n(1− z)(z +m1 − 1)(z +m2 − 1)

g3(z)− ḡ(z) =
r1m1(m1 − 1)(z +m2 − 1) + r2m2(m2 − 1)(z +m1 − 1)

n(1− z)(z +m1 − 1)(z +m2 − 1)
.

20The common denominators of the coefficients here could obviously be dropped, but to economize on

notation we do not do so.
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The first is always negative, the last always positive, for z ∈ Λ, while the second changes

sign at

z2 = − n(m1 − 1)

n+ r1m1 (m2 −m1)
< 0, (4.4)

being negative for z > z2, positive for z < z2.

After briefly discussing the asymptotic properties of λ̂ML that follow from the exact

representation, we next discuss (again briefly) the distribution properties of linear combi-

nations of independent χ2 variates with positive coefficients, a subject upon which there

is a large literature.

4.2 Asymptotics in the Unbalanced Group Interaction Model

The representation of the cdf of λ̂ML in equation (4.1) provides a useful starting point for

deriving asymptotic properties of λ̂ML under the mixed Gaussian assumption. Different

asymptotic regimes are possible, depending on how the mi’s and the ri’s are assumed to

behave as the total sample size grows. To understand the issues we rewrite equation (4.1)

in the form

Pr(λ̂ML ≤ z;λ) = Pr

(
χ2
r +

p∑
t=1

ψt(z, λ)χ2
nt ≤ 0

)
. (4.5)

where

ψt(z, λ) := ct(z, λ)
gt(z)− ḡ(z)

gp+1(z)− ḡ(z)
, (4.6)

for t = 1, ..., p. Assuming p, the number of different group sizes, is fixed, one can again

consider two types of asymptotic regime. The first, infill asymptotics, holds the ri fixed

(hence also r), and assumes one or more of the mi produce the increased sample size. The

second, fixed-domain asymptotics, holds the mi fixed and assumes an increase in one or

more of the ri. This second case satisfies the assumptions in Lee (2004). Hence, it is already

known that, under regularity conditions, λ̂ML is consistent and asymptotically normal. In

the first case Lee’s (2004) results leave the properties of λ̂ML open.

In fact, the situation is very much as in the balanced case: it is clear from (4.5) that in

the first case, convergence will be to a random variable, because the term χ2
r in (4.5) will

be unaffected. Precise details for this situation depend on exactly what is assumed about

the behaviour of the mi, but λ̂ML is clearly again inconsistent under infill asymptotics. In

the second case the known results are easily deduced from the representation (4.5) by a

characteristic function argument.

4.3 Exact distribution of a Positive Linear Combinations of χ2 Variates

As we have just seen, we need to deal with pairs of statistics of the form

Qs :=

s∑
i=1

aiχ
2
ni ,
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with all the ai > 0. In our case these coefficients are functions of z.

Define the n× n diagonal matrix (n =
∑s

i=1ni)

A = An1,...,ns(a1, ..., as) := diag (aiIni , i = 1, .., s) .

It is well known that the cumulants of Qs of all orders exist are given by

κl := 2l−1(l − 1)!tr(Al) = 2l−1(j − 1)!πl, (4.7)

where, πl :=
∑s

i=1 nia
l
i = tr(Al). These properties are quite simple, but, despite that,

exact distribution theory for Qs is not straightforward, and there is a very large literature

dealing with the subject. We briefly introduce some of this next. Let φ be a positive

number such that φai ≥ 1 for all i. An expression for the exact density is

pdfQs(q) =
|φA|−

1
2

2
n
2 Γ(n2 )

exp

(
−1

2
φq

)
q
n
2
−1

1F1

(
1

2
,
n

2
;
1

2
qφ
(
In − (φA)−1

))
, (4.8)

(see James (1964), and Ruben (1962)). The hypergeometric function here is a confluent

hypergeometric function with matrix argument (Muirhead (1982), Chapter 7), and it is

this that make the distribution difficult. For φ such that φai > 1 for all i, the distribution

of φQs can be expressed as a mixture of central χ2 distributions with weights

pj(φA) :=

(
1
2

)
j

j!
|φA|−

1
2Cj(In − (φA)−1), (4.9)

where (a)j := a(a + 1)...(a + j − 1) is the Pochhammer symbol, and Cj(·) denotes the

top-order zonal polynomial of order j in the indicated matrix. It is easy to confirm that

the pj(φA) are non-negative and sum to unity. The choice of φ > 0 is arbitrary subject

to φmin{ai, i = 1, ..., s} > 1. The weights pj(φA) are relatively complicated polynomials

in the ai, and are difficult to interpret.21 See Ruben (1962) and Johnson, Kotz, and

Balakrishnan (1994) for further details of these and related expansions. There is some

incentive, therefore, to seek approximations to the distribution, and we discuss some of

these briefly below.

In the case s = 2, however, the result is reasonably simple. Without loss of generality

we consider the distribution of a statistic of the form Q = a1χ
2
v1 +a2χ

2
v2 , with 0 < a1 < a2.

Proposition 4.1. Let Q := a1χ
2
v1 + a2χ

2
v2 , with 0 < a1 < a2. The density of Q is given by

pdfQ(q) =
φ
v
2ψ

v2
2 exp

(
−φq

2

)
q
v
2
−1

2
v
2 Γ(v2 )

1F1

(
v2

2
,
v

2
;
1

2
φq (1− ψ)

)
, (4.10)

where φ = 1/a1, v := v1 + v2, and ψ := a1/a2 < 1.

21Recall that the non-central χ2 distribution also has this form, but with a Poisson mixing distribution

with mean equal to the non-centrality parameter. This is obviously simpler than the present case.
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The distribution function follows at once. Note that the hypergeometric function in

(4.10) has scalar argument, and is a built-in function in most modern mathematical pack-

ages.

Equation (4.10) can be rewritten as

pdfQ(q) = φψ
v2
2

∞∑
k=0

(
v2
2

)
k

(1− ψ)k

k!
gv+2k(φq), (4.11)

where gξ(·) denotes the density function of a χ2
ξ random variable. This representation

as a mixture of χ2 densities is useful for some calculations, and for interpretation, but is

perhaps less so for computation purposes.

4.3.1 Approximations for Positive Definite Forms

Because the exact distribution of a positive definite quadratic form is quite complicated,

there is a clear incentive to approximate. And, because such forms are ubiquitous through-

out statistics, there is a very large literature on the subject. The simplest approximation,

usually attributed to Fisher, is to treat Qs as a multiple of a χ2 variate, Qs = αχ2
v, choos-

ing α and v so that the first two cumulants of the two distributions agree. This entails the

choices α = π2/π1 and v = π2
1/π2, where, as above, πl =

∑s
i=1 nia

l
i.

A more sophisticated approximation due to Hall (1983) and Buckley and Eagleson

(1988), is to use three parameters, with Qs = αχ2
v + β, and choosing (α, β, v) so that

the first three cumulants agree. This entails the choices α = π3/π2, β = π1 − π2
2/π3, and

v = π3
2/π

2
3. Buckley and Eagleson (1988) show that this representation can be formally

justified by an argument based on Edgeworth expansions of the two distributions involved,

and give explicit bounds on the error involved in approximating the distribution function

in this way. Hall (1983) calls this a “penultimate” approximation to the distribution of Qs,

which of course, when suitably standardised, converges to a standard normal variate. For

our purposes, the simpler two-cumulant approximation is more useful, and seems to work

quite well. A number of other, typically more complicated, approximations are extant -

for a comprehensive discussion, see Johnson, Kotz, and Balakrishnan (1994).

4.4 Exact Distribution of λ̂ML

From the exact results for a pair of independent positive linear combinations like those

given above, one can easily obtain an exact formula for the probability Pr(Q1t ≤ Q2t), with

Qit based on matrix Ait, by simple transformation and integration. The result is given in

H&M, Section 5, and has the following form: for z ∈ (zt, zt+1), between successive points

zt,

Pr(λ̂ML ≤ z;λ) = EJ,K

(
Pr

(
fv1t+2J,v2t+2K ≤

φ1

φ2

))
, (4.12)

where v1t :=
∑t

i=1 ni, v2t :=
∑p+1

i=t+1 ni. The symbol EJ,K here denotes the operation of

applying two independent weightings of the form (4.9), with suitably defined matrices
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A1t, A2t, to the “conditional” probability involved. That is, in each interval we have a

different representation of the distribution that, conditionally, is analogous to the result

for the balanced model.

Obviously, the “conditional” formulae for each subinterval of Λ are simple enough,

but it remains true that the unconditional result, after averaging with respect to the

distributions of J,K, is forbiddingly complicated, and, worse, not particularly informative

about the properties of the estimator. Moreover, it is probably impossible to obtain the

density directly from equation (4.12), simply because of the complexity of the polynomials

involved. There is therefore considerable interest in obtaining valid approximations to the

exact results that are more easily interpreted, and more informative. Before considering

that further, in the next section we give the exact results for the case of just two group

sizes (i.e., p = 2), which are reasonably tractable.

4.4.1 Two Group Sizes (continued)

When there are p = 2 different group sizes the coefficients of the three χ2 variates in the

sum in (4.1) have the following signs:

χ2
r1(m1−1) χ2

r2(m2−1) χ2
r

z < z2 − + +

z > z2 − − +

Using the coefficients in (4.6), we have, for z < z2, where ψ2(z, λ) > 0,

Pr(λ̂ML ≤ z;λ) = Pr
(
ψ2(z, λ)χ2

n2
+ χ2

r ≤ (−ψ1(z, λ))χ2
n1

)
, (4.13)

while for z > z2, where ψ2(z, λ) < 0,

Pr(λ̂ML ≤ z;λ) = Pr
(
χ2
r ≤ −ψ1(z, λ)χ2

n1
+ ψ2(z, λ)χ2

n2

)
. (4.14)

Each of these involves a linear combination of two χ2 random variables with positive

coefficients, and a third, independent χ2 variate. Expressions for the distribution functions

in the two intervals can be obtained by applying the results in the previous subsection, but

it is difficult to use those expressions to obtain information about the properties of λ̂ML,

in particular, its density.22 Here we pursue an alternative conditioning argument that is

more successful.

Remark 4.4. Noting that ψ2(z2, λ) = 0, and, as is easily verified, −ψ1(z2, λ) = r/n1, we

have, on setting z = z2 in either of equations (4.13) or (4.14),

Pr(λ̂ML ≤ z2;λ) = Pr(Fr,n1 < c1(z2, λ)).

22The difficulty is that both the conditional distribution, given J = j, and the mixing probabilities, are

functions of z.
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For values of r1, r2 that are not too small this function (of λ) is near 1 for λ < z2, and near

zero for λ > z2, falling sharply from 1 to 0 in the neighborhood of z2. That is, for values

λ < z2 λ̂ML is almost certainly below z2, and for values λ > z2 it is almost certainly above

z2. If z2 < −1, and λ ∈ (−1, 1), this implies that the distribution of λ̂ML will be almost

entirely confined to the interval z > z2. For λ = z2, Pr(λ̂ML ≤ z2; z2) = Pr(Fr,n1 < 1),

which is near .5 as long as r/n1 is near 1. Other evidence about the median will be discussed

shortly.

Let qv denote a χ2
v random variable. All such variables in the expressions to follow are

independent. For z < z2, we can condition on the variables qr and qn2 on the left in the

expression for Pr(λ̂ML ≤ z;λ), giving the conditional result

Pr(λ̂ML ≤ z|qr, qn2 , λ) = 1− Gn1

(
qr + ψ2(z, λ)qn2

−ψ1(z, λ)

)
, − (m1 − 1) < z < z2,

where Gv denotes the cdf of the χ2
v random variable. For z > z2, we can condition instead

on (qn1 , qn2), giving

Pr(λ̂ML ≤ z|qn1 , qn2 , λ) = Gr (−(ψ1(z, λ)qn1 + ψ2(z, λ)qn2)), z2 < z < 1,

Expressions for the unconditional cdf’s can be obtained from these by averaging, but we

shall focus instead on the unconditional density in each interval. The reason that this

is straightforward is that expressions for the conditional density are easily obtained from

these conditional cdf’s, and these can then be converted into the (components of the)

unconditional density.

To state the results for this situation recall the notation introduced above: An1,n2(a1, a2)

denotes the matrix diag (aiIni , i = 1, 2), and Cj(A) denotes the top-order zonal polynomial

of degree j of a matrix A. We need the following lemma.

Lemma 4.2. We have(
1

2

)
j

Cj(An1,n2(a1, a2)) =

j∑
k=0

(
j

k

)(n1

2

)
k

(n2

2

)
j−k

ak1a
j−k
2 .

We can then obtain the following result.

Proposition 4.3. Let a(z) and c(z) be strictly positive functions of z on some interval

Λ0. Let q1 ∼ χ2
α, q2 ∼ χ2

β be independent, and let w be a random variable with conditional

cdf, given (q1, q2), given by

Pr(w ≤ z|q1, q2) = Gγ(a(z)q1 + c(z)q2)

for z ∈ Λ0. The conditional density of w, given (q1, q2), is therefore

pdfw(z|q1, q2) =
exp

(
−1

2 (a(z)q1 + c(z)q2)
)

2
γ
2 Γ(γ2 )

(a(z)q1 + c(z)q2)
γ
2
−1 (ȧ(z)q1 + ċ(z)q2) ,

(4.15)
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where the dot denotes the derivative with respect to z. Then, denoting the unconditional

density of w at w = z when the parameters are (α, β, γ) by pdfw(z;α, β, γ), we have

(omitting the argument of a(·) and c(·) for simplicity):

(i) for γ = 2,

pdfw(z;α, β, 2) =
α ȧ

1+a + β ċ
1+c

2(1 + a)
α
2 (1 + c)

β
2

; (4.16)

(ii) for γ = 2s+ 2, with s = 1, 2, ...,

pdfw(z;α, β, 2s+ 2) =

(
1
2

)
s

2s!(1 + a)
α
2 (1 + c)

β
2

×
(

αȧ

1 + a
Cs (Aα+2,β(ϕ1, ϕ2)) +

βċ

1 + c
Cs (Aα,β+2(ϕ1, ϕ2))

)
, (4.17)

where ϕ1 := a/(1 + a), and ϕ2 := c/(1 + c).

Note that the two terms in (4.17) are finite polynomials, not infinite series. The

statement of Proposition 4.3 is restricted to even degrees of freedom γ for simplicity; the

corresponding formulae for odd γ are considerably more complicated, and are given in the

proof of Proposition 4.3 in Appendix A. Under a certain restriction on the parameters a

general expression for the density, valid for all γ, can be obtained that is analogous to

equation (4.17), but in which the final term is a linear combination of two hypergeometric

functions. This result is given in Lemma A.3, reported after the proof of Proposition 4.3.

Applying Proposition 4.3 to the unbalanced model, we require two applications of the

result, as summarized in the following table:

Interval α a ϕ1 β c ϕ2 γ

−(m1 − 1) < z < z2 r − 1
ψ1(z,λ)

1
1−ψ1(z,λ) n2 −ψ2(z,λ)

ψ1(z,λ)
ψ2(z,λ)

ψ2(z,λ)−ψ1(z,λ) n1

z2 < z < 1 n1 −ψ1(z, λ) − ψ1(z,λ)
1−ψ1(z,λ) n2 −ψ2(z, λ) − ψ2(z,λ)

1−ψ2(z,λ) r

In Figure 7 we display the exact density for the case when r1 = r2 = 1 (so r = 2) and one

of the two groups has fixed size 2, varying the size of the other group, and hence varying

n. The density is plotted for three different values of λ. When the model is balanced

(r = m = 2, so that n = 4) the density is analytic on Λ = (−1, 1). On the other hand,

when the model is unbalanced there is a clearly visible point of non-analyticity at z2. Using

expression (4.4), this point is −.4545 for n = 10, and it approaches −1/3 from the left as

n→∞.

The plots show clearly that the density has a single component only when the model is

balanced. As the difference between m1 and m2 increases, the difference between that two

components becomes more apparent, and the density becomes less smooth at the point z2.

Incidentally, in this model, the point of non-analyticity is not an asymptote, but a point

of non-differentiablity. In other models the reverse can occur. Note that this phenomenon
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Figure 7: Density of λ̂ML for the Gaussian pure Group Interaction model with two groups,

one of which has size m1 = 2.

could be regarded as a consequence of imposing the same parameter λ on the two different

groups.

Additional figures for values of m1 > 2 are given in Appendix B. All of these figures

show that the properties of λ̂ML are, in this model with just two groups, almost invariant

to the sample size, a property related to, but not implied by the asymptotic properties

for a fixed number of groups mentioned earlier. However, even though the estimator is

not consistent under some asymptotic regimes, there is certainly no evidence here that

suggests not using maximum likelihood in this model.

4.5 Probability of Underestimation: the median

We next consider the special case of equation (4.1) with z = λ, so that the object of interest

becomes Pr(λ̂ML ≤ λ;λ), the probability of underestimating λ. This seems to be the only

available method for examining the median bias of λ̂ML in this unbalanced model. When

z = λ, we have ct(λ, λ) = 1 for all t and all λ, so that

Pr(λ̂ML ≤ λ;λ) = Pr

(
T∑
t=1

(gt(λ)− ḡ(λ))χ2
nt ≤ 0

)
. (4.18)

If λ ≥ zp, which includes all values λ ≥ 0, all of the coefficients in this expression are

negative, except the last. Thus, for λ ≥ zp we have

Pr(λ̂ML ≤ λ;λ) = Pr

(
χ2
r ≤

p∑
t=1

ψt(λ)χ2
nt

)
,

where

ψt(λ) := ψt(λ, λ) = − gt(λ)− ḡ(λ)

gp+1(λ)− ḡ(λ)
, t = 1, .., p.
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Using the exact expression for the density of the variate on the right given in equation

(4.8), it is straightforward to deduce a formula for the required probability. The expression

is

Pr(λ̂ML ≤ λ;λ) = |φA|−
1
2

∞∑
j=0

(1
2)j

j!
Cj
(
In1+n2 − (φA)−1

)
× Pr

(
Beta

(
j +

n1 + n2

2
,
r

2

)
≤ φ

1 + φ

)
. (4.19)

Here, Beta(a, c) denotes a beta variate with parameters a, c. Regrettably, this formula is

just as complicated as the exact density itself in (4.8), and does not easily yield conclusions

about the median of the estimator. A simpler, more helpful approach, is to use the Fisher

approximation for the linear combination on the right, i.e., to assume

p∑
t=1

ψt(λ)χ2
nt
∼= αχ2

v,

where α = π2/π1, and v(λ) := π2
1/π2, and ∼= denotes equality in distribution. In this case

things simplify greatly, because π1 = r, so α = π2/r, v(λ) = r2/π2, which produces the

approximation, for λ ≥ zp,

Pr(λ̂ML ≤ λ;λ) ' Pr
(
χ2
r ≤ αχ2

v(λ)

)
= Pr

(
Fr,v(λ) ≤

αv(λ)

r

)
= Pr

(
Fr,v(λ) ≤ 1

)
, (4.20)

an analogue of the result given earlier for the balanced model. But, as we have noted

earlier, Pr(Fr,v ≤ 1) > .5 if v > r, and vice versa. That is, up to the accuracy of this

approximation, med(λ̂ML) < λ if v(λ) > r, and med(λ̂ML) > λ if v(λ) < r. There is

therefore a negative median-bias when λ is in the set {λ : λ > zp, v(λ) > r}, and a positive

median-bias when λ ∈ {λ : λ > zp, v(λ) < r}.
For the interval at the lower end of Λ, i.e., −(m1 − 1) < λ < z2, the opposite situation

occurs: all coefficients in the linear combination are positive, except the first. In this case

we have an expression for Pr(λ̂ML ≤ λ;λ) of the form

Pr(λ̂ML ≤ λ;λ) = 1− Pr

(
χ2
n1
≤

p+1∑
t=2

ψ̃t(λ)χ2
nt

)
,

with np+1 = r, and

ψ̃t(λ) := − gt(λ)− ḡ(λ)

g1(λ)− ḡ(λ)
, t = 2, .., p+ 1.

In this interval the appropriate parameters for the approximation are α̃ = π̃2/n1 and

ṽ(λ) = n2
1/π̃2, with

π̃2 :=

p+1∑
t=2

ntψ̃
2
t (λ) =

∑p+1
t=2 (gt(λ)− ḡ(λ))2

(g1(λ)− ḡ(λ))2
, (4.21)
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and we have the approximation, for −(m1 − 1) < λ < z2,

Pr(λ̂ML ≤ λ;λ) ' 1− Pr
(
Fn1,ṽ(λ) ≤ 1

)
,

For values of λ between z2 and zp the expression for Pr(λ̂ML ≤ λ;λ) will involve the

difference between two positive linear combinations of χ2 variates. Each can separately

be approximated as above, and an approximation for the probability easily obtained. For

each interval the approximation takes the form, in obvious notation,

Pr(λ̂ML ≤ λ;λ) ' Pr (FvL,vR ≤ 1) ,

so the only things needed are the pairs (vL, vR) appropriate to each interval. The reason

for this is as follows: when the approximation is used for both sides of an inequality we

have, symbolically,

Pr(αLχ
2
vL
≤ αRχ2

vR
) = Pr

(
FvL,vR ≤

vRαR
vLαL

)
= Pr

(
FvL,vR ≤ −

π1R

π1L

)
= Pr (FvL,vR ≤ 1) ,

since it is always the case that π1R +π1L = 0. For example, in the case p = 4 we have four

intervals to accommodate, and the following results for the approximation to Pr(λ̂ML ≤
λ;λ) are typical of the general case:

−(m1 − 1) < λ < z2 : Pr (FvA,n1 ≤ 1) , vA := (n1ψ1)2

(r+
∑4
i=2 niψ

2
i )

z2 < λ < z3 : Pr (FvBR,vBL ≤ 1) , vBR := (n1ψ1+n2ψ2)2

n1ψ2
1+n2ψ2

2
, vBL := (n1ψ1+n2ψ2)2

(n3ψ2
3+n4ψ2

4+r)

z3 < λ < z4 : Pr (FvCR,vCL ≤ 1) , vCR := (n4ψ4+r)2∑3
i=1 niψ

2
i

, vCL := (n4ψ4+r)2

n4ψ2
4+r

z4 < λ < 1 : Pr (Fr,vD ≤ 1) , vD := r2∑4
i=1 niψ

2
i

.

Evidence on the accuracy of the approximation is given in the following table, where

we compare exact results (obtained by simulating (4.18)) with those obtained by the

approximation, for the case p = 4, and three different combinations of the group sizes

(design 1: m1 = 5,m2 = 10,m3 = 15,m4 = 20; design 2: m1 = 10,m2 = 20,m3 =

30,m4 = 40; design 3: m1 = 5,m2 = 50,m3 = 100,m4 = 150).

λ = −.9 λ = 0 λ = .9

Design Exact Approx. Exact Approx. Exact Approx.

1 .561 .561 .580 .579 .582 .583

2 .581 .580 .587 .587 .588 .589

3 .553 .553 .585 .585 .592 .592

Note that for all cases considered in the table Pr(λ̂ML ≤ λ;λ) > .5, i.e., the median bias

is negative. Based on our calculations using the approximation developed in this section,

this seems a general result for whenever λ ∈ (zp, 1) (similarly, the median bias seems to be

always positive for λ ∈ (−(m1 − 1), z2)).
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4.5.1 Probability of Underestimation: Two Group Sizes

Returning now to exact results, in the case of two distinct group sizes (p = 2) the two

intervals −(m1 − 1) < λ < z2, and z2 < λ < 1 make up all of Λ, and each of the

above expressions involves a positive linear combination of just two χ2 variates. We can

therefore use the result in equation (4.19), together with Lemma 4.2, twice, to obtain

expressions for the required probability in each of these intervals. For the first (upper)

interval, φ = 1/ψ1(λ), and φA = diag(In1 , (ψ2(λ)/ψ1(λ)) In2), and the expression reduces

to

Pr(λ̂ML ≤ λ;λ) =

(
ψ2(λ)

ψ1(λ)

)−n2
2
∞∑
j=0

(n2
2 )j

j!

(
1− ψ1(λ)

ψ2(λ)

)j
× Pr

(
Beta

(
j +

n1 + n2

2
,
r

2

)
≤ 1

1 + ψ1(λ)

)
. (4.22)

For the lower interval, φ = 1/ψ̃2(λ) and φA = diag(In2 , (ψ̃3(λ)/ψ̃2(λ))Ir), so that

Pr(λ̂ML ≤ λ;λ) = 1−

(
ψ̃3(λ)

ψ̃2(λ)

)− r
2 ∞∑
j=0

( r2)j

j!

(
1− ψ̃2(λ)

ψ̃3(λ)

)j

× Pr

(
Beta

(
j +

n2 + r

2
,
n1

2

)
≤ 1

1 + ψ̃2(λ)

)
. (4.23)

These formulae can be used to plot the probability Pr(λ̂ML ≤ λ;λ) as a function of

λ. Figure 8 plots (a truncated version of) the formulae (4.22) and (4.23) in the case of

two group sizes, for λ ∈ (−1, 1), and for a variety of values of r1, r2,m1,m2. The results

in Figure 8 were compared to simulation results, and also to the approximation based on

Fishers method discussed above. All three methods give virtually identical results. In

the left panel the two group sizes are m1 = 10 and m2 = 20, and the three lines are for

different values of the numbers r1 and r2 of groups of sizes m1 and m2. In the right panel,

there are two groups, and the four lines are for different combinations of m1 and m2 such

that m1 +m2 = 30. Note that the solid line in the right panel corresponds to a balanced

case, in which case Pr(λ̂ML ≤ λ;λ) does not depend on λ (see Section 3.1).23 The left

panel shows that as r1 and r2 increase the probability of underestimation converges to .5.

The right panel shows that the probability of underestimation can be very sensitive to λ,

even for values of λ in (−1, 1).

4.6 Approximating the distribution

The approach used above to approximate Pr(λ̂ML ≤ λ;λ) can be applied to the expressions

for the cdf itself, in each interval of its domain. Considering just the case p = 2, we simply

23The values of z2 relevant for Figure 8 are -2.0769 when m1 = 10 and m2 = 20, -0.9231 when m1 = 5

and m2 = 25, -0.3659 when m1 = 2 and m2 = 28 (note that z0 does not depend on r1 if r1 = r2).
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Figure 8: The probability that λ̂ML underestimates λ as a function of λ, in the two-groups

case.

need to replace ψ1 and ψ2 by ψ1(z, λ) and ψ2(z, λ) in the definitions of π1, π2, although,

in the case of the distribution function the results are not quite so simple as those given

above for Pr(λ̂ML ≤ λ;λ). The relevant expressions for the cdf are, in the case p = 2,

Pr(λ̂ML ≤ z;λ) ' Pr
(
Fv1(z,λ),n1

≤ u1(z, λ)
)
,

for λ < z2, and

Pr(λ̂ML ≤ z;λ) ' Pr
(
Fr,v2(z,λ) ≤ u2(z, λ)

)
,

for λ > z2, where

u1(z, λ) := − n1ψ1(z, λ)

n2ψ2(z, λ) + r
,

v1(z, λ) :=
(n2ψ2(z, λ) + r)2

n2ψ2
2(z, λ) + r

,

and

u2(z, λ) :=
n1ψ1(z, λ) + n2ψ2(z, λ)

n1ψ1(z, λ) + n2ψ2(z, λ)
,

v2(z, λ) :=
(n1ψ1(z, λ) + n2ψ2(z, λ))2

n1ψ2
1(z, λ) + n2ψ2

2(z, λ)
.

Analytic differentiation to obtain the density is messy, but easily accomplished by a sym-

bolic mathematical package, and again can be extended to cases with p > 2 without

difficulty.

4.7 Group-Specific Regressions

We now consider generalizations to the pure unbalanced Group Interaction model with

regressors. Compared to the balanced case, unbalanceness has the favorable consequence
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that group fixed effects do not render inference on the full parameter impossible.24

Similarly to Section 3.6.2, we focus on the case in which all β coefficients are group

specific. We show that in this case the cdf of λ̂ML admits a very simple representation

when fixed effects are present, regardless of the values of the regressors. Within each group

the model is a Balanced group Interaction model, or, stacking groups of same size,

yi = λ(Iri ⊗Bmi)yi +

ri⊕
j=1

Xijβij + εi, i = 1, .., p, (4.24)

where yi is rimi × 1, Xij is an mi × kij matrix containing a column of ones (with

kij ≤ mi), and βi is
∑ri

j=1 kij × 1 (that is, for each of the p distinct group sizes, the

model is a balanced model with group specific regressors). This correspond to an unbal-

anced Group Interaction model with X =
⊕p

i=1

⊕ri
j=1Xij , k =

∑p
i=1

∑ri
j=1 kij , and β′ =

(β′11, .., β
′
1r1
, ..., β′p1, .., β

′
prp). By Lemma A.2 in Appendix A if the model contains group

fixed effects, then col(X) is spanned by k eigenvectors of W = diag(Iri ⊗Bmi , i = 1, .., p).

Then, provided only that col(X) does not contain all eigenvectors of W associated with

eigenvalues other than ω (to avoid degeneracy of the score), by the same argument as

in Section 3.6.2 we obtain Pr(λ̂ML ≤ z;λ) = Pr(
∑p

t=1 dtt(z, λ)χ2
nt−nt(X) ≤ 0), where the

χ2
nt−nt(X) variates are independent, nt(X) := dim(col(X)∩ col(Ir ⊗Lmt)), and we use the

convention that χ2
0 = 0. Using the definition (2.3) of the coefficients dtt(z, λ), we have

Pr(λ̂ML ≤ z;λ) = Pr

(
p∑
t=1

(gt(z)− ḡ(z))

(
z +mt − 1

λ+mt − 1

)2

χ2
nt−nt(X) ≤ 0

)
, (4.25)

where the coefficients gt(z)− ḡ(z) are given in equation (4.3). Representation (4.25) reveals

an unexpected property of λ̂ML. Specifically, recalling from Section 4.1 that gt(z)−ḡ(z) < 0

for any z ∈ (zp, 1) and for any t = 1, ..., p, representation (4.25) implies that Pr(λ̂ML ≤
z;λ) = 1 for any z > zp (recall also that zp denotes the point at which the coefficient

gp(z)− ḡ(z) changes sign). That is, for this model the support of the distribution of λ̂ML

is not the entire Λ, but its subset (−(m1 − 1), zp).

Similarly to what was done in Section 3.6.2, one can study the distribution of λ̂ML

under different asymptotic regimes, but we omit these calculations for the sake of brevity.

5 Concluding Remarks

In Hillier and Martellosio (2013) we presented a general result, equation (2.1) above, giving

an expression for the exact distribution function of the quasi-maximum likelihood estimator

for λ in equation (1.3), valid for any distribution of ε. Some examples of the application

24In the unbalanced case, the columns of the fixed effects matrix span an eigenspace of W (as in the

balanced case). However, when p > 1, the presence of fixed effects, i.e., col(
⊕p

i=1 (Iri ⊗ ιmi)) ⊆ col(X),

does not imply the same degeneracy that occurs when p = 1. This is a consequence of the fact that W has

more than two eigenspaces when p > 1.
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of the result to particular cases were given in H&M, but the earlier paper concentrated

mainly on its more general consequences. In the present paper we have explored the

application of the result to a particular, important, class of models - those based on spatial

weights matrices that embody group-interaction. These models are important in various

areas of application to the study of networks, and to panels with a spatial autoregressive

component. Starting from equation (2.1) we have been able to present a very complete

set of results for likelihood-based inference in the pure balanced Group Interaction model

under mixed-Gaussian assumptions. We have also been able to generalize these simple

results to some special cases of models involving regressors, for example, models with a

common mean across all observations, and models with group-specific regressors satisfying

certain assumptions.

The pure balanced model is the simplest example of equation (1.3) one can imagine,

and the ability to carry out the above program is due to the fact that this model is a regular

exponential family. We have then discussed the much more realistic unbalanced model,

a model that is considerably more difficult. Again, that is no doubt because unbalanced

model is not a regular exponential family, but a curved exponential family in which the

dimension of the sufficient statistic is larger than that of the parameter space. Exact

results in this model are available in closed form, but are very complex. Thus, in addition

to reporting the exact results, we have given some approximations that appear to work

well, and which generalize nicely the simpler result for the balanced model. There is more

work to be done on the unbalanced model however.
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Appendix A Proofs and Auxiliary Results

Lemma A.1. med(Fp,q) = 1 if and only if p = q and med(Fp,q) < 1 if p < q.
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Proof. The first part of the lemma is straightforward, because Fp,q = 1/Fq,p implies that

med(Fp,q)med(Fq,p) = 1, and hence that med(Fp,q) = 1 if p = q. Moving to the second part,

med(Fp,q) < 1 if and only if Pr (Fp,q < 1) > 1/2. Using the well-known relationship between

the cdf’s of the F and beta distributions, Pr (Fp,q < 1) = Pr (Beta(p/2, q/2) < p/(p+ q)) ,

where Beta(p/2, q/2) is a beta random variable. But note that p/(p + q) is the mean of

Beta(p/2, q/2). Thus, med(Fp,q) < 1 if and only if

Pr
(

Beta
(p

2
,
q

2

)
< E

[
Beta

(p
2
,
q

2

)])
> 1/2,

that is, if and only if med(Beta(p/2, q/2)) < E[Beta(p/2, q/2)]. For the beta distribution

the median is smaller than the mean if and only the skewness is positive (e.g., Groeneveld

and Meeden, 1977). The desired result follows, because the skewness of Beta(p/2, q/2) is

positive if and only if p < q.

Lemma A.2. Let Ai, i = 1, ..., t, be mi×ni matrices. If ιmi ∈ col(Ai) for each i = 1, ..., t,

then col(
⊕t

i=1Ai) is spanned by
∑t

i=1 ni eigenvectors of diag(ιmiι
′
mi − Imi , i = 1, .., t).

Proof. If ιmi ∈ col(Ai) for each i = 1, ..., t, then the t columns of
⊕t

i=1 ιmi and the∑t
i=1(ni) − t columns of

⊕t
i=1Oi, where Oi is an mi × (ni − 1) matrix with col(Oi) ⊂

col⊥(ιmi), form an orthogonal basis for col(
⊕t

i=1Ai). But these
∑t

i=1 ni columns are

orthogonal eigenvectors of diag(ιmiι
′
mi − Imi , i = 1, .., t) (see footnote 19).

Proof of Proposition 3.3. By Lemma A.1, med(Fr,r(m−1)) ≤ 1, with equality if and

only if m = 2. Using (3.9), it follows that med(λ̂ML) ≤ λ, with equality if and only if

m = 2, thus establishing part (i). Part (ii) follows immediately from (3.10). To prove part

(iii), note that the function bmed(λ) is continuous over Λ, with

dbmed(λ)

dλ
=
m
(
1− λ+ ζ2

r,m(λ+m− 1)
)

+m(1− λ)
(
ζ4
r,m − 1

)(
1− λ+ ζ2

r,m(λ+m− 1)
)2 − 1,

and
d2bmed(λ)

dλ2
= −

2m2(ζ2
r,m − 1)ζ2

r,m

(ζ2
r,m(λ+m− 1) + 1− λ)3

.

Clearly, d2bmed(λ)/dλ2 > 0 for any λ ∈ Λ, because ζr,m < 1 if m > 2 by Lemma A.1.

Solving dbmed(λ)/dλ = 0 gives two critical points, one inside Λ and one outside. The one

inside Λ is λ = (1− (m− 1)ζr,m) /(1 + ζr,m).

Proof of Proposition 3.6. From (3.15),

E(θ̂sML) =
τ s

B
(
r
2 ,

r(m−1)
2

) ∫ ∞
0

f
r+s
2
−1(1 + f)−

rm
2 df =

τ sΓ( r+s2 )Γ( r(m−1)−s)
2 )

Γ( r2)Γ( r(m−1)
2 )

,

provided s < r(m− 1).

39



Proof of Proposition 4.1. Let qi ∼ χ2
vi , i = 1, 2, assumed independent, and let q =

a1q1 +a2q2, with 0 < a1 < a2. In the joint density of (q1, q2), transform to x1 := a1q1, x2 :=

a2q2. The Jacobian is (a1a2)−1, so

pdf(x1, x2) =
exp

{
−1

2

(
x1
a1

+ x2
a2

)}
x
v1
2
−1

1 x
v2
2
−1

2

a
v1
2

1 a
v2
2

2 2
v1+v2

2 Γ(v12 )Γ(v22 )
.

Now transform to q = x1 + x2, b = x1/(x1 + x2), 0 < b < 1, so that x1 = bq, x2 = (1− b)q,
and the Jacobian is q. Then,

pdf(q, b) =
exp

{
−1

2

(
q
a1
− (1−b)q

a1
+ (1−b)q

a2

)}
q
v1+v2

2
−1b

v1
2
−1(1− b)

v2
2
−1

a
v1
2

1 a
v2
2

2 2
v1+v2

2 Γ(v12 )Γ(v22 )
.

Integrating out b is straightforward, giving the sought-after density:

pdf(q) =
exp

(
− q

2a1

)
q
v
2
−1

a
v1
2

1 a
v2
2

2 2
v
2 Γ(v2 )

∞∑
j=0

(
q

2a1

(
1− a1

a2

))j
j!

(
v2
2

)
j(

v
2

)
j

=
exp

(
− q

2a1

)
q
v
2
−1

a
v1
2

1 a
v2
2

2 2
v
2 Γ(v2 )

1F1

(
v2

2
,
v

2
;

1

2a1
q

(
1− a1

a2

))
,

where v := v1 + v2. Putting φ = 1/a1, ψ := a1/a2, we have

pdf(q) =
φ
v
2ψ

v2
2 exp

(
−φq

2

)
q
v
2
−1

2
v
2 Γ(v2 )

1F1

(
v2

2
,
v

2
;
1

2
φq (1− ψ)

)
.

Proof of Lemma 4.2. A generating function for Cj(A) is

|I − tA|−
1
2 =

∞∑
j=0

tj
(

1
2

)
j

j!
Cj(A).

But, when A has the form assumed, the left-hand side is

(1− ta1)−
n1
2 (1− ta2)−

n2
2 =

∞∑
j,k=0

tj+k
(
n1
2

)
j

(
n2
2

)
k

j!k!
aj1a

k
2

=

∞∑
j=0

tj

j!

(
j∑

k=0

(
j

k

)(n1

2

)
k

(n2

2

)
j−k

ak1a
j−k
2

)
.

Equating coefficients of tj/j! gives the result.
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Proof of Proposition 4.3. In addition to proving Proposition 4.3, here we also derive

the corresponding formulae for odd γ (cases (iii) and (iv) below). The conditional density

of w given (q1, q2) is

pdfw(z|q1, q2) =
exp

{
−1

2(aq1 + cq2)
}

2
γ
2 Γ(γ2 )

(ȧq1 + ċq2)(aq1 + cq2)
γ
2
−1. (A.1)

Multiplying by the joint density of (q1, q2), and transforming to x1 := (1 + a)q1, x2 :=

(1 + c)q2 gives

pdfw(z, x1, x2) =
exp

{
−1

2(x1 + x2)
}

2
γ+α+β

2 Γ
(γ

2

)
Γ
(
α
2

)
Γ
(
β
2

)
(1 + a)

α
2 (1 + c)

β
2

x
α
2
−1

1 x
β
2
−1

2

×
(

ȧ

1 + a
x1 +

ċ

1 + c
x2

)(
a

1 + a
x1 +

c

1 + c
x2

) γ
2
−1

.

(i) γ = 2. In this case the last term is not present and, on integrating out x1, x2, we

obtain simply

pdfw(z;α, β, 2) =
α ȧ

1+a + β ḃ
1+b

2(1 + a)
α
2 (1 + b)

β
2

.

(ii) γ = 2s+ 2. When γ = 2s+ 2 the final term has the binomial expansion

s∑
j=0

(
s

j

)(
a

1 + a

)j ( c

1 + c

)s−j
xj1x

s−j
2 .

The term with coefficient ȧ
1+a is then

α

2s!(1 + a)
α
2 (1 + c)

β
2

s∑
j=0

(
s

j

)(
a

1 + a

)j ( c

1 + c

)s−j (α+ 2

2

)
j

(
β

2

)
s−j

=

(
1
2

)
s

s!(1 + a)
α
2 (1 + c)

β
2

αCs

(
Aα+2,β

(
a

1+a ,
c

1+c

))
2

on using Lemma 4.2. The other term is exactly analogous, and we find, for the case

γ = 2s+ 2,

pdfw(z) =

(
1
2

)
s

2s!(1 + a)
α
2 (1 + c)

β
2

 ȧαCs
(
Aα+2,β( a

1+a ,
c

1+c)
)

1 + a
+
ċβCs

(
Aα,β+2( a

1+a ,
c

1+c)
)

1 + c

 .

(iii) γ = 1. Starting from equation (A.1) with γ = 1, and expressing the final term in the

form

(aq1 + cq2)−
1
2 =

1√
2π

∫
x>0

exp{−1

2
x(aq1 + cq2)}x−

1
2 dx,
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we have, on integrating out (q1, q2), for the first term

αȧ

2Γ(1
2)Γ(1

2)(1 + a)−
α+2
2 (1 + c)−

β
2

∫
x>0

x−
1
2

(
1 +

ax

1 + a

)−α+2
2
(

1 +
cx

1 + c

)−β
2

dx.

(A.2)

Transforming to b := x/(1 + x), the integral in (A.2) becomes∫
0<b<1

b−
1
2 (1− b)

α+β+1
2
−1

(
1− b

1 + a

)−α+2
2
(

1− b

1 + c

)−β
2

db

=
Γ
(
α+β+1

2

)
Γ
(

1
2

)
Γ
(
α+β+2

2

) ∞∑
i,j=0

(
1
2

)
i+j

(
α+2

2

)
i

(
β
2

)
j

i!j!(1 + a)i(1 + c)j
(
α+β+2

2

)
i+j

=
Γ
(
α+β+1

2

)
Γ
(

1
2

)
Γ
(
α+β+2

2

) ∞∑
j=0

(
1
2

)
j

j!
(
α+β+2

2

)
j

j∑
i=0

(
j

i

) (
α+2

2

)
i

(
β
2

)
j−i

(1 + a)i(1 + c)j−i

=
Γ
(
α+β+1

2

)
Γ
(

1
2

)
Γ
(
α+β+2

2

) ∞∑
j=0

(
1
2

)
j

(
1
2

)
j

j!
(
α+β+2

2

)
j

Cj

(
Aα+2,β

(
1

1 + a
,

1

1 + c

))
,

and hence (A.2) is

Γ
(
α+β+1

2

)
Γ
(
α+β+2

2

)
Γ
(

1
2

)
(1 + a)

α
2 (1 + c)

β
2

∞∑
j=0

(
1
2

)
j

(
1
2

)
j

j!
(
α+β+2

2

)
j

αȧCj

(
Aα+2,β

(
1

1+a ,
1

1+c

))
2(1 + a)

.

The validity of the series expansions used for the Bessel functions (1− b/(1+a))−α/2

and (1 − b/(1 + c))−β/2, as well as of the term-by-term integration involved, are

readily confirmed (because 1/ (1 + a) and 1/(1 + c) are both between 0 and 1). The

second term is exactly analogous, and we find

pdfw(z;α, β, 1) =
Γ
(
α+β+1

2

)
Γ
(
α+β+2

2

)
Γ
(

1
2

)
(1 + a)

α
2 (1 + c)

β
2

∞∑
j=0

(
1
2

)
j

(
1
2

)
j

j!
(
α+β+2

2

)
j

×

αȧCj
(
Aα+2,β

(
1

1+a ,
1

1+c

))
2(1 + a)

+
βċCj

(
Aα,β+2

(
1

1+a ,
1

1+c

))
2(1 + c)

 . (A.3)

(iv) γ = 2s+ 1. In this case we have

pdfw(z|q1, q2) =
exp

{
−1

2(aq1 + cq2)
}

2
γ
2 Γ
(γ

2

) (ȧq1 + ċq2)(aq1 + cq2)s

(aq1 + bq2)
1
2

.
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After expanding the term (aq1 + cq2)s binomially we can proceed as for the case

γ = 1 above, replacing α by α+ 2i, and β by β + 2(s− i). The result is:

pdfw(z;α, β, 2s+ 1) =
1

2s
(

1
2

)
s

s∑
i=0

(
s

i

)
aics−i

(α
2

)
i

(
β

2

)
s−i

pdfw(z;α+ 2i, β + 2(s− i); 1). (A.4)

Lemma A.3. If, in the same context as Proposition 4.3, a(1+c) ≤ 2c(1+a) for all z ∈ Λ,

then the results in Proposition 4.3 can be written more simply as

pdfw(z;α, β, γ) =
1

(α+ β)B
(
γ
2 ,

α+β
2

) a
γ+β
2

c
β
2 (1 + a)

α+β+γ
2

×
{
ȧα

a
2F1

(
α+ β + γ

2
,
β

2
,
α+ β + 2

2
, η

)
+
ċβ

c
2F1

(
α+ β + γ

2
,
β + 2

2
,
α+ β + 2

2
, η

)}
,

where η := 1− a(1 + c)/ (c(1 + a)) .

Proof. Multiplying the conditional density (A.1) by the joint density of (q1, q2) and

transforming to (x1, x2) := ((1 + a)q1, (1 + c)q2) gives

pdfZ(z, x1, x2) =
exp

{
−1

2(x1 + x2)
}

2
γ+α+β

2 Γ(γ2 )Γ(α2 )Γ(β2 )(1 + a)
α
2 (1 + c)

β
2

x
α
2
−1

1 x
β
2
−1

2

×
(

ȧ

1 + a
x1 +

ċ

1 + c
x2

)(
a

1 + a
x1 +

c

1 + c
x2

) γ
2
−1

(A.5)

Note that if γ = 2 the last term is not present and, on integrating out x1, x2, we obtain

the result given in Proposition 4.3. For the general case, transforming to q := x1 + x2 and

b := x1/q, and integrating out q gives

pdfZ(z, b) =
Γ(α+β+γ

2 )
(

c
1+c

) γ
2
−1

Γ(γ2 )Γ(α2 )Γ(β2 )(1 + a)
α
2 (1 + c)

β
2

×
(

ȧb

1 + a
+
ċ(1− b)

1 + c

)
b
α
2
−1(1− b)

β
2
−1 (1− ηb)

γ
2
−1 . (A.6)

Provided |η| < 1, integrating out b in the second line of the last display gives two terms

(ignoring the first line for the moment):

ȧ

1 + a

Γ(β2 )Γ(α+2
2 )

Γ(α+β+2
2 )

(
a(1 + c)

c(1 + a)

) γ+β
2
−1

2F1

(
α+ β + γ

2
,
β

2
;
α+ β + 2

2
; η

)

43



and

ċ

1 + c

Γ(β+2
2 )Γ(α2 )

Γ(α+β+2
2 )

(
a(1 + c)

c(1 + a)

) γ+β
2

2F1

(
α+ β + γ

2
,
β + 2

2
;
α+ β + 2

2
; η

)
.

Simplifying the entire expression gives the result stated.
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Appendix B Additional Figures

Bias, RMSE, and Median of Bias Corrected Estimators

−1 −0.5 0 0.5 1

−0.15

−0.10

−0.05

0.00

r = 10,m = 10

−1 −0.5 0 0.5 1

−0.30

−0.20

−0.10

0.00

r = 5,m = 10

−1 −0.5 0 0.5 1

−0.30

−0.20

−0.10

0.00

r = 5,m = 5

−1 −0.5 0 0.5 1

−0.15

−0.10

−0.05

0.00

r = 10,m = 5

−1 −0.5 0 0.5 1

−0.02

−0.01

0.00

r = 50,m = 5

−1 −0.5 0 0.5 1

−0.02

−0.01

0.00

r = 50,m = 10

−1 −0.5 0 0.5 1

−0.02

−0.01

0.00

r = 50,m = 50

λ̂ML

λ̂med

λ̂mean

λ̂BC

−1 −0.5 0 0.5 1

−0.15

−0.10

−0.05

0.00

r = 10,m = 50

−1 −0.5 0 0.5 1

−0.30

−0.20

−0.10

0.00

r = 5,m = 50

Figure 9: Bias function of the MLE (λ̂ML), the median unbiased estimator (λ̂med), the

indirect estimator obtained by inverting the mean function (λ̂mean), and the direct bias

corrected MLE (λ̂BC).
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Figure 10: RMSE function of the MLE (λ̂ML), the median unbiased estimator (λ̂med), the

indirect estimator obtained by inverting the mean function (λ̂mean), and the direct bias

corrected MLE (λ̂BC).
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Figure 11: Median function of the MLE (λ̂ML), the median unbiased estimator (λ̂med), the

indirect estimator obtained by inverting the mean function (λ̂mean), and the direct bias

corrected MLE (λ̂BC).
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Densities in the Unbalanced Model with Two Groups Figures 12 and 13 comple-

ment Figure 7 in the paper. They were obtained using the results given in both Propo-

sition 4.3 in the text, and Lemma A.3 in Appendix A. Each of the three rows of Figure

12 displays pdf λ̂ML
(z;λ) for a fixed value of m1 and varying n, while Figure 13 displays

pdf λ̂ML
(z;λ) for fixed n and varying m1. For convenience, all densities are plotted on

(−2, 1) ⊂ Λ = (− (m1 − 1) , 1). Recall that as long as the model is unbalanced, there

is a point z2 ∈ Λ where the density of λ̂ML in nonanalytic, whatever the sample size n.

Graphically, nonanalyticity is clearly visible only for small m1; at m1 = 6 it is already

difficult to detect.
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Figure 12: Density of λ̂ML for pure Group Interaction model with two groups, when

ε ∼ SMN(0, In).
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Figure 13: Density of λ̂ML for pure Group Interaction model with two groups and n = 25,

when ε ∼ SMN(0, In).
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