1 Introduction

IBA is a quantitative analytical technique, and in this chapter we intend to show how to avoid many pitfalls when determining elemental depth profiles accurately with light ion RBS using MeV ion beams. IBA can of course use various other beams, and for a variety of other purposes, including profiling of crystalline defects. This present discussion is usually, but not always, easily generalised to these other cases: we will therefore also cover pitfalls in a number of other important examples.

We will in general be guided by the previous IBA Handbook Chapter 12 (by Davies, Lennard & Mitchell). However, this has many subtle discussions that we will avoid or simplify, referring the advanced IBA user back to it. Today most laboratories that are starting to use IBA have the new generation of accelerators, eliminating many of the problems associated with the older accelerators which the previous chapter addressed.

There is a new generation of software available which renders obsolete many of the numerical examples of the previous Handbook. We will assume that users interested in accurate work will have access to one of the codes described and evaluated in the recent International Atomic Energy Agency (IAEA) sponsored IBA software intercomparison exercise [1] where it is shown that IBA spectra can be treated numerically with a confidence of about 0.2%, and that currently the best absolute experimental accuracy available is 0.6%. We therefore intend to describe sources of error (pitfalls) greater than about ¼%, and users should be aiming at accuracies of 1% or better.

The nuclear physics background of the old generation of IBA practitioners has become inaccessible to many of today's users; IBA is of great value in materials characterisation and is used increasingly by materials scientists who have not had a nuclear physics training. This chapter is intended to be of particular value to this type of user.

Accurate elemental depth profiling by IBA is of great value in many modern thin film technologies: the most obvious comparable technique is SIMS (secondary ion mass spectrometry) which is often used for these types of problems. SIMS is a powerful and sensitive technique, but it is usually only semi-quantitative, and it is generally unreliable at interfaces (unless the system is well known). IBA, on the other hand, is particularly good at interfaces, and has an accuracy that is easily traceable to international standards, making it suitable for standards work. We will show in this chapter how to best capitalise on these strengths.
For parts of this chapter we will take a measurement of the implanted fluence of As into Si [2] as a worked example of various pitfalls in doing accurate IBA. The collected spectra are shown in Fig.1. There are two important equations relevant to this discussion: Eq.1 simply describes the number \(N_A \) (in atoms/cm\(^2\)) of As atoms, which is given by the measured area \(A_A \) of the signal of element A (in this particular example A is As) (in counts):
\[A_A = Q N_A \sigma_A'(E, \theta) \Omega \]

(1)

where \(Q \) is the number of incident particles (the "collected charge") and \(\Omega \) is the detector solid angle (in steradians sr). \(\sigma_A' \) is the differential cross-section (in \(\text{cm}^2/\text{sr} \)) of element A and \(\sigma \) is a function both of the scattering angle \(\theta \) and of the beam energy \(E \) as it decreases from its initial energy \(E_0 \) as it penetrates into the sample.

In Fig.1 there are two signals of analytical interest. The first is obviously the As signal. However, in Eq.1 we also need to know the charge-solid-angle product \(Q\Omega \). This is determined from the Si signal and the known energy loss of the He beam in a silicon matrix. For backscattering with the detector at an angle of \(\theta \) to the beam and normal beam incidence the surface yield \(Y_0 \) (in counts/channel) for element A in a matrix AB is given by Eq.2:

\[Y_{0,A} = Q f_A \sigma_A' \Omega \Delta / [\varepsilon_0]^{\text{AB}} \]

(2)

where \(f_A \) is the fraction of the matrix that is element A, \(\Delta \) is the electronic gain (in eV/channel of the analogue-digital converter), and \([\varepsilon_0]^{\text{AB}} \) (in eV.cm\(^2\)) is the energy loss factor for the signal of A from the surface of matrix AB given the beam energy and the scattering angle (see Ch.??).

Eqs.1&2 have been simplified without any loss of generality. They should both really be integrals over the depth of the signal, noticing that \(\sigma' \) varies as \(1/E^2 \), and that \([\varepsilon] \) is also a function of depth.

The standard IBA codes have been validated to do these integrations correctly [1].

For the example of Fig.1, determining the number of As atoms present (using Eq.1) depends on an indirect measurement of the charge-solid-angle product \(Q\Omega \) from the height \(Y \) of the silicon substrate signal (using Eq.2), where the number of Si scattering centres is implicit in the \(\Delta/[\varepsilon] \) ratio.

In the rest of this chapter we will elaborate on various of the issues raised (as well as some others).

2 Lost Beam and Events

2.1 Charge Measurement

The collected charge \(Q \) in Eqs.1&2 is a very important quantity which it is not so easy to measure. In the implantation of Fig.1 the As implanted fluence was determined during the implantation by collecting charge in Faraday cups of a design shown in Fig.2. This is a demanding application since large heavy-ion beam currents are used in implanters and the beam being measured usually falls only partially on the primary aperture. The cited work [2] shows that this design is capable of charge measurement in this application with an accuracy around 1%.

At issue is not the simple measurement of charge in a current integrator which can (and should!) be calibrated against standard current sources with pC accuracy. There are two points to note from Fig.2. Firstly, the incident beam will generate a large number of secondary electrons at the primary (beam defining) aperture (P), many of which will have a significant momentum towards the target. The secondary electron current is usually comparable to the incident beam current; and often exceeds it, in the case of a heavy ion beam, by orders of magnitude. It is important to carefully suppress such electrons.

Secondly, the beam striking the target will liberate many secondary electrons and photons (X-rays). Most of the secondary electrons will be low energy (<10eV), but there are a significant number of high energy electrons, which may have keV energies. Some electrons will therefore escape the Faraday cup (S) through the secondary aperture (A, this aperture is not struck by the primary beam) and must be suppressed. There is also a possibility that secondary positive ions (or low energy multiply scattered primary ions) may also escape the Faraday cup: these will be attracted by the suppression electrode and will give rise to tertiary currents (which will be amplified by secondary electrons liberated and repelled from the suppression electrode by the ion impacts). Tertiary
currents are not seen by the current integrator (I) in this design. These secondary particle effects may be very large for some insulating samples and at low (keV) beam energies.

For IBA applications such a well designed Faraday cup is usually impractical, since the target may be large or part of a more or less complicated manipulator; and in any case access is needed for detectors which may be of various types (particle, photons including X-rays, ToF etc) or in various geometries. But when direct charge measurements are made the geometry of the actual apparatus should be critically compared with the "ideal" Faraday cup described. It should be remembered that photon impact can also liberate secondary electrons, and for samples which generate many photons this effect may be large [3].

Electron suppression can work just as well with magnetic as with electrostatic fields, and small, strong permanent magnets are now readily available. But the use of electrostatic and magnetic fields together is to be avoided since when both fields are present electron paths can be very complicated and any possible escape paths will probably be found. With electrostatic fields the suppressor action should be checked periodically since insulating deposits can build up on the surfaces over time, attracting fixed charges that can entirely compensate the applied field.

A variety of methods have been used to determine collected charge apart from direct measurement from the target. A transmission Faraday cup has been described by Sitter et al [4], and by Pászti et al. [5]. In both of these instruments a rotating or reciprocating vane cuts the beam periodically and the charge deposited on the vane is measured with a precision of about 1%. The pitfall to avoid in this sort of measurement is to forget that the secondary electron yield is enormous when the beam strikes the edge of the vane, and that suppression of these electrons is as important on the downside as on the upside of the vane. A passive instrument where a fixed mesh is used instead of a chopper has been described by El Bouanani et al (2006, [6]).

![Figure 2: Faraday Cup Design.](image)

The sensor S is an equipotential volume in an earthed case. Secondary electrons from the primary aperture P are suppressed by the electrode S1, and any secondary electrons escaping through the secondary aperture A are suppressed by the electrode S2. Suppression voltages are typically 300V.

A rotating vane instrument has been reported by Piel et al [7], and by Giuntini & Mando [8] where backscattered particles instead of charge are collected from the vane. For these instruments the vane is coated with gold and the particles scattered from gold are discriminated in a SCA (single channel analyser). This is quite a troublesome arrangement since the signal changes for different beams and you really need to see the spectrum to set up the SCA correctly. Users have also found
that they need to use a gate to exclude edge signals from the detector. It is possible, but not easy, to obtain excellent precision (1%).

Transmission detectors take a fraction of the beam of course, and this fraction must be measured directly with a downstream Faraday cup (which can be of ideal design). The great virtue of transmission detectors is that they are completely independent of the target, which can then be manipulated, be heated or cooled, or be of any material without any effect on the charge measurement.

2.2 Beamline Charge Exchange

In modern systems with good vacuum this is an unusual problem. Users should however be aware that there is a possibility of significant beam charge exchange where the vacuum is poor. This has been reviewed in considerable detail by Allison (1958, [9]). There is a probability both of lower and higher charge states.

Accelerators used for implantations often scan the ion beam to implant the sample uniformly, and in these beam lines a "neutral trap" is always incorporated: this is a voltage applied to transmit the beam past a kink in the beam line. The neutral beam is not deflected and is intercepted by an aperture. For IBA the beam lines do not always have neutral traps and the beams are not usually scanned so that neutral beams will give an unchanged IBA signal but will not be detected by the current integrator. Since the beam lines are usually long the neutral fraction of the beam may be significant if the vacuum is poor.

Conversely, a He$^+$ beam may suffer further charge stripping collisions, giving a significant He$^{++}$ component. As an example, if the beam line pressure is 1mPa (10$^{-5}$mbar) and the beamline is 4m long the neutralisation probability for a 450keV 4He$^+$ particle will be about 1%, but the probability of stripping to He$^{++}$ is higher at about 2%. For a 450keV He$^{++}$ beam in this beam line the probability of He$^+$ is 5% but the probability of the neutral is only 0.5%. For three times the energy one might expect the neutralisation cross-sections to fall by a factor 3 or so. The cross-section for He$^+$ to change to He$^{++}$ falls from 66Mbars to 37Mbars as the He$^+$ energy increases from 450keV to 1700keV, but the reverse charge exchange, of He$^{++}$ changing to He$^+$, falls from 170Mbars (for 450keV He$^{++}$) to 5Mbars (for 1700keV He$^{++}$).

2.3 Particle Identification

A precise knowledge of the incident particle parameters is essential for all ion beam experiments. We assume here that the accelerator has only an analyzing magnet (with relatively poor mass resolution compared to AMS - accelerator mass spectrometry) to perform momentum selection of the beam. Many accelerators suffer from periodic problems due to unwanted contaminant beams that arrive at the target together with the desired species. Such problems are caused by:

- Atomic or molecular particles whose kinematic properties mimic the acceleration and deflection kinematics of the desired particle;
- Unwanted particles that reach the target because of a low probability charge exchange sequence occurring upstream of the target; or
- Particles that have completely incorrect kinematics but arrive at the target because of (wall) scattering.

One of the simplest ways to test for a mixture of 'equal-mass' beams in single-ended machines is to detect elastically scattered projectiles from a thin self-supporting Au target. An energy spectrum analysis with a standard surface barrier detector system will readily distinguish the fragments of molecular impurities, such as mixtures of H$_3^+$, HD$^+$ and 3He$^+$, or 4He$^+$ and D$_2^+$, which may arise through ion source memory effects.
The consequence of scattering the three ion species, \(\text{H}_3^+ \), \(\text{HD}^+ \), and \(\text{He}_3^+ \), from a thin Au scattering foil, when the incident species have equal energy (1 MeV), is shown in Table 1. We assume that the detector is located at 90° (lab. angle). The three beams would give rise to three distinct peaks:

- For \(\text{H}_3^+ \), a single peak at 0.33 MeV energy;
- For \(\text{HD}^+ \), two peaks corresponding to 0.33 MeV protons and 0.67 MeV deuterons; and
- For \(\text{He}_3^+ \), a single peak at 1 MeV energy.

The relative intensities are distinctive. The entries in Table 1 are based on a simple \((Z_i Z_f/E)^2 \) dependence of the elastic (Rutherford) cross section for the dissociated fragments, and approximating the kinematical factors by unity.

Another example of the use of this Au foil scattering technique is the identification of \(^{16}\text{O} \) ions in the presence of \(^4\text{He} \) ions — a curiosity observed when poor beamline vacuum developed, thereby allowing a \(^{16}\text{O}^+ \) impurity beam co-accelerated to 2 MeV with the \(^4\text{He}^+ \) beam to charge-exchange to \(^{16}\text{O}^{++} \) in the drift section between the accelerator and the analyzing magnet. This process allowed two beams of 'identical' rigidity, \(ME/q^2 = 8 \) (MeV-amu), to be passed by the magnet.

<table>
<thead>
<tr>
<th>Beam</th>
<th>Relative yield for scattered particle(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H 0.33MeV</td>
</tr>
<tr>
<td>(\text{H}_3^+)</td>
<td>27</td>
</tr>
<tr>
<td>(\text{HD}^+)</td>
<td>9</td>
</tr>
<tr>
<td>(^3\text{He}^+)</td>
<td></td>
</tr>
</tbody>
</table>

The molecular interferences are not problematic for tandem-type accelerators, where there is an injection magnet at the source, an analyzing magnet following acceleration, and a (collisional) stripping event at the high voltage terminal. Wall scattering can be minimized using a series of apertures; however, care must be exercised so as not to restrict beamline pumping speed excessively.

2.4 Deadtime and Pulse Pileup

We restrict our comments to 'singles' experiments (as opposed to coincidence experiments) and solid state detectors, which are most common for ion beam analysis applications, although much of this section is common to all types of analysis.

Deadtime is generated in the counting system by the time taken to process each pulse. This is typically dominated by the ADC conversion time (of the order of 10\(\mu \)s) for particle detectors and by the preamplifier pulse processing time for Si(Li) X-ray detectors (typically greater than 10\(\mu \)s). In all systems the ADC should be capable of reporting the actual dead time for each counting channel to the user. This dead time must include any time spent in handshaking between the various electronic components. Where the ADC is multichannel or where the host computer is multitasking there may be significant extra system deadtime that affects all channels. In any case, where
multiple detectors are used simultaneously it is more important to accurately determine the relative live charge between the detectors than it is to determine the charge that fell on the sample (the true charge) during the collection time. For accurate work it is essential to understand the operation of your spectroscopy system in detail.

Pulse pileup occurs when separate pulses come too close together in time and are not recognised as separate by the spectroscopy system. There are two cases: whether or not a pulse rejection (PUR) circuit is present. Where PUR is used pileup events will still occur since every spectroscopy system has a pulse detection time resolution, and there is a non-zero probability for pulses to occur at any time separation, even simultaneously. Surface barrier detector preamplifiers for example can have a rise time of about 30ns, and a typical resolution time for an amplifier PUR circuit is 500ns. However, where PUR is used any pileup events that are not rejected are "nearly" simultaneous, that is, the amplitude of the resulting sum pulse is nearly the sum of the amplitudes of the pileup pulses. Where PUR is not used the sum pulse may be of (nearly) any amplitude.

It is possible to almost entirely eliminate pileup by determining the momentum of the detected particles as well as their energy using a ΔE-E detector telescope (Gurbich, 1996 [11]) or using a time of flight detector with a pulsed incident ion beam (Gurbich & Kornilov, 1991 [12]). However, these have significantly greater complexity, and the ΔE/E method needs very thin ΔE detectors for lower energy He beams. We will concentrate here on correcting spectra collected with the simplest detectors.

Fig.3 shows a spectrum with significant pileup (and with PUR). The Au signal appears at ch150 and the electronic pulser signal at ch480. All the counts above the Au signal are pileup counts (except for the pulser), and the shape of the pileup signal is recognisably an autoconvolution of the spectrum. The 2-pulse pileup is accurately calculated (with or without PUR) with the algorithm of Wielopolsky & Gardner ("W&G", 1979 [13]). This is a slow calculation, involving n_{channel}^3 operations: the autoconvolution method [14], improved by Amsel et al. (1992 [15]), is faster given that it involves only n_{channel}^2 operations, but not so accurate. Where the pileup correction is significant, the best calculation should be done: refer to the Manual for the IBA code being used. Some codes will also make an approximate calculation of 3-pulse pileup [16]. We note that the best pileup calculations for most current PIXE codes do not use the best algorithms [17]. We note also that the W&G algorithm assumes parabolic-shaped pulses, but can be extended to other shapes as well, and requires knowledge of the time for a pulse to reach the maximum, which depends on the amplifier used (normally given in the amplifier documentation).

The W&G algorithm is used in Fig.1c to determine the pileup correction function of the As signal. This figure illustrates a dangerous pitfall: you might think that this pileup background is nicely linear from the pileup behaviour above and below the signal. But it is very clear from the calculated pileup signal shown that the pileup is actually strongly non-linear. Of course, the pileup at any channel is the sum of the pileup events that are detected in that channel and events which should be in that channel but which are actually piled up and end up in higher channels. For strong signals the pileup background can be negative since the latter events outweigh the former. For example, the Au signal of Fig.3 is underestimated by 1.5% even for the relatively low count rate of 4kHz.

Notice in Fig.3 that below about ch30 there is a large "noise" signal. Usually this is discriminated by the LLD (lower level discriminator) of the amplifier to reduce the count rate into the ADC, but pileup will occur anyway whether or not the (real) counts appear in the spectrum. In this case the LLD was on, but an assumed (ad hoc) signal was arbitrarily included in the spectrum shown such that the pileup above the Au edge and above the pulser signal were correctly reproduced. The extra (unfitted) counts above about ch505 are an artefact of the ADC which integrates all the high energy counts instead of truncating them. The pitfall to avoid is relying on even a good pileup calculation such as W&G too near a leading edge where the LLD will distort the calculated pileup signal.
When doing accurate work that depends on a good pileup calculation it is important to use a constant beam current. The algorithms used by the IBA codes take the live time as the input from which average count rate is calculated. If the count rate fluctuates the pileup cannot be accurately calculated. The W&G calculation has no free parameters, although the collection time, the shaping time and the PUR time resolution can be treated as fitting parameters. Analysts should note that the large, rapid fluctuations in the incident beam intensity described by Sjöland et al (1999 [18]) invalidates the simple W&G calculation and every effort should be made to avoid fluctuating beams. Thankfully, modern accelerators generate a very constant beam current. Sjöland et al also describe the more difficult case of scanning microbeam PIXE, where even if the beam current is constant, the count rate is not in general.

Deadtime and pileup arise in all of the electronic components: preamplifier, amplifier, ADC, etc., due to the pulse rate. Solid state detectors should be operated at pulse rates where the pulses are separated by an average time interval that is much more than the deadtime inherent in the rest of the electronic circuitry. A 10µs dead time per pulse implies a maximum counting rate of 100kHz, but of course the pulses come randomly in time and dead time will increase rapidly (and non-linearly) for count rates higher than about 10kHz.

It is a good practice to always use a test pulse (see the pulser signal at ch480 of Fig.3) at the appropriate preamplifier input, that is, introducing a signal which is periodic with known frequency (typically about 60 Hz). Thus, the total number of 'missing' pulses due to count rate losses during an acquisition time can be calculated from the measured area under the pulser peak. If the pulser is gated for dead time then it will reflect pileup losses. When using a Faraday cup that rotates into the beam periodically there are no pulser losses when the beam is hitting the cup. Here the precise duty cycle of the cup must be measured and its effect factored into the correction. Another way to measure counting losses using a pulser is to trigger the pulser with an output (usually scaled) from the current integrator. This way, if the beam goes off, so do the pulses, and since one usually counts for a preset charge, the number of pulses is also known. The pulser is in any case valuable to monitor the electronics stability during the data collection run, and to monitor the noise performance of the system.

In general, counting rate losses will be non-negligible for total pulse counting rates exceeding 1kHz, which applies to almost all RBS measurements. Raising the LLD of the amplifier and/or ADC can decrease the deadtime problem, provided that the low energy region of the spectrum is extraneous.
to the experiment (but this will also distort the pileup calculation as described above). See Knoll’s excellent text (1989 [19]) for more detail.

To conclude this section we urge the reader to avoid the pitfall of counting *too slowly* in an attempt to avoid pileup and dead time effects. It is a misuse of spectroscopic electronics of excellent linearity and of highly expensive accelerator facilities not to count as fast as is feasible. We emphasise that the W&G pileup calculation is *exact* for 2-pulse pileup (for parabolic pulses), and good quality electronics will also give very precise dead time values, so there is no need to reduce the count rate to avoid these effects except, of course, where the signal/noise ratio is critical such as when looking for trace heavy elements in a light matrix where the background is all from pileup. In any case there are diminishing returns for decreasing the counting rate since pileup is linear with counting rate and so is deadtime for low count rates.

Count fast and do the corrections correctly!

2.5 Electronic noise and Ground Loops

State-of-the-art ion implanted silicon detectors reach an energy resolution of 10 keV (FWHM) for helium ions and 5 keV for protons. The contribution of electronic noise from a standard preamplifier is about 3 keV. For high resolution measurements it is therefore important to avoid the pick-up of any other disturbance from the electromagnetic environment. If gas ionization chambers are used the charge produced per keV particle energy can be more than a factor of 6 lower than in a silicon detector and electronic noise becomes more important by this same factor. If capacitive noise from the preamplifier is the limiting contribution to the resolution the performance can be improved by reducing the capacitance of the detector and connecting cable and by using a preamplifier with cooled FET. If the specified noise level (measured by a precision pulser) is not obtained there is most certainly periodic noise involved. Additional information can be found in Goulding & Landis (1982 [20]), Radeka (1988 [21]), and Morrison (2007 [22]).

To track and remove periodic noise can be very tedious and there is no single recipe that reliably leads to success. Basically there are two strategies: on the one hand to remove the sources of noise and on the other hand to improve shielding and reduce sensitivity of the detector chain against the disturbance. In the following we list tests that can be done and measures that can be taken. It has to be mentioned that some actions that improve conditions in one situation may be detrimental in another one, depending on the electrical grounding scheme used and the nature of the noise source.

- Check cable shieldings and connectors, especially the ground lead of the preamplifier input connector has to be firm (check by careful twisting). Do not use unnecessarily long cables.
- Beamlines and vacuum vessels are not necessarily good conductors and on a well defined ground potential. Try to connect the flange which carries the electrical feedthrough to the detector with a solid copper cable to the electrical ground of detector electronics.
- Extra ground cables have to be of large cross-section (rather 10 than 1 mm2) and connected firmly. If other cables carry ground along the same line, avoid to produce ground loops and slightly twist cables around each other.
- If you have three-phase electrical power in the laboratory that is split up into three two-phase current networks never mix phases for one experimental set-up. Acquisition electronics (including data taking computers) should be powered by the same phase. If necessary install an extra power cable to computer or control room.
- If possible try ”star grounding” of your electronics to avoid ground loops, i.e. there is only one single connection to ground potential in the whole system. In this case the shielding of the detector cable has to be insulated from the vacuum vessel.
- Avoid strong high frequency emitters close to the experiment. These are often chopped power supplies, turbo pump controllers, PC-monitors, etc. If emitters are inside the vacuum vessel (as e.g. turbo pumps) the detector may act as an antenna, rethink the shielding scheme.
- To track the sources of periodic noise run a fast Fourier-Transform on an oscilloscope. In some cases a simple ferrite filter can help.
- Microphonic noise (i.e. mechanical vibrations of the detector) can produce similar disturbances. If produced by a turbo pump it can even have the same frequency as the noise induced by the electromagnetic field.
3 Fixed Parameter Calibration

In Eq.1 the unknown experimental parameter is the product of the charge Q and the solid angle Ω. The measurement of charge has been treated above. In Eq.2 the electronics gain Δ appears as well as the charge.solid-angle product $Q\Omega$. In both equations the scattering angle θ is implicit in both the scattering cross-section σ' and the integration pathlengths. This section treats the separate determination of Ω, Δ and θ, which are (usually) fixed in any one run.

Solid-angle is troublesome to measure accurately at the 1% level, as is routine charge collection in RBS systems, and analysts have used standard (certified) samples for decades to avoid routine use of absolute values of charge and solid-angle. It is difficult to determine the detector-to-target distance with a precision of 1% (generating a 2% uncertainty in the solid angle). It should be noted that if the charge.solid-angle product is calibrated on one beam, then care should be taken that there is no relative error introduced via current integration when performing an experiment in the same geometry with a different beam. The comments on solid angle determination apply to particle detectors, where the intrinsic detector efficiency is known to be 100% for energies exceeding ~30 keV. For γ-ray and neutron measurements, it is more difficult to achieve an accuracy of ~1% for the overall detection efficiency.

3.1 Energy

Accelerator energy calibration is critical for accurate work. Clear pitfalls here were highlighted in the last Handbook (see below sect.3.2) which pointed out that the first RBS Round Robin had very disappointing results partly because of very poor energy calibration. For RBS, the spectra have a similar shape for all energies. Of course, the energy loss is sensitive to the beam energy, but is not nearly well enough known for use in energy calibration. In any case the energy loss for any given layer can rarely be measured with a precision exceeding 1%. But since the cross-section is proportional to $1/E^2$, but linear in gain, an energy error will propagate through to errors in the layer thicknesses determined. For EBS (and NRA), there are very often strong resonances which in some circumstances can lead to very large errors consequent on an energy calibration error. PIXE is the one case where energy is a second order effect and one often finds that PIXE labs are rather cavalier about energy calibration. This is a potentially serious pitfall for those labs if they try to do a more complete analysis using simultaneous particle scattering, as is now desirable with the new codes that handle these multiple techniques self-consistently.

One might think that since all accelerators have resistor chains to distribute the terminal potential down the homogeneous lens of the accelerator column (or columns for tandem machines) through the column current, the terminal potential could be easily determined through Ohm's Law, since the resistors have fixed values. However, these resistors have extraordinarily high values (typically ~10GΩ) and operate at very high voltages (typically ~40keV), and high value high voltage resistors are known to follow Ohm's Law only approximately, and in any case not reproducibly at the sub-1% level.
Table A1: Primary (recommended) accelerator calibration points for protons (Marion, 1966)

<table>
<thead>
<tr>
<th>Energy keV</th>
<th>Reaction</th>
<th>FWHM keV</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>340.46 ± 0.04</td>
<td>19F(p,αγ)16O</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>872.11 ± 0.02</td>
<td>19F(p,αγ)16O</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>991.90 ± 0.04</td>
<td>27Al(p,γ)28Si</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>1747.6 ± 0.9</td>
<td>13C(p,γ)14N</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>1880.60 ± 0.07</td>
<td>7Li(p,n)7Be</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1880.42 ± 0.05</td>
<td>7Li(p,n)7Be</td>
<td></td>
<td>Barker et al, 1984</td>
</tr>
<tr>
<td>3235.7 ± 0.7</td>
<td>13C(p,n)13N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4234.3 ± 0.8</td>
<td>19F(p,n)19Ne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5796.9 ± 3.8</td>
<td>27Al(p,n)27Si</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5803.3 ± 0.26</td>
<td>27Al(p,n)27Si</td>
<td></td>
<td>Naylor & White, 1977</td>
</tr>
<tr>
<td>6451.1 ± 4.5</td>
<td>34S(p,n)34Cl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7023.6 ± 3.9</td>
<td>60Ni(p,n)60Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9202.7 ± 4.8</td>
<td>54Fe(p,n)54C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9515.2 ± 2.9</td>
<td>58Ni(p,n)58Cu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12728 ± 10</td>
<td>16O(p,p)16O</td>
<td><2</td>
<td></td>
</tr>
<tr>
<td>14233 ± 8</td>
<td>12C(p,p)12C</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>14230.75 ± 0.02</td>
<td>12C(p,p)12C</td>
<td>1.2</td>
<td>Huenges et al, 1973</td>
</tr>
<tr>
<td>19684 ± 8</td>
<td>12C(p,n)12N</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Therefore it is necessary to calibrate indirectly, using established standards. The two primary accelerator energy calibration points are the 27Al(p,αγ) at 991.90±0.04 keV and the threshold of the 7Li(p,n)7Be reaction at 1880.60±0.07 keV. These values are taken from the authoritative Marion (1967, [23]) and are still the currently accepted values. The last Handbook had a Table of accelerator calibration energies, but it should be made clear that many of these are for convenience only, are not accepted values, and should not be used in critical work. For example, the last Handbook had a resonance energy of 3036±2keV for the 16O(α,α)16O reaction, but the IAEA recommended evaluated cross-section code SigmaCalc_v1.6 gives a resonance energy of 3044keV.
Table A2: Accelerator calibration points from He threshold reactions (Marion, 1966)
NB: 1964 masses are used (Nucl.Phys., 1965, 67, p73)

<table>
<thead>
<tr>
<th>Energy</th>
<th>Reaction</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1436.7 ± 0.5</td>
<td>12C(3He,n)14O</td>
<td>Experimental (two measurements)</td>
</tr>
<tr>
<td>1437.9 ± 0.6</td>
<td>12C(3He,n)14O</td>
<td>Roush et al, 1970</td>
</tr>
<tr>
<td>1436.6 ± 0.5</td>
<td>12C(3He,n)14O</td>
<td>Theoretical</td>
</tr>
<tr>
<td>2966.1 ± 1.7</td>
<td>6Li(3He,n)8B</td>
<td>Experimental (one measurement)</td>
</tr>
<tr>
<td>2965.0 ± 1.5</td>
<td>6Li(3He,n)8B</td>
<td>Theoretical</td>
</tr>
<tr>
<td>3798.7 ± 5.7</td>
<td>16O(3He,n)18Ne</td>
<td>Theoretical</td>
</tr>
<tr>
<td>4384.3 ± 1.9</td>
<td>7Li(α,n)10B</td>
<td>Theoretical</td>
</tr>
<tr>
<td>6088.8 ± 0.8</td>
<td>14N(α,n)17F</td>
<td>Theoretical</td>
</tr>
<tr>
<td>6623.9 ± 2.6</td>
<td>6Li(α,n)8B</td>
<td>Theoretical</td>
</tr>
<tr>
<td>8132.4 ± 1.5</td>
<td>15N(α,n)18F</td>
<td>Theoretical</td>
</tr>
<tr>
<td>11346.3 ± 1.7</td>
<td>12C(α,n)15O</td>
<td>Theoretical</td>
</tr>
<tr>
<td>15176.1 ± 2.0</td>
<td>16O(α,n)19Ne</td>
<td>Theoretical</td>
</tr>
</tbody>
</table>

Secondary calibration points can be used frequently to verify the reproducibility of the accelerator energy, usually at a lower precision, and almost always at a lower absolute accuracy. EBS resonances are very convenient for this purpose, especially since there are a number of resonances at high energies and for 4He beams. See Table A2 for suggestions, but note that the energy positions of the resonances do not (usually) have an evaluated uncertainty even though the SigmaCalc cross-sections are evaluated. The exception to this is the C(p,p) reaction, where the energy is very well known. The estimated uncertainties are taken from the original cross-section measurements. To use these resonance energies best, considering that the line shapes can be strongly skewed, one of the IBA codes that can handle EBS correctly should be used to fit the spectra obtained. Very high precision can be obtained if the IBA codes are carefully used, even with the very wide resonances.
Table A3: Secondary energy calibration points based on SigmaCalc v1.6

NB: Uncertainties are derived from the original literature, not from SigmaCalc, and are standard deviations, not FWHM.

<table>
<thead>
<tr>
<th>Energy keV</th>
<th>Reaction</th>
<th>FWHM keV</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3885 ± 5</td>
<td>(^{16}\text{O}(\alpha,\alpha)^{16}\text{O})</td>
<td>2</td>
<td>Gurbich, 2007a</td>
</tr>
<tr>
<td>4265 ± 5</td>
<td>(^{12}\text{C}(\alpha,\alpha)^{12}\text{C})</td>
<td>27</td>
<td>Gurbich, 2000</td>
</tr>
<tr>
<td>3470</td>
<td>(^{16}\text{O}(p,p)^{16}\text{O})</td>
<td>2</td>
<td>Gurbich, 2002a</td>
</tr>
<tr>
<td>1483</td>
<td>(^{24}\text{Mg}(p,p)^{24}\text{Mg})</td>
<td>0.3</td>
<td>Gurbich, 2007b</td>
</tr>
<tr>
<td>1748.5</td>
<td>(^{14}\text{N}(p,p)^{14}\text{N})</td>
<td>9</td>
<td>Gurbich, 2007c</td>
</tr>
<tr>
<td>3198</td>
<td>(^{14}\text{N}(p,p)^{14}\text{N})</td>
<td>6</td>
<td>Gurbich, 2007c</td>
</tr>
<tr>
<td>1734 ± 0.2</td>
<td>(^{12}\text{C}(p,p)^{12}\text{C})</td>
<td>45</td>
<td>Gurbich, 2002b</td>
</tr>
</tbody>
</table>

A competent operator should be able to achieve an energy calibration at an absolute accuracy better than 0.1%, but this is not so easy, partly because this level of accuracy is never easy to achieve, partly because precision at this level is usually limited by counting statistics (so that significant beam time is required), and partly because such accuracy requires careful attention to the quality of the sample surface used. The aluminium sample should be well polished (shiny) and clean, and the lithium sample (which is very reactive) should have a fresh surface prepared each time in situ by cutting with a knife under an argon atmosphere. Bear in mind that you only need a 13nm (5µg/cm\(^2\)) alumina layer or a 4µg/cm\(^2\) carbon layer to give a 1keV energy loss for protons at 1MeV.

Moreover, many modern accelerators are tandem machines, where a 0.1% uncertainty in the terminal voltage translates into a 0.2% uncertainty in the beam energy. Analysts should not forget that there is also the injection voltage of the ion source into the accelerator, which is a voltage additional to the terminal voltage, so that when the linearity of the accelerator is determined there should always be a zero offset (of the right sign!) equal to the injection voltage. Of course, this ~20kV injection voltage can (and should) be measured directly with readily available instruments.

The good news is that generating voltmeters (the instruments that monitor the terminal voltage) are usually both very stable and astonishingly precise. Modern tandem machines have GVMs that are reproducible and stable over months at the 0.05% level. However, the GVM is a variable capacitance device that uses the induced AC voltage as a monitor for the terminal voltage. The voltage induced on the GVM is directly proportional to its distance from the terminal, and is therefore subject to a temperature coefficient which on the Surrey HVEE 2MV Tandetron is 0.03/°C. For accurate work using energy feedback based on a GVM the accelerator hall temperature must be closely controlled.
3.2 Solid Angle

In this section we consider the determination of solid angle, one of the critical parameters in Eqs.1&2. This is mostly determined indirectly via a standard, and we will consider first NRA standards and then various RBS standards.

Whenever the cross section varies significantly across the finite solid angle of the detector, as is the case for many nuclear reactions, and also with non-Rutherford elastic scattering, care must be used to properly integrate over the solid angle with respect to the angular dependence of the cross section. Care should also be taken (especially for higher energy incident beams which may give unexpected nuclear reactions) in choosing an aperture which is not only opaque to MeV α particles, but also for more penetrating particles, for example, high energy protons.

If there is an accurately calibrated radioactive source of small area (for example, 241Am), then the solid angle may be determined directly by placing the source at the position of the target. However, it is usually difficult to reduce the uncertainty in positioning the α-source to the desired 1-2% level.

NRA Standards: In discussing reference standards, we are also talking about those nuclear reactions for which the corresponding cross sections are well known at the level of a few percent. To date, probably the most widely used standard for NRA applications has been that for 16O, specifically anodically-grown thin Ta$_2$O$_5$ targets on a Ta substrate. The Paris group (Amsel and Samuel, 1967 [24]) pioneered their use through the 16O(d,p)17O reaction at a bombarding energy of 972 keV and a detector angle assumed to be 150° but more likely to be 164°. Here, there is a broad (-85 keV) resonance in the reaction cross section. The protons are emitted with an energy of 1.6 MeV, and the cross section has been measured with a precision of ±3%, with a value of 13.3mb/sr by Davies and Norton, 1980, [25] and 13.6mb/sr by Lennard et al, 1989 [26]. Seah et al (1988, [27]) has reported a successful 'round-robin' intercomparison of absolute measurements in different laboratories using this reaction. Gurbich (2004) has recently reported the excitation function for this reaction at 150° [28].

For those not having access to deuterium beams, substitution of 18O in the electrolyte allows Ta$_2^{18}$O$_5$ targets to be fabricated. The 18O(p,α)15N reaction at $E = 750$ keV could then be used, although the cross section value is not known as well as for the 16O(d,p)17O reaction (Christensen et al, 1990 [29]). The 16O(3He,a)15O and 16O(3He,p)18F reactions are also useful, and some cross section values have been reported (Lennard et al, 1989, [op cit]; Abel et al, 1990, [30]). It should be noted that oxygen from a Ta$_2$O$_5$ oxide layer will begin dissolving back into the Ta substrate at a temperature of ~700K (Smyth, 1966, [31]). Indifference to beam heating of standards is therefore not encouraged.

The cross section for the 3He(d,p)4He reaction (Q-value 18 MeV) is very well known (±2%) for a centre-of-mass energy of -250 keV ($\sigma_{lab} = 58$ mb/sr) (Davies and Norton, 1980; Möller and Besenbacher, 1980 [32]). Unfortunately, 3He targets fabricated via ion implantation are sometimes not stable under prolonged ion beam bombardment (Alexander et al,1984 [33];Geissel et al,1984 [34]). As well, stable hydride or polymer targets suitable for hydrogen (or deuterium) thin-film standards are still lacking. There are problems yet to be solved in the preparation of reference targets via ion implantation (current integration, dose uniformity, depth profiles, and stability). The reader is referred to Amsel and Davies (1983 [35]) for more detailed discussions on this topic.

Bi implanted (Harwell) Standard: In 1975 an RBS round-robin experiment was conducted to test whether or not the often claimed ±2% accuracy was actually being achieved. Several Si wafers were implanted at the UK Atomic Energy Agency (UKAEA Harwell) with ~5.1015Bi/cm2 at an energy of 40 keV, which locates the Bi distribution at a depth of ~20nm. These samples, which became known as the “Harwell Series I” standards, were then partitioned into 1 cm2 pieces and distributed to ~50 RBS laboratories around the world. The results, reported by Baglin at the 1975 Karlsruhe IBA conference, were disappointing. Even among experienced laboratories, discrepancies of ±20% were common, and some results varied by 50% or more. The individual causes were never fully
resolved, but from the shape of the 1.9 MeV H⁺ RBS spectra (which includes the strong 1.6 MeV resonance in Si), Baglin concluded that several laboratories did not even have a correctly calibrated accelerator energy scale.

Subsequently, a collaboration between ion beam groups at Chalk River (Canada), l'Université de Paris, Harwell, and Geel (Belgium) developed several independent methods of calibrating the Bi content of the Harwell standards, eventually obtaining very satisfactory (±2% or better) agreement among the different laboratories (Cohen et al., 1983 [36]). In the course of these studies, several of the pitfalls noted in this chapter became recognized for the first time. For example, the energy-dependence of the Bi yield was observed to deviate slightly from the expected 1/E² Rutherford law, and this observation led to the recognition of the electron screening correction. Many pitfalls associated with poor Faraday cup techniques were identified and corrected. Also, the problem of charge exchange along the beam line was found to be responsible for significant fluctuations (±4%) in some of the Harwell Series II Bi implantations (Davies et al., 1986, [37]).

The resulting comparison, with the same Bi-implanted wafer being used in all three laboratories, showed a ±2% agreement, and therefore showed that RBS can achieve the expected absolute accuracy without the use of any calibrated standard. In practice, since the detector solid angle and the scattering angle are difficult quantities to measure accurately, it is simpler to use a previously calibrated standard instead.

Series I wafers have a Bi content of 4.87(±0.08).10¹⁵Bi/cm² (Wätjen and Bax, 1994, [38]). Series II wafers have the same nominal Bi content as Series I, but fluctuations as large as ±4% have been found (as noted above). Hence, whenever greater accuracy is required, one should obtain a wafer that has been cross-calibrated against a Series I standard. These samples may still be available; however they have now been superceded by the a-Si standard which is readily made, and also by the much more accurate Sb implanted standard. Both of these new standards are described below.

IRMM Sb Standard: A new set of Sb implanted samples are now available from IRMM, Geel and BAM, Berlin, and are certified at 0.6% (registered as IRMM-302/BAM-L001: Pritzkow et al., 2001, [39], Ecker et al., 2002 [40]). These samples supercede the Bi implant samples, but are used in exactly the same way.

The samples are an implant of Sb into Si with a range of 160nm and a certified Sb fluence of 48.1(±0.3).10¹⁵/cm² (1σ uncertainty). The Si wafer has a 90nm oxide (of uncertified thickness).

This standard has been used once to date in published work for a traceable RBS analysis of some As implants (Boudreault et al., 2004 [41]), and it has also been used recently to validate Si stopping powers (see next section). In both of these applications the Sb standard was transferred through the a-Si substrate yield, and to do this more accurately the Sb standard was amorphized to a depth of 630nm with a cold 500keV Si self-implant of fluence 5.10¹⁵/cm².

a-Si Standard: There has been useful work on new standard samples, where the measurand is the surface yield of an implanted (amorphized) silicon sample (Lennard et al. 1999 [42], Bianconi et al. 2000 [43]). This is nearly equivalent to an absolute measurement of the energy loss of ⁴He in Si if a series of measurements are made at different energies. Konac et al. (1998, [44]) have made direct measurements of the energy loss of ⁴He in Si (also known as the inelastic electronic energy loss cross-sections or the stopping power) with an uncertainty of about 2% (these important measurements are often referred to in the literature as KKKNS), and Niemann et al. (1996 [45]) have also made measurements of energy loss in Si with an uncertainty approaching 1%. The stopping power function has been systematically extracted using Bayesian methods, with uncertainty estimates, from the measurements of Bianconi+ by Barradas et al. (2002, [46]).

In the work of Bianconi et al. labs made absolute measurements of the charge-solid-angle product, at nominally 1% accuracy, and got agreement within the stated error. The traceability of Lennard et al.’s work is not so easy to establish, but they obtain the same values, and consistency with
KKKNS. The conclusion of all this work is that the measured Si stopping cross-sections have an uncertainty (1σ) of 2%.

We should highlight the fact that the Si stopping powers stored in the SRIM 2003 database [47] were recently used to determine the Sb content of an IRMM certified Sb sample (see above) for 1.5MeV He RBS, and it was found that the certified value was obtained within 0.3% (with a 1σ uncertainty of 0.2%) [1]. This demonstrates that for this He beam energy the SRIM2003 stopping powers for Si are correct to the 1σ uncertainty of the certified sample: 0.6%.

The point to emphasize here is that Bi or Sb implant samples are specific artefacts, but every lab can make their own amorphized Si samples on demand. Secondary standards must be used systematically with the Bi or Sb certified standards, with the associated error and complexity; not so for the amorphized Si. The difficulty with certifying the Bi implants has been in establishing the real variation across the implant batch, but the uniformity and purity of modern production silicon ingots has been established at extraordinary sensitivity and accuracy: modern standard RBS samples can now take advantage of this.

3.3 Electronic Gain Calibration

It is harder than generally supposed to establish the electronics energy calibration (the gain, keV/channel) with an accuracy better than 1%, and it is easy to make errors of 2% and more. Whenever a spectral area is being evaluated (Eq.1) only the charge-solid-angle product QΩ is required (this is the case when using the Bi or Sb standards); but, if the a-Si yield (or other stopping power) is being used to calibrate the solid angle, then Eq.2 is invoked, which uses the product QΩ∆, and the gain is also required to evaluate the product QΩ needed for interpreting spectral areas. The Si stopping powers have been compared directly with the Sb standard and are therefore very accurately known (for 1.5MeV He): other stopping powers are not usually known to much better than 4%. Nevertheless, it is a bad analytical mistake to omit the determination of one of the local parameters of the analysis because there may be a systematic error in one of the global parameters. After all, the stopping powers of a material are constant, even if they are not known very well, but the analysis is not repeatable if the local parameters are not accurately determined.

In this section we therefore dwell on the determination of the important gain parameter ∆ at some length.

To determine the gain we must find a sample that has several (at least two!) elements of both high and low Z at the surface. We use a Au/Ni/SiO\textsubscript{2}/Si sample (Fig.4), where the Au and Ni films are 15TFU thick and the oxide is 1500TFU thick: TFU ("thin film units") = 1015 atoms/cm2: see section 7.3. The Ni film is used as a diffusion barrier between the Au and the oxide and this sample has excellent long term stability. This discussion will be in terms of this sample, and the reader can substitute his own favorite calibration sample. As an example of what is possible: in the very careful work of Bianconi et al (2000, op cit) a 7 point calibration was used, with a Type A estimate of 0.2% uncertainty (see section 5.1) (this estimate is published in Barradas et al, 2007 [op cit]). Seah et al (1989, [op cit]) report a standards exercise to measure the thickness of Ta\textsubscript{2}O\textsubscript{5} thin films, which includes a contribution where a very precise gain calibration is intrinsic to the accuracy of the result. Munnik et al (1995 [48]) describe stopping power measurements using RBS with an uncertainty on the gain of 0.16%. For the Au/Ni/SiO\textsubscript{2}/Si sample, the Si and O "surface" signals are actually buried under the metal layers, and an accurate calibration must take this into account: Jeynes et al (1998, [49]) have discussed a very precise numerical procedure.

To determine the gain we have to identify channel numbers corresponding to well-known energies, and then do a linear correlation to obtain the gain ∆ and offset o values: E\textsubscript{c} = ∆C + o, that is, the energy E\textsubscript{c} is represented by a particular channel C. The surface signal of element E is given by E\textsubscript{c} = k\textsubscript{E}E\textsubscript{0}, where E\textsubscript{0} is the incident beam energy, and k\textsubscript{E} is the kinematical factor for element E. The kinematical factor is known analytically of course, and depends (fairly weakly at large angles) on
the scattering angle θ. Thus, for an accurate gain calibration, both the beam energy and the scattering angle must be known rather precisely.

Fractional channel numbers To identify the channel numbers the user chooses the signal peak for very thin layers and the signal half height for thick layers. For an accurate gain determination it is essential to find the channels as real numbers, not as integers. The reader may demur here, saying that the detector resolution is (typically) 16keV and the channel width is only (say) 3keV/channel, so we are demanding unphysical precision. But the reader should remember that, firstly, in accurate work you *always* use one or more significant figures than is justified by the intrinsic experimental precision, to avoid rounding errors; and, secondly, some parameters of the data can be established with a precision *much* greater than the nominal system resolution. This latter point is made very strongly by Jeynes & Kimber (1984, [50]) who show that the peak of a distribution in an RBS spectrum can be determined with a precision of about 300eV where the detector resolution is 15keV.

It is therefore clear that the best gain determination will not be made unless numerical methods are used to determine channel numbers precisely. This is, incidentally, the only reason for using ADCs at high resolution for collecting relatively low resolution RBS spectra: in Fig.4 we show 512 channel spectra; but we could easily use 4K spectra, in which case integer channel numbers will be at sufficient resolution for determining the gain as precisely as is possible. But standard theory (the Nyquist theorem) says that sampling at greater than 3 times the resolution gains no extra information; so strictly speaking, 4K spectra are a waste of space!

Correlated gain and offset The IBA codes all have facilities for fitting spectra to extract the electronic gain. Of course, it is necessary to determine both the gain and the offset, even though the value of the offset has no importance, and the gain and offset are strongly correlated. Therefore an error in the offset gives a corresponding error in the gain. This is why it is so easy to have large errors in the gain. The fitting used by the codes may not handle this correlation correctly, giving the user a false estimate of the real accuracy.

Detector resolution Fitting codes usually use some sort of chi-squared function to obtain minimum values. Because the positions of edges and peaks can be determined with extraordinary accuracy from RBS spectra, RBS is very sensitive to the effect of the *detector resolution* on the widths of these edges or peaks. Therefore, the analyst often finds that noticeably different results are obtained where the detector resolution is not correctly determined

Pulse height defect Although the machine energy can be established readily at about 0.1%, the absolute electronics calibration depends on an accurate knowledge of the pulse height defect of the detector. Semiconductor radiation detectors are known to respond in a non-linear fashion to particle energy. Normally, the deviations are lumped into the so-called 'pulse height defect' (PHD), which includes the effects of detector entrance-window/dead-layer and also the nuclear (non-ionizing) energy loss of the projectile arising from elastic collisions with the detector lattice atoms.

The discussion above ignored this effect, treating the energies of the surface signals as being given only by the kinematics. However, in reality, the detector sees only that fraction of the energy of the particle that is deposited in electron-hole pairs, and where the electrons reach the detector anode and are not lost in recombination sites (defects). Old detectors may also have significant radiation damage giving a significant number of recombination sites. These detectors will no longer behave linearly, and cannot be used for accurate work, although many IBA codes allow non-linear gains to be used.

But all detectors, even high quality (new) ones, will detect a particle energy significantly less than the particle has when leaving the sample. Now usually this can be ignored since the absolute value of the correction is small. For instance, Bianconi's (2000) high precision gain determination referred to above did not correct for the PHD, but this introduces an error of only 0.2% (Barradas et al, 2007, [op cit]). Moreover, the non-linearity in the detector response which must exist, since the
PHD varies with particle energy, so small that it cannot be detected in standard cases (Jeynes+ 1998, \[op cit\]), being mimicked by a (slightly different) linear gain. However, in cases where different spectra collected at significantly different beam energies must be compared, it is essential to do the PHD correction for the best accuracy.

The PHD has been comprehensively described by Lennard et al (1990, \[51\]), and Jeynes et al (1998, \[op cit\]) have presented a full (manual) analysis in a particular case where the best demonstrable accuracy was only 0.5%. Lennard et al (1999, \[op cit\]) do not make a comparable accuracy estimate explicitly, but their work is also consistent with an accuracy of about 0.5%. Gurbich & Jeynes' (2007, \[52\]) benchmark measurement of the \[^{nat}\text{Mg}](p,p)^{nat}\text{Mg} elastic scattering cross-sections depend on analysis of a PHD-corrected set of spectra for which the absolute (beam energy independent) gain was determined with a Type A uncertainty of <0.1%.

There is a further effect that has been studied in some detail (Lennard et al, 1986 \[53\]; Bauer and Bortels, 1990 \[54\]; Comedi and Davies, 1991 \[55\]) in Si for light ions \((^1\text{H}, ^3\text{He}, ^7\text{Li},...\)) which arises as a consequence of the differing ionization densities produced by the incident particle. In principle, an IBA spectrum can easily be obtained using higher energy (or D) beams where various nuclear reactions occur and various types of particle all enter the detector; for such a spectrum one could perhaps use a single absolute electronics calibration if the PHD correction could be done correctly. However, no PHD-corrected data has been published for these sorts of NRA spectra that also corrects for the particle type, although Pascual-Izarra et al (see for example 2005 \[56\]) do a full PHD correction for RBS spectra with He and various heavy ions, and Munnik et al (1995, \[op cit\]) do a full PHD correction for He RBS in an extremely accurate analysis.

3.4 Scattering Angle

The scattering angle \(\theta\) is the angle the detector makes with the incident beam. This should be measured as accurately as possible since even at \(\theta = 150^\circ\) and normal beam incidence an uncertainty of only 0.2° gives an uncertainty of 0.3% in fluence measurements (see section 5). For glancing beam exit geometries any uncertainty in the scattering angle greatly amplifies the uncertainty of the results.

Where a goniometer is used (presumably including most applications of glancing exit geometries) it is easy to measure scattering angle: you only have to shine a laser down the beam path and reflect it onto the detector from a mirror at the sample position. The scattering angle is then read from the goniometer. Care must be taken in precision work to specify the plane of the sample since this affects the scattering angle. For small detectors the blocking effect in single crystals can also be used to detect the scattering angle. In this method you align a major axis of the crystal with the detector (not the beam) looking for the dip in yield. The beam energy has to be such that the detector solid angle is not too much larger than the channelling critical angle.

In some cases the angle subtended by the detector has a significant effect on the result. For glancing beam exit work the detector must be collimated in one direction to restrict the possible variation in scattered particle exit pathlength to the detector. For these geometries it is worth noting that curved collimation slits are optimal (Brice & Doyle, 1990 \[57\]). For some elastic (non-Rutherford) backscattering (EBS) reactions the cross-section varies strongly (and non-linearly) with scattering angle, and for larger detectors the average scattering angle may not accurately represent the data. This is actually another good way to determine real effective scattering angles. For example, for the 1735keV resonance in the \(^{12}\text{C}(p,p)^{12}\text{C}\) EBS reaction, the cross-section relative to Rutherford for 150° is 39.06 but for 150.2° it is 39.34, a change of nearly 1%. Conversely, if you are using EBS resonances to analyse light elements you have to verify your actual angles for accurate work.
3.5 Detector Resolution

We have already noted above that fitting programs are sensitive to the value used for detector resolution since the shape of edges and peaks are determined very precisely in RBS spectra. Fig.4 shows a Au/Ni/SiO$_2$/Si calibration sample spectrum with fits assuming various detector resolutions. The signals from the thin metal surface layers have a shape entirely determined by the detector resolution. To determine the detector resolution you have to match the height of the signals, given that the signal area is also matched. The fitted gain is given in all cases in Fig.4, given that the metal thickness is fixed. A 4% change in resolution gives a maximum 0.25% change in gain. The fact that the gain can be affected at all by the resolution, albeit at second order, is surprising at first sight.

![Figure 4: Detector resolution and the effect on calibration of gain. 1.557MeV 4He$^+$ RBS with scattering at 149.2°. Sample is Au/Ni/SiO$_2$/Si (12.8/14.8/1607 TFU). (a) Detector resolution 25keV, fitted gain for fixed metal thickness 4.457keV/ch, fitted metal thickness 28.55TFU); (b) 24keV, 4.472keV/ch, (28.07TFU); (c) 26keV, 4.460keV/ch, (28.96TFU)](image)

Also shown is the fitted metal thickness: in this case a 4% change in the resolution gives a 1.5% change in the fitted thickness. This is almost a first order effect even though one might have thought that there should be no change: the size of this sort of effect depends strongly on how the fitting algorithm (in this case a grid-search chi-squared type) works: the reader should be warned that fitting algorithms do not always behave as they intuitively expect.

In principle, the detector resolution function is not symmetrical and Gaussian, and in the most accurate work it is necessary to account for this in detail. This should be done as a matter of course for PIXE, where the detectors are relatively high resolution (typically <200eV) and where the shape of the instrumental function is well known to be non-Gaussian: the GUPIX program, for instance, assumes that the instrumental function is specified in detail by the user. For PIXE the instrumental function must be measured as a function of X-ray energy over the whole energy range using a series of pure targets. If this is not done the ratios of the various K and L lines cannot be determined with precision. Particle scattering detectors have much lower energy resolution (typically ~15keV), and the instrumental function of these detectors is not usually measured in detail, although remarkable results can be obtained when it is. Fischer et al (1997 [58]) for example have demonstrated that they can reliably resolve the isotopes of Co using a full Bayesian approach.
deconvolution code. The highest resolution work yet reported with these detectors (determining interface roughness of <1nm) used a simple Gaussian (symmetrical) function (Barradas, 2002 [59]). But in general, the lesson is that for accurate work all the parameters should be correct.

4 Algorithmic Issues

In this section we consider a number of effects that affect the interpretation of spectra, and provide occasion for various subtle pitfalls for the unwary. To do a traceable analysis we have to be able to accurately estimate the parameters in Eqs.1&2 (considered in turn above), but we have also to be able to accurately do the integrations implicit in these equations. Here we will consider how well known are the Rutherford (and non-Rutherford) elastic scattering cross-sections, and the inelastic electronic stopping cross-sections. We will also discuss the limits within which the basic single scattering assumption is valid, and how well the user can calculate the variation of the energy resolution with depth.

4.1 The Rutherford Cross-Section

How accurate is the Rutherford scattering law? This is often the key question in achieving quantitative RBS analysis, since its main advantage is the assumed existence of a universal and predictable scattering cross section, σ_R (cm2/sr), whose dependence on beam energy E(MeV), scattering angle θ, and atomic numbers Z_1 and Z_2 of the beam and target atoms, respectively, may be accurately described by Rutherford’s formula obtained from the Coulomb potential (see Ch.??).

The validity of this point-charge Rutherford scattering law requires the distance of closest approach (or ‘collision diameter’), b(pm)=$1.44Z_1Z_2/E$(keV), between the projectile and target nuclei to fall within the Rutherford ‘window’ (although, note that this ‘window’ does not really exist: see Gurbich, 2004 [60]). This means that b must be considerably larger than the nuclear radius, r_n(fm)=$1.4A_2^{1/3}$, of the target atom. At the same time, b must also be much smaller than the atomic K-shell radius, r_K(pm)=$50Z_2$, in order to minimize electron screening effects. A quick and simple estimate of the upper and lower energy limits within which the scattering cross section should be within ±4% of the σ_R value may be estimated by requiring $r_K/2>b>3r_n$.

Note, however, that a small screening correction to σ_R is always necessary even though most of the collision is completely unscreened. This arises because the initial part of each scattering trajectory is fully screened (i.e., from ∞ to 50Z_2 pm from the target nucleus). Consequently, the incident projectile penetrates into the unscreened region with somewhat higher energy than would occur if the target atom was a bare nucleus. The resulting decrease in cross section below σ_R is usually less than 4%. Furthermore, experimental studies by L’Ecuyer et al. (1979, [61]), Andersen et al. (1980, [62]), and Hautala and Luomajarvi (1980, [63]) show that its magnitude is predicted (with reasonable accuracy in most cases) by the relationship

$$\sigma = \sigma_R [1 - 0.049 Z_1 Z_2^{4/3} / E]$$

where E is the projectile energy in keV. Strictly speaking, the centre-of-mass energy should be inserted in Eq. (12.4), but the screening correction is usually small enough that the use of laboratory coordinates introduces negligible error. This L’Ecuyer correction is incorporated in the main IBA codes. The uncertainty in the screening correction is cited as $\pm 5\%$ by Wätjen & Bax (1992, [op cit]) for the case of 1.5MeV 4He on Bi and this uncertainty can be scaled for other cases from Eq.3. However, for small scattering angles, or for heavy ion beams, L’Ecuyer’s correction is not as accurate as that proposed by Andersen, which takes into account the dependence of screening on the scattering angle. Andersen’s correction is also incorporated in the main IBA codes, and should be used.

If the energy exceeds the upper limit for RBS then we are in the regime of non-Rutherford elastic scattering (EBS). As examples, proton scattering on C is significantly non-Rutherford at 380keV,
and He scattering on C is significantly non-Rutherford at 2.2MeV. The rough estimates above should not be relied on for accurate work: instead measured cross-sections should always be used. The IAEA has sponsored a database of EBS cross-sections (IBANDL [64]). The analyst should beware that these cross-sections are a strong function of scattering angle, so that if measurements are not available for the angle used then accurate EBS work cannot be done. However, for some nuclei the EBS cross-sections have been evaluated by A.F.Gurbich, who has determined the quantum mechanical parameters of the nuclear scattering by a fit to all the available data for these nuclei (SigmaCalc [65]). These cross-sections are the most reliable, and are valid for (almost) all scattering angles. Both the IBANDL database and the SigmaCalc calculator are under active development, and analysts should check whether cross-sections they need are included yet. Where SigmaCalc has cross-sections they should always be used. Note that the IBA codes always give the user access to these cross-sections even if they have default values, and the user should know which cross-sections are being used.

If the energy is below the lower limit for RBS then the major part of the collision takes place before the projectile has penetrated all the electron shells of the target atom; that is, the unscreened Coulomb field assumed in Rutherford scattering plays a minor part in the collision. With MeV accelerators and surface barrier detectors this almost never happens, even for the heaviest target nuclei. However, backscattering studies in the Medium Energy Ion Scattering (MEIS) regime involve energies well below the limit for Rutherford scattering. For quantitative work, suitable algorithms are given by Mendenhall and Weller (1991, [66]); however, they point out that a fairly accurate (2-3%) approximation to the screened Coulomb cross section can still be obtained by applying the simple screening correction of Eq.3.

4.2 Electronic Stopping Cross-Sections

Almost all IBA work relies on electronic stopping cross-sections. In particular, quantification of depth profiles depends on the stopping power values used. The same is true of elemental concentrations in most cases.

There are different sources of stopping powers available, from ab initio theoretical calculations to experimental data covering a limited energy range of a given ion in a given material. The most widely used source is SRIM [67], which is a semi-empirical interpolation scheme, that covers all ions at all energies in all materials. Users should be aware that SRIM has evolved over the years, and different versions provide different stopping values. The same is true of data analysis codes, where different versions may incorporate different SRIM versions. Other sources of tabulated stopping powers exist and are also used, namely ICRU [68] and MSTAR [69] (the latter for heavy ions only).

A statistical analysis made by Ziegler, including all the over 25000 data points in the SRIM2003 data base, shows that the accuracy of SRIM2003 stopping calculations is 4.2% and 4.1% for H and He ions, respectively The accuracy is only 5.1% and 6.1% for Li and heavier ions, respectively. However, these numbers are averages, and are not the uncertainty for a given system. In the same analysis it is shown that SRIM2003 predicts around 75% of stopping values within 5% of experimental values for H and He ions, but only 58% for heavy ions. That is, for heavy ions 42% of stopping power values calculated with SRIM2003 are off the experimental ones by more than 5%. This decreases to 18% for errors larger than 10%. It is worth noting that the experimental measurements are notoriously hard to make, so that even if SRIM reproduces the experimental data there is no guarantee that the data are correct.

The outcome is that for H and He ions (and increasingly for Li as well), the tabulated stopping values are normally accurate (at the 5% level), but in some particular systems large errors can be made. Users interested in high accuracy should check the literature for experimental values, and compare them with the calculations. In some systems, highly accurate data are available. On the other hand, for heavier ions, the experimental data are sparse, and the calculations can be inaccurate.
for many systems. Advances in the accuracy of heavy ion stopping are being continuously made, so the situation may improve in the coming years. In the meantime, reliance on tabulated, often interpolated, stopping values may be the only practical solution, but it can lead to large errors.

Paul and Schinner conducted recently statistical analyses of the accuracy stopping powers from different sources, including SRIM2003 (and older versions of SRIM), ICRU, and MSTAR, for light and heavy ions in solids, gases, and compounds [70]. The main conclusion is that the three sources are equally accurate in most cases, as long as the most recent versions are used.

Great care should be exercised when analysing compounds, particularly insulators, since most codes use the Bragg rule to calculate the compound stopping from the elemental stopping powers. This approach leads often to larger errors. SRIM2003 implements the so-called cores and bonds (CAB) correction, which is however limited to some tabulated compounds. The alternative is to use the molecular stopping powers if available from experiments, which some IBA codes can use.

In all cases we should emphasise that when using Eq.2 the dominant uncertainty almost always comes from the stopping power database.

4.3 Plural and Multiple Scattering

One major assumption in most RBS and IBA studies, is that the incoming and outgoing trajectories are completely linear, that is, only one significant angular deflection, namely the Rutherford backscattering event, is occurring. However, the mean free path, for unscreened scattering events \([(N\pi a_{TF})^{-1}]\) is only \(\approx 100\text{nm}\), where \(N\) (atoms/cc) is the atom density of the target and \(a_{TF} \approx 10\text{pm}\) is the appropriate Thomas-Fermi screening length (and note that at MeV energies, only unscreened scattering can contribute significantly to the mean deflection angle). Hence, even at quite shallow depths, a fraction of the beam undergoes significant secondary deflections along the incoming/outgoing trajectories. If not accounted for, these can lead to wrong interpretation of data.

Full quantitative treatment of such effects require a Monte Carlo simulation of each particle trajectory. Major improvements in the accuracy and efficiency of such calculations were obtained recently [71], but they are still difficult to use in routine work. Some traditional codes now include both multiple and double scattering.

The term plural scattering describes trajectories where the ion suffers several large angle scattering events before being detected. A particular case is double scattering, corresponding to two large angle events. The combined kinematic factor can be larger than the kinematic factor for single scattering, leading to yield above the nominal surface signal energy. The most important effect is however an increase of the yield at low energies, and a low energy background.

At least two well-known data analysis codes, SIMNRA [72] and DataFurnace [73], include the calculation of double scattering in RBS, as a user option. Calculation times are much longer than for single scattering. One example is shown in fig. 5, where the SIMNRA simulation matches both the data and a Monte Carlo simulation for 0.5 MeV \(^4\text{He}\) ions backscattered from about 115 nm Au on Si at a scattering angle of 165°.
Multiple scattering refers to the succession of many small angle scattering events, leading to an angular broadening in the beam path. Such secondary deflections obviously change the scattering angle involved in the main RBS collision thus affecting the magnitudes of both the cross section.
and the kinematic energy loss factor. Furthermore, it also affects the depth-to-energy conversion scale.

However, the net effect of multiple scattering is, in first order, an extra contribution to the energy spread of the beam (Szilágyi et al., 1995 [74]). This can be the largest contribution to straggling in some situations, particularly in grazing angle experiments, and must be taken into account for a correct interpretation of the data. Several IBA codes include it after the pioneering work of Szilágyi et al.

A second effect of multiple scattering is that the shape of the energy spread is no longer Gaussian. This is can become important for heavy ions in heavy targets, at low and intermediate energies. Some limited treatment of this is included in some IBA codes.

Multiple scattering is very small for light ions at near normal incidence (and detection). It can be very large for heavy ions, or for grazing angle incidence or detection even for He beams. In that case, whenever depth profiles, roughness, or other sample features that affect the sharpness of signals are studied, the contribution of multiple scattering to straggling must be calculated and included in the analysis.

Note that current versions of the most popular computer code for simulation of RBS profiles, RUMP [75], do not include any treatment of plural or multiple scattering.

4.4 Depth Resolution

Depth resolution is defined as the minimum separation in depth between two layers, such that to each layer a maximum in the observed signal is observed. It determines the capability to separate signals from different layers.

Depth resolution is best near the surface, and degrades due to energy straggling in deeper layers. There are different contributions to depth resolution: the detection system resolution, energy loss straggling, multiple scattering, beam energy and angular spread, finite size of the beam spot on the sample, and finite size of the detector. The last three terms together are usually called geometrical straggling and influence the energy resolution because they lead to a spread of possible beam trajectories. The code DEPTH [Szilágyi et al., 1995, [op cit]74] uses state-of-the-art theory to calculate the different contributions. Given that there are very few energy spread measurements available, it is currently the most reliable source for depth resolution.

Different pitfalls often arise when depth resolution is not well understood. If the energy spread at a given depth is not well calculated (for instance due to neglect of multiple scattering or geometrical broadening), then the simulation for sharp interfaces will be sharper than the observed data; the user may then wrongly conclude that the sample has strong interdiffusion between layers or rough interfaces.

Analysts can also be tempted to retrieve more information than the data justifies. This is normally done by imposing their favourite model on the data, without testing other possibilities that could also lead to a good fit within the depth resolution at a given depth. In this respect, over-reliance on e.g. χ^2 goodness-of-fit can lead to ultimately wrong data interpretation, because, as seen in section 3.7 above, the depth resolution used directly affects the results.
5 Accurate IBA

The ultimate consideration of all analysis is the accuracy available. We use accuracy here in the critical sense, that is where a measurement can be traced back to international standards of mass, length and time with a specifiable uncertainty. Because the Rutherford cross-section is analytical the accuracy of RBS is potentially unlimited—except for the major problem in all IBA, the limited knowledge of the energy loss of ions in matter that we considered above (Section 4.2). However, there are certain sorts of analysis where the energy loss enters only in second order: one of these cases has been treated in detail by Jeynes et al (1997, [op cit]) with the conclusion that even in this ideal case there are several small effects that have to be considered (at the $\frac{1}{4}\%$ level) that will cumulatively make an accuracy better than 1% hard to achieve. (We quote all uncertainties here at the 1σ confidence level.)

The only doubt about the potential accuracy of RBS to our knowledge is the interpretation of the low energy tails in backscattering spectra. Tails are certainly caused by multiple and plural scattering effects and have been calculated successfully with Monte Carlo techniques by Bauer et al (1992 [76], 1993 [77]), and by Eckstein & Mayer (1999, [78]) for low energy beams where the effects are large. They could also be caused both by slit scattering and any low energy component there may be in the beam. However, it has been claimed by Gurbich (1995, [79]) using time of flight techniques with a 2MeV pulsed proton beam and very thin (10keV) self-supporting gold foils, that the low energy background cannot be explained by plural, multiple, and slit scattering alone, which would mean that some significant physical phenomenon is still left unaccounted. In any case, the single scattering approximation certainly fails sometimes: Barradas et al (2007, op cit) have pointed out that the calculation of some heavy ion ERD spectra by the IBA codes is not consistent with a Monte Carlo calculation.

In this section we consider a systematic approach to the estimation of uncertainty, including a discussion of the explicit uncertainty budget that must be included in any standards work that claims to be traceable to international standards. An important benefit of IBA, and the focus of this chapter, is the availability of absolute accuracy, but no analysis has any value unless the analyst is able to reliably specify its uncertainty.

We also have an extended discussion of analytical approaches to the recognition and avoidance of ambiguity in IBA data. It is of great importance for the analyst to recognise the difference between necessary (required by the data) and valid (permitted by the data) conclusions. In many materials problems that IBA is applied to, the user will want clear-cut answers from the analyst. The analyst therefore needs to gain skill in seeing objectively what information is really contained in the data, and how to apply prior information from the user to eliminate various valid solutions of the data.

5.1 Uncertainty Estimation

TypeA & TypeB We start by referring the reader to the Guide to the Expression of Uncertainty in Measurement [80]. According to GUM, there are two types of uncertainty estimation: Type A and Type B. Uncertainties are type A when they can be calculated as a standard error from a set of measurements. They are type B when the statistical data needed for type A is not available, and the user has to make a more informal estimate of the probable measurement error. So for example, a measurement of length may be made with a ruler. The experimenter could estimate the uncertainty of a single measurement by assuming a maximum reading error of say half a graduation. This would be a Type B estimate. On the other hand, to get a Type A estimate he could make a series of measurements, and then take an average and a standard deviation. It is worth noting that Type A estimates are not always better than Type B estimates. In the case of a ruler measurement for example, there may well be a systematic reading bias from an observer, which may go unnoticed. This is not such a trivial point as it seems:
We should remember always the famous case of the Astronomer Royal, Nicholas Maskeleyne, who dismissed his assistant Kinnebrook for persistently recording the passage of stars more than half a second later than he, his superior. Maskeleyne did not realize that an equally watchful observer may register systematically different times by the method employed by him: it was only Bessel's realization of this possibility which 20 years later resolved the discrepancy and belatedly justified Kinnebrook. [81]

We note further that GUM speaks of "uncertainty" (indicating that our knowledge is limited) rather than "error" (which implies that a mistake has been made), and of "coverage". So, instead of saying "the 1σ error was 2%", GUM uses the more generalised terminology "the expanded uncertainty was 2% with a coverage factor k=1". Of course, in all cases both TypeA and TypeB uncertainties must be estimated, and combined as necessary.

Uncertainty budget The "uncertainty budget" is specified by GUM as a formal approach to the systematic evaluation of the uncertainty of a measurement, which is essential when a critical result is presented the traceability of which must be explicit. This has been described with special reference to IBA by Wätjen and coworkers [82]. We emphasise again that IBA is a quantitative analytical technique which is capable of great precision and whose uncertainties are well-known; we do our users a disservice by not properly estimating these uncertainties.

The uncertainty budget for the analysis of Fig.1 is presented in Table 2 as an example. All the sources of uncertainty are listed, making the origin of the claimed combined standard uncertainty very clear, and hence easy to evaluate critically. It is clear that the stopping power uncertainty dominates the total combined uncertainty.

It is this sort of treatment that is able to establish the traceability of a measurement, and thus justify the weight that is put upon it. We note that IBA is very simple, and specifying its traceability to international standards of weights and measures is relatively easy. The present treatment is a significant simplification of the GUM recommendations, which can be applied successfully to much more complicated cases.

Notice that the *absolute* accuracy, expressed by the combined uncertainty, obviously includes the counting statistics that all analysts use to characterise their uncertainties, but is dominated by the stopping power. Interestingly in this case, the *relative* accuracy is dominated by the uncertainty in the electronic gain, which is often overlooked.
<table>
<thead>
<tr>
<th>Comment</th>
<th>Type A or B</th>
<th>IBM detector</th>
<th>Cornell detector</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pileup correction</td>
<td></td>
<td>2.60%</td>
<td>0.80%</td>
<td></td>
</tr>
<tr>
<td>Uncertainty of pileup correction</td>
<td>A</td>
<td>2%</td>
<td>2%</td>
<td>From shape fitting accuracy</td>
</tr>
<tr>
<td>Counting statistics, As signal</td>
<td>A</td>
<td>0.28%</td>
<td>0.47%</td>
<td></td>
</tr>
<tr>
<td>Counting statistics, a-Si signal</td>
<td>A</td>
<td>0.08%</td>
<td>0.13%</td>
<td></td>
</tr>
<tr>
<td>Scattering angle</td>
<td>B</td>
<td>0.28%</td>
<td>0.07%</td>
<td>0.2° and $\sim 1/\sin^4\theta/2$</td>
</tr>
<tr>
<td>Electronic gain</td>
<td>B</td>
<td>0.5%</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>Pileup correction</td>
<td>A</td>
<td>0.05%</td>
<td>0.02%</td>
<td>See separate section above</td>
</tr>
<tr>
<td>Relative uncertainty</td>
<td></td>
<td>0.64%</td>
<td>0.70%</td>
<td></td>
</tr>
<tr>
<td>Relative uncertainty of average of two detectors</td>
<td></td>
<td>0.48%</td>
<td></td>
<td>average / $\sqrt{2}$</td>
</tr>
<tr>
<td>Beam energy</td>
<td>B</td>
<td>0.20%</td>
<td></td>
<td>These are the same for both detectors</td>
</tr>
<tr>
<td>Rutherford cross-section</td>
<td>B</td>
<td>0.16%</td>
<td></td>
<td>Screening correction</td>
</tr>
<tr>
<td>Combined standard uncertainty</td>
<td></td>
<td>0.54%</td>
<td></td>
<td>Relative accuracy</td>
</tr>
<tr>
<td>IBA code uncertainty</td>
<td>B</td>
<td>0.2%</td>
<td></td>
<td>From software intercomparison (Barradas et al 2007) For HI-RBS this value is 0.7%, for He-ERD this value is 0.4%</td>
</tr>
<tr>
<td>Si stopping power</td>
<td>B</td>
<td>0.6%</td>
<td></td>
<td>From software intercomparison (Barradas et al 2007) since SRIM 2003 stopping powers were used</td>
</tr>
<tr>
<td>Total combined standard uncertainty</td>
<td></td>
<td>0.83%</td>
<td></td>
<td>Absolute accuracy</td>
</tr>
</tbody>
</table>
5.2 Spectral Ambiguity

In this section we follow the treatment of Jeynes et al (2002, [83]) which also has further examples. We will show that IBA spectra are grossly ambiguous in general, and we will re-analyse the ambiguous spectrum previously discussed masterfully by Butler in 1990. There are two approaches to overcoming this ambiguity: the first is to collect multiple spectra under different conditions to constrain the solutions found (where a "solution" is a depth profile which has a spectrum that fits the data to some extent), and the second is to rule out a priori certain types of solution, which we will call "restricting the state space", where the state space is the multidimensional space containing all possible depth profiles.

We say that an optimal solution is a depth profile from which a spectrum can be calculated that fits the data well, and that a spectrum is ambiguous where more than one optimal solutions exist.

For the As implant of Fig.1 for example, one element in the state space is a pure As sample, another is a pure Si sample, and there are a very large number of intermediate elements. The state space is large, but it is not infinite since the energy resolution limits the number of layers that must be considered, and the detection sensitivity limits the number of layer compositions that must be considered.

Multiple spectra: Every analyst has tilted the sample and taken another spectrum to determine which features of the spectrum come from the surface: the surface signal position does not vary with beam incident angle, although signals from below the surface will appear to move as the geometry changes. An equivalent way of doing this is to use two detectors at different scattering angles. This is not a new idea: Williams & Möller were using two (or more) detectors in 1978 [84] (although with a rather different purpose) and Edge (1988, [85]) showed calculations emphasising the value of spectra from two detectors, but using an iterative method of calculation not easy to extend to three or more spectra. Butler (1990, [86]) emphasises the value of multiple detectors and
Alkemade et al (1990, [87]) demonstrate that for a sample with \(n \) elements, one needs in principle to collect \(n-1 \) different spectra to eliminate ambiguity.

Fig. 1d shows an example of the independently collected data from two detectors directly compared: in this case exactly the same quantity (the depth profile of As) is measured by each detector, and the profiles should overlap. That they do is an indication that the independently determined electronic gain calibrations are reliable. The FWHM of the As signals are different since the detector energy resolutions are different. The signals at negative depths are because the data is being replotted directly on a depth scale, without correction for broadening due to the detector resolution and straggle.

Restricting the state space: It is very easy to demonstrate that RBS spectra are ambiguous. Butler showed an example which is ambiguous in the sense that different depth profiles exist where different partial spectra add up to the same total spectrum: we discuss this interesting case below. However, we have not (yet) found any examples where IBA data are systematically ambiguous in the sense that the system is "frustrated" in Kirkpatrick et al's (1983, [88]) terminology; that is, where a number of optimal solutions exist between which are large potential barriers. Other systems are easy to find which are "frustrated": see the related discussion of ellipsometry data by Barradas & Keddie (1999) [89] as an example.

When interpreting such data as the As implants described above (Fig. 1) analysts are used to tacitly ruling out the possibility of As deep in the sample because they know that in this case the substrate is pure silicon. However, Barradas et al (1999, "BJJM", [90]) have demonstrated that the most probable solution of this type of spectrum, assuming that there is some oxygen signal and that there is no prior information, is that there is a significant quantity of the heavy element in the substrate. This is because any particular spectrum can be reproduced by many mixtures of the three elements, given that the sensitivity to the light element is limited and there is always some uncertainty about the collected charge.

It is important to be objective about what we know about the sample a priori. If we assume nothing about the sample then we have to give a range of possible solutions, consistent with the data. Interestingly, BJJM also demonstrated that provided the state space is suitably restricted the RBS data are remarkably unambiguous with respect to collected charge (total number of counts). It is a common pitfall for analysts to collect large amounts of charge to get "smooth" data, but very small charges (BJJM consider 0.1\(\mu \)C with 2.5msr detector solid angle) can give objectively quite well-determined solutions even for "hard" cases, with the right number of layers and qualitatively the right stoichiometry in the layers. Of course, with less counts in the spectrum the statistical uncertainty of the fitted stoichiometry and thickness of the layers increase as expected, and the Uncertainty Budget (section 5.1) can be used to determine objectively when sufficient counts are obtained. It is worth pointing out that this emphasises the value of backscattering spectra collected simultaneously with microbeam PIXE spectra: microbeams typically use only 100pA, and total collected charge is often a small fraction of a \(\mu \)C. Do not fall into the related pitfall of neglecting the information in a noisy spectrum!

Butler's example re-analysed: We show Butler's example of an oxidised NiCrAl alloy in Fig. 6. He points out that for this example the false solutions can be eliminated if prior chemical information is taken into account. Thus, he knows that the oxygen comes from the oxidising process, and therefore enters through the surface. (Actually, most of his false solutions are eliminated simply by excluding O from the substrate.) Moreover, the O binds with the metals in well known ways. Therefore the ambiguity is greatly reduced if the analyst can manipulate molecular (rather than atomic) depth profiles.

Fig. 6a shows the elemental depth profile of Butler's example with a spectrum calculated from it (Fig. 6b). Fig. 6c shows the solution obtained closest to the original profile, and we discuss this result further below. We point out here that this result is essentially identical to the original, except for some interface broadening (we have not deconvoluted the straggle).
It turns out that the Cr profile is the most sensitive to the prior assumptions of the analysis, and Fig.6d shows the Cr profiles obtained under four different assumptions. To retrieve Butler's initial profile unambiguously we need to specify not only the molecules present but also that only oxides are present near the surface and that oxygen is excluded from the substrate and that Al is excluded from the near surface region and that two independent spectra are taken (at different scattering angles in our example). Butler did not point out this last condition for this example, although he noted that, in general, multiple spectra are always a help. These particular data are very ambiguous: many different solutions, all of them as good as that shown in Fig.6b, can be obtained without any of the conditions mentioned.

In this example we have only allowed the O to exist bound to metals, and we have only allowed free Ni to exist. The substrate is specified by a molecule representing the starting alloy composition. It is easy to specify various assumptions about the chemistry to see whether they are consistent with the data. If they are not consistent they can be ruled out. Thus, RBS is an effective tool not just for obtaining a solution to a spectrum, but for testing a variety of assumptions about the sample against the data.

5.3 Model-Free Analysis and Occam's Razor

In the presence of ambiguity, the analyst must be careful to control his assumptions. The philosophical maxim of William of Ockham from the 14th century known as "Occam's Razor" [91] should be kept in mind by all analysts.

There are many alternative ways to fit any given set of data. If you have found a good fit to the data you may have a valid solution. Whether or not it is valid depends on whether you have used correct parameters. Sometimes this may be an intricate question if you are interpreting the detail of a spectrum. Even if your solution is valid, in the presence of ambiguity it is not necessarily true. Even if the solution is not false, it may not be useful in the case where Occam's Razor has not been wielded. In Butler's example, the spectrum allows one to validly infer a variety of Cr profiles: discriminating between these profiles to determine the real one can be done only if we restrict the number of the parameters of the system (using Occam's Razor), for example, imposing on the system prior chemical assumptions. In this example four molecules are used instead of four elements, but the light element is correlated with the heavy elements so that not only is the number of stoichiometric possibilities is reduced but also the insensitivity of the system to the light elements is not allowed to seriously distort the results..

Also, analysts sometime overlook assumptions they tacitly impose on data when they interpret them according to a model. For example, the As implant profile of Fig.1 could be fitted with a Gaussian distribution, and many IBA codes facilitate this. Now there is nothing wrong with this, so long as it is borne in mind that this is an explicit assumption imposed on the data, which can lead to error (which may be large) if the profile is not in fact Gaussian. A model-free fit, imposing no prior assumption on the data, would be with a number of layers of varying stoichiometry. Occam's Razor requires that we restrict the number of layers to restrict the number of fitting parameters. Then there is an explicit tradeoff between the goodness of fit and the number of fitting parameters. Clearly, for any given spectrum the number of fitting layers can be increased to follow the statistical variation of the spectrum. This underlines the value both of Occam's Razor and of multiple spectra.
5.4 Common pitfalls in data analysis

Here, we are concerned with some of the problems and issues that are particularly relevant to data analysis. Many prior assumptions are made in all data analysis, some explicitly, and other implicitly. They all have the potential, if incorrect, to lead to severely wrong results. We can divide the assumptions very roughly in four categories: sample; experimental parameters; physics; databases.

Assumptions on the sample include the elements present; a given depth profile or elemental distribution; the existence of roughness, inclusions, and other inhomogeneities. The experimental parameters are known with an accuracy, which varies widely for different set-ups. The user may be aware of this accuracy (for instance, a 1 keV beam energy spread), or not (for instance, a 5 keV energy drift with accelerator temperature during an experiment). Assumptions on the physics involved include both the analysing beam-sample and the detected particle-detection system interactions. The user can include only the basic physics given in section 3.3, in situations where some of the phenomena described in section 3.4 play a vital role. Using a given stopping or scattering cross section is an implicit assumption that the data base used is correct for that case.

The prior assumptions are often connected to each other. For instance, the assumption on scattering angle implies a consistent assumption on the scattering cross section.

We list in Table 3 the consequences for data analysis of some of the problems that commonly happen due to wrong assumptions, and what can be done to prevent or remedy them. These preventive and corrective actions can divided into four main groups: first and foremost, the knowledge about the set-up used and its characteristics should be as complete and accurate as possible. This often involves elaborate experiments or even the installation of new hardware (for instance to measure the beam charge), and is generally not feasible in the short run. Second, alternative experiments, using different beams, energies, and other parameters, or even completely different techniques, may be required - further beam time, or other techniques, are however not always available. Third, programs that include the best physical models and data bases available for the problem at hand should be used. This is often the only practical alternative for the data analyst, who is thus often confronted with problematic data.

This leads to the fourth and most important group of preventive actions, which is to avoid both over-interpretation and under-interpretation of the data. Over-interpretation occurs whenever the data analyst unjustifiably imposes a given model on the data. This often leads to tuning the experimental parameters beyond their known accuracy (such as increasing the charge while scaling the stopping power for a given element in a given layer). The user must consider different models that might lead to an equivalent or better solution. Of course, the prior assumptions discussed above (sections 5.2 & 5.3) that the analyst can impose on data to exclude certain valid solutions are also strictly over-interpretations, but in this case they are explicitly justified.

Under-interpretation occurs when the analyst does not extract all the information that is actually present in the data. For instance, signal widths, which are often disregarded, have information on both intermixing and roughness. The analyst may not be interested in that further information, but often it is simply due to lack of knowledge (for instance, that new generation codes can extract roughness information with considerable ease). However, most often under-interpretation happens when the data is not well fitted. Modern codes are now available which facilitate excellently fitted spectra, enabling the analyst to put much greater weight on the results.

As a general rule, it is always useful to collect multiple spectra from the same sample. This can be with multiple detectors installed in the experimental chamber, or by doing different experiments, including different techniques. While in simple cases this is not necessary, to analyse meaningfully
complex samples, multiple spectra and multiple techniques are almost always necessary. The typical example is to use RBS, EBS, ERDA and PIXE to be sensitive to the heavy elements, to specific light elements, hydrogen, and minor contaminants. All spectra collected should be analysed simultaneously with the same depth profile, to ensure a self-consistent analysis.

A major pitfall is the use of the wrong charge-solid-angle product $Q\Omega$ where normalisation of this quantity is not easily available from the spectrum. $Q\Omega$ is implicitly determined by the composition of the sample (where there is no channelling), so that if the wrong value is imposed on the data the results can be severely distorted. An illuminating example of a case where the uniqueness of $Q\Omega$ is used to determine the sample composition with great delicacy is shown in Lee et al (2006 [92]).

Finally, an outstanding pitfall to be avoided is the over-interpretation of poorly fitted data which must always be treated with great caution. Because particle scattering spectra are not easily inverted into depth profiles since the signal at a particular channel can come from various elements at different depths, if the spectrum is poorly fitted the model may be entirely wrong! In particular, the fact that a part of the spectrum can be perfectly fitted does not mean that the model is partly correct! A particle scattering spectrum is an object with some holographic properties: its parts are interdependent. Of course, no spectrum is perfectly fitted, but the analyst should ensure both that the fit is qualitatively correct for the entire spectrum and that misfitting regions are understood properly. For example, the low energy signal is not usually well fitted since multiple, plural and slit scattering effects are generally neglected. Reliable analysis requires well fitted data! But bear in mind that "well fitted data" does not always mean a perfect fit: the physical models used by codes are not always perfect, particularly in complex situations where advanced physics and models are required (see the Chapter on Software and Data Analysis).
<table>
<thead>
<tr>
<th>Assumption on</th>
<th>What went wrong</th>
<th>Consequences</th>
<th>What can be done</th>
</tr>
</thead>
<tbody>
<tr>
<td>elements present</td>
<td>impurities are ignored</td>
<td>impurity signal wrongly assigned to some other element (possibly one with small cross section leading to large consequences on the overall solution)</td>
<td>use complementary technique that can detect the impurities; link the impurity to a major element</td>
</tr>
<tr>
<td>a “missing element” is falsely postulated or ignored</td>
<td>wrong fitted charge to accommodate the unobserved element, with consequences to all other elements</td>
<td>use complementary technique that can detect the missing element; or collect spectra in different experimental conditions</td>
<td></td>
</tr>
<tr>
<td>depth profile</td>
<td>false depth profile was chosen, leading nevertheless to a good fit (IBA is often ambiguous)</td>
<td>results are all wrong</td>
<td>collect spectra in different experimental conditions; test different models</td>
</tr>
<tr>
<td>profile function (such as Gaussian) imposed on some element when real profile is different</td>
<td>results are inaccurate for that element; if signal is superimposed to other fast-changing signals, other elements may be affected</td>
<td>make a model-free analysis; test different models</td>
<td></td>
</tr>
<tr>
<td>sample roughness ignored (often the case in interdiffusion studies)</td>
<td>depth profile retrieved too broad, or completely wrong in severe cases</td>
<td>measure roughness; make grazing angle experiments</td>
<td></td>
</tr>
<tr>
<td>wrong type of sample roughness considered</td>
<td>roughness parameters derived meaningless</td>
<td>determine roughness type; include it in analysis if possible; test different models</td>
<td></td>
</tr>
<tr>
<td>beam energy</td>
<td>calibration of accelerator inaccurate</td>
<td>systematic error in analysis, (for RBS this may be partially compensated by MCA calibration</td>
<td>calibrate the accelerator energy!</td>
</tr>
<tr>
<td>Parameter</td>
<td>Issue</td>
<td>Solution</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Energy drifted during the experiment</td>
<td>EBS cross sections wrong, depth scales wrong</td>
<td>Measure energy drift; collect calibration spectra at the beginning and end of each run. Discard badly affected data</td>
<td></td>
</tr>
<tr>
<td>Scattering angle</td>
<td>Poor original measurement; problem with moving detector</td>
<td>Determine accurately the scattering angle (may be difficult); treat as fit parameter</td>
<td></td>
</tr>
<tr>
<td>Angle of incidence</td>
<td>Poor alignment of sample holder; problem with goniometer</td>
<td>Align sample holder (may be difficult); treat as fit parameter</td>
<td></td>
</tr>
<tr>
<td>Energy resolution</td>
<td>Not determined recently</td>
<td>Determine energy resolution in each run; treat as fit parameter</td>
<td></td>
</tr>
<tr>
<td>Solid angle</td>
<td>Not well determined; may change with sample distance</td>
<td>Determine accurately (may be difficult); adjust for sample distance</td>
<td></td>
</tr>
<tr>
<td>Beam charge</td>
<td>Not well determined (or not measured)</td>
<td>Determine accurately (may be difficult or impossible); rely on internal normalization (may be difficult or impossible); treat as fit parameter</td>
<td></td>
</tr>
<tr>
<td>Stopping power</td>
<td>Database inaccurate</td>
<td>Use a better database if available; determine the relevant stopping powers if possible; make experiment with different beam; treat as fit parameter</td>
<td></td>
</tr>
<tr>
<td>Bragg rule for molecular stopping</td>
<td>Inaccurate</td>
<td>Use molecular stopping powers if available; determine them if possible; experiment with different beam is</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Possible Cause/Problem</td>
<td>Proposed Solution</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Scattering cross</td>
<td>required non-Rutherford (EBS or NRA) cross section may not be measured or determined</td>
<td>determine the relevant cross section; ignore in the analysis the element involved; make experiment with different beam/energy</td>
<td></td>
</tr>
<tr>
<td>section</td>
<td>yet, or may be inaccurate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>calculate cross section for an EBS (or NRA) resonance at a given depth for the average</td>
<td>use codes that correctly integrate cross section over the entire energy distribution of the analysing beam before scattering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>beam energy at that depth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>elemental concentration and depth profile of affected element become inaccurate; may lead to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>completely wrong analysis in severe cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straggling</td>
<td>used Bohr straggling where Bohr model is not valid</td>
<td>always use best models available</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diffusion, mixing and roughness results wrong</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>did not include Tschälar effect</td>
<td>always use best models available</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diffusion, mixing and roughness results wrong</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for depths where energy loss is 10-20% larger than initial beam energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plural scattering</td>
<td>ignored when relevant</td>
<td>use best models available whenever plural scattering is relevant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>introduce (heavy) elements at depths where they do not exist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple scattering</td>
<td>ignored when relevant</td>
<td>use best models available whenever multiple scattering is relevant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diffusion, mixing and roughness results wrong</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not well calculated, particularly at grazing angles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>results can be wrong</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monté Carlo techniques may be only available alternative; make experiment with different beam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channelling</td>
<td>unnoticed accidental channelling overlooked in analysis</td>
<td>adjust incidence angle, or rotate sample while measuring; calculate channelling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>results can be wrong; but if only the substrate signal is affected there may be no</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>consequences unless the substrate signal is used for normalisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulse pile-up</td>
<td>ignored when relevant</td>
<td>accurate models exist, use them!</td>
<td></td>
</tr>
<tr>
<td>Poorly fitted data</td>
<td>could not find correct model results can be entirely wrong</td>
<td>reliable analysis required well fitted data.</td>
<td></td>
</tr>
</tbody>
</table>
6 Unwanted Target-Beam Interactions

6.1 Beam-Induced Heating

The power deposited in a target under beam impact is expressible in watts through the product of the particle energy (MeV) and the number of particles per second (uA), where the latter represents particle current, not electrical current. If the cross sectional area of the beam is known, then the power density (watts per unit area) is also readily calculated. Basic heat flow calculations can then be made.

For a target of semi-infinite thickness, the validity of this calculation rests on the fact that the fraction of incident particles reflected or scattered out of the target is negligible (< 1%), which is satisfied for all beams at MeV energies. It further requires that secondary particle emission (sputtered particle flux, nuclear reaction product flux, electron emission, etc.) produces no secondary heating effects. Again, for MeV particles, this assumption is usually satisfied. For thin targets, the heat input is determined by the energy deposited by the beam within the target; this may be much less than the incident energy.

While it is usually of no interest in ion beam analysis applications, heat generation in the target will proceed via the same fundamental interactions that have been identified in discussions of 'spike' phenomena. Beam energy expended through electronic stopping is coupled to electrons, that is, the electrons are 'heated' and this excitation must then be coupled to the lattice through electron-phonon interactions, thereby producing macroscopic sample heating with a characteristic time constant of picoseconds. The route to lattice heating is more direct in the nuclear stopping regime, which dominates near the end of the particle range. As noted above, however, the quantity of interest is usually the mean power deposited. The variation in rate of thermalization of the lattice with depth is rarely of concern.

The sample response to beam heating depends on experimental conditions. If the beam spot is small in area, radial symmetry may be assumed. At temperatures above a few hundred degrees centigrade, cooling will be dominated by the radiative mechanism (T^4) rather than by conduction. (When conductivity within the sample is good, temperature profiles will be rather unremarkable.) However, mechanical contact does not ensure good thermal contact, and thermal contacts are notoriously hard to make in a vacuum. The existence of a hot spot can lead to differences in

- Electron emission;
- Sticking probabilities for adsorbates (e.g. O$_2$, CO, H$_2$O, etc.) and thus lower coverages relative to cooler surrounding material;
- Varying decomposition rates for adsorbed hydrocarbons; and
- Annealing of beam-induced disorder.

Thermal gradients can result in redistribution of mobile impurities, including embedded gas atoms from the beam, and can decompose materials. The question of how best to determine the target temperature under the beam lies outside the scope of these comments. Schultz et al. (1992, [93]) has shown how important temperature control can be: large changes (up to an order of magnitude) in the level of residual disorder in MeV energy self-irradiation of Si over the temperature range 270K-320K for otherwise identical irradiation conditions have been observed. Hence, significant changes in beam-induced disorder may result from beam heating of even a few degrees.

It is worth emphasising that beam induced heating effects are exacerbated when a microbeam is used.
6.2 Beam-Induced Radiation Damage

In many IBA applications, radiation damage produced by the ion beam is a key limitation. In general, such effects depend not only on the primary energy loss process involved, but also on subsequent solid state diffusion effects. Hence, the nature and temperature of the target, the dose rate, and the total fluence are all relevant parameters. The review literature on radiation damage is extensive (see for example [94]) and we give here only some simple guidelines to assist newcomers in the IBA field.

Radiation damage processes arise from two widely different mechanisms of energy transfer:

- Nuclear (or atomic) stopping, \((dE/dx)_n \), in which scattering of the incident ion by the (partially-) screened target nucleus results in significant momentum being transferred to the whole atom. This contribution is the dominant energy-loss process at low (keV) energies, but at energies common in IBA (~1MeV/nucleon) it is only a very small fraction (~0.1%) of the total stopping process.

- Electronic stopping, \((dE/dx)_e \), in which energy is lost to various electronic excitation and ionization processes.

In metals and most semiconductors, electronic excitation and ionization both decay almost instantaneously without producing permanent damage effects. In such materials, the major source of radiation damage is the small nuclear stopping component (first mechanism, above). An upper limit to the resulting defect density may be obtained by multiplying the nuclear stopping power, \((dE/dx)_n \) (eV.10^{-15} cm^{-2}), by the total ion fluence and dividing by twice the displacement energy, \(E_d \). At IBA energies, the nuclear stopping power is usually between 0.03 and 0.3 eV.10^{-15} cm^{-2} and \(E_d \) is typically ~30 eV. Hence, a beam fluence of 10^{15} ions cm^{-2} produces at most a defect density in the 0.05-0.5% range.

On the other hand, in insulators and other molecular compounds, damage production rates are often considerably greater because here the electronic stopping power (second mechanism, above) may also cause bond breakage and hence permanent chemical and structural changes in the target. Radiation chemistry studies in a wide variety of inorganic and organic molecular solids, using \(e^- \), \(\gamma^- \), and MeV ion bombardment, have shown that the number of bonds broken per 100 eV of deposited energy (the so-called g-factor) is roughly 10, indicating that in such materials electronic stopping processes are usually more effective in breaking bonds than the nuclear collision cascades. For example, Benyagoub (2006, [95]) shows that the fraction g of electronic energy loss converted to heat is 0.124 for zirconia and 0.129 for hafnia. Since the electronic stopping power at IBA energies is two to three orders of magnitude greater than the nuclear stopping power, it is evident that the total rate of damage creation in insulators can be as much as 10^3 greater than the nuclear collision estimates in the previous paragraph.

In practice, the observed levels of damage vary widely from one type of insulator to another. We have presented here only a rough estimate of the maximum rate at which damage is created; in many materials, self-annealing reduces the damage. For example, most ceramic materials (WC, BN) and certain inorganic oxides (MgO, Al_2O_3, SiO_2, UO_2) are fairly resistant, whereas alkali halides, polymers, and most organic and biological materials are rapidly and permanently decomposed by electronic stopping processes.

Damage creation due to electronic stopping is not restricted to insulators, but may occur in any polyatomic molecular solid, including high-Tc superconductors.

Finally, it should be emphasized that even when a large amount of damage is created by the analyzing beam, this does not necessarily introduce significant error into the quantities being analyzed. However, if some of the resulting defect species are mobile (radiation-enhanced diffusion) or volatile (for example, H_2), then significant changes in depth distribution or stoichiometry may result. In some cases, low-temperature analysis may reduce the problem.
Single crystal targets, which involve RBS/ channelling analyses, are particularly sensitive to all types of radiation damage, even when the resulting defect species are non-mobile. Interaction between solute atoms and point defects (vacancies or interstitials), for example, can cause solute atoms to move into a completely different lattice site configuration (see Chapter 10, Section 10.7.6).

Again, it is worth emphasising that beam induced damage effects are exacerbated when a microbeam is used.

6.3 Beam-Induced Sputtering

As part of the radiation damage process, near-surface atoms occasionally receive sufficient kinetic energy or electronic excitation to be ejected — sputtered — from the target surface. Obviously, if the amount sputtered during IBA becomes significant (10^{15} \text{ cm}^{-2} \sim \text{one monolayer}), then the surface structure, stoichiometry, film thickness, etc. could be irreversibly changed. Again, as in the radiation damage section (12.5.1.2), we divide the discussion into two widely different types of behaviour.

In metals and most semiconductors, only the nuclear stopping component contributes to sputtering and the observed yield is directly proportional to \((dE/dx)_n\) evaluated at the target surface, that is, at the incident beam energy \(E_0\). The relationship between the sputtering yield, \(Y\) (atoms/ incident ion), and \((dE/dx)_n\) (eV/10^{15} \text{ atoms cm}^{-2}) can be expressed as

\[
Y = 0.1(dE/dx)_n / (U_s \cos \phi) \quad (4)
\]

The numerator \([0.1 (dE/dx)_n]\) is a rough estimate of the total energy (in eV) contributing to the sputtering process, \(U_s\) (the surface binding energy of the target) is usually between 2 and 10 eV/atom, and \(\phi\) is the angle between the incident beam direction and the surface normal. Andersen (1987, [96]) shows, fortuitously, an exceptionally good theoretical description of the sputtering behaviour of Ni (a typical metal) as a function of the energy and atomic number of the incident beam. The maximum sputtering yield is about 10^{-2}Ni/incident ion for about 1keV H, and about 8Ni/ion for 100keV Xe. In general however, the agreement between predicted and measured sputtering yields is no better than a factor of two.

In the low-E regime (10-100 keV) where \((dE/dx)_n\) reaches its maximum value, sputtering yields as large as 10 atoms/ion are often encountered. But at IBA energies, \((dE/dx)_n\) is in the range of 0.03-0.3 eV/10^{15} \text{ atoms/ cm}^{2}; hence, the sputtering yield is less than 10^{-2}.

In insulators, the collision cascade mechanism of sputtering (described in the preceding paragraph) still occurs and hence sputtering yields of at least 10^{-3} \text{ atoms/ion occur in all IBA studies. In insulators, however, the much larger (}\(dE/dx)_e\) process can also produce significant sputtering through a variety of mechanisms: bond breaking, 'Coulomb explosion' effects, formation of volatile products (H\textsubscript{2}, O\textsubscript{2}, etc.). The exact mechanisms are, in general, not well characterized and they depend markedly on the type of insulating material involved. Nevertheless, experimental evidence (Tombrello, 1984 [97]) shows that the sputtering yield in insulators can be as high as 10 (in rare cases, even 100) \text{ atoms/incident ion}. In such materials, the electronic stopping process has enhanced the sputtering rate by as much as 10^{4}.

Note that in polyatomic targets, preferential sputtering of certain atomic species can often occur. Hence, whenever the total amount sputtered is greater than one monolayer (~10^{15} \text{ cm}^{-2}), significant changes in near-surface stoichiometry may also result. An extreme example is the rapid dehydrogenation (or graphitization) of polymers that occurs during IBA with MeV He+ beams (see, for example, the review of polymer damage by Brown in 1986, [98]).
6.4 Charging in Insulators

Compared to metals and semiconductors, most insulating materials present a series of special problems in regard to IBA. In the preceding section (12.5.1) on beam-induced damage, the greatly enhanced sensitivity of insulators to beam-induced effects such as radiation damage and sputtering has already been emphasized. Here, we briefly note two additional complications that arise in certain types of insulating materials: target charging and photon emission.

Depending on the geometry, thickness and resistivity of the target material, surface charging under MeV ion bombardment can in severe cases reach several tens of kV. (This value is, of course, still small compared to the incident beam energy, unlike the insulator situation encountered in Auger and secondary ion mass spectroscopy.) However, since the charge states of the incident and backscattered beam are not necessarily the same, surface charging can seriously distort the energy and hence the shape of the observed RBS spectrum, as shown for the case of quartz in Fig. 7.

![Figure 7. Surface charging effect. Comparison of RBS spectra from a quartz target using 1 MeV \(^{4}\)He: a) ungrounded; b) grounded via a thin conductive surface layer of graphite by rubbing a pencil lightly across the surface (Almeida and Macauley-Newcombe, private communication, 1991).](image)

Furthermore, surface charging sometimes produces sufficiently high electric fields to interfere with the performance of the Faraday cup system. Also, in certain insulators (for example, BaTiO\(_3\)), excessive surface charging may even cause the target to disintegrate.

One effective way to neutralize surface charging effects is to provide a supply of low-E electrons from a small, hot filament located nearby. If such a filament is powered via an isolation transformer and is electrically connected to the target holder through a suitable (+50V) bias to prevent electrons escaping to the chamber walls, then quantitative current integration is still achievable.
Generally, the use of a transmission Faraday cup is a better way to solve these current integration problems.

Other possible methods that have been used to reduce surface charging are:

- Coating the surface at least partially with a very thin layer of conducting material, such as graphite (for example, rubbing a pencil lightly across the surface) or an evaporated metal.
- Sweeping the beam so that it also bombards the adjacent (metal) target holder or a suitably placed metal grid in front of the target. The latter process generates a supply of secondary electrons to neutralize the positively charged surface of the insulator.

In many insulators, charging effects are small enough to be ignored.

6.5 Photon Emission in Insulators

In insulators, much of the electronic excitation resulting from the \((dE/dx) \) stopping mechanism is eventually converted into optical emission in the visible and ultra violet region. Polymers, alkali halides, etc. are transparent to such radiation. Consequently, photons emitted even from a depth of several microns can readily escape from the target. In such cases, hundreds or even thousands of photons may be emitted per incident ion. We have already discussed how these photons can generate a flux of secondary electrons at the chamber walls. Furthermore, the energy resolution of charged-particle detectors can be seriously degraded by photogeneration of carriers in the depleted region. (The standard surface barrier detector has a Au electrode of thickness \(\sim 20 \text{nm} \) which is transparent to visible light.)

7 Other Effects

7.1 Surface and Interface Roughness

When performing experiments where the incident or emergent charged particle makes a small angle (for example, \(< 20^\circ\)) with a target surface which is not smooth, problems in the shape of the energy distribution may arise that are caused by the surface topography. This is very often the case for ERDA measurements (see relevant Chapter). Even at near-perpendicular incidence, porous targets, sintered powders, etc. can introduce very serious surface roughness complications, leading to data that either are impossible to analyse or that do not carry useful information.

When roughness is moderate (that is, when it is not so much that it destroys spectral features), IBA can be used effectively to study surface and interfacial roughness. Different methods have been developed. The simplest one is to average spectra calculated for different sample structures, e.g. if the roughness leads to a layer with changing thickness. Full Monte Carlo simulations have also been made. A fast and often efficient approach is to calculate the broadening of observed features due to specific types of roughness. Calculations of the effect of voids, inclusions, and quantum dots, are also included in some codes [99, 100].

However, it is normally impossible to determine from IBA techniques alone whether the broadening of a given peak or edge is due to roughness, to interdiffusion, or to an unexpected depth profile of the affected element. Interpretation of the data requires almost always extra information about the sample at hand from some other source. Different microscopies are often employed for that purpose.
7.2 Target Non-Uniformity

Care must be taken in resting the interpretation of RBS spectra on limited data. Apparently simple features may be misleading if it is assumed that the target has lateral uniformity under the analyzing beam. As shown by Campisano et al. (1975, [101]), the shape of a Pb spectrum recorded from a non-uniform surface film of Pb on Si may closely resemble that of a laterally uniform diffusion profile of Pb in Si.

This confusion is removed by supplementary measurements and analysis (Campisano et al., 1978, [102]). As shown in Fig.8a, the consequences of varying the target angle, ϕ, to the incident beam for a Pb film of thickness 50 nm overlaying an Si substrate are to give a familiar broadening $[(\cos \phi)^{-1}]$ of the Pb profile in the RBS spectrum, and a correlated shift in the leading edge of the Si continuum. Totally different profiles are obtained for samples which have been annealed to 280°C for 20 minutes, after deposition. In this case (Fig.8b), the decrease in the scattered particle yield, H_{Si}, from Si atoms at the surface as the tilting angle (ϕ) increases rules out interdiffusion. The results have been modelled in terms of raised Pb features (islands) and good agreement found with island dimensions and spacings measured by SEM analysis which displays the altered surface morphology. RBS methods have been used very effectively (Zinke-Allmang et al., 1989, [103]) to study the development of layer-by-layer and island growth (Stranski-Krastanov films).

Bayesian inference techniques have been applied to single spectra of In blobs of various shapes and sizes in Si, by Mayer et al. (2005, [100]), with excellent results.
Figure 8: Backscattered energy spectra for several tilting angles. a) From a uniform Pb layer (50nm) on a Si substrate; and b) from the same layer after annealing for 20 minutes at 280°C (Campisano et al., 1978).

7.3 Thin Film Units

Thin film units (10^{15} atoms/cm²) are the natural units for IBA since the energy loss is measured in eV/(atoms/cm²), and one monolayer is of the order of 10^{15} atoms/cm².

The energy loss is measured in these units because the accurate measure of thin film thickness is in terms of µg/cm² (equivalent to atoms/cm² if the stoichiometry is known) since the most reliable way to measure the thickness of a thin film is to weigh it, and measure its area. Linear thicknesses (in nm) are unreliable because the density of thin films can be markedly different from bulk values,
and because surface contamination (including oxides) and other surface effects can be large for thin films.

IBA is an ideal technique to measure thin film profiles where the composition changes with depth. In these cases, the appropriate density to use depends on the chemistry of the sample, and assuming different chemistries will lead one to infer a different density profile. Therefore, the most neutral representation of IBA measured depths is in terms of $\mu g/cm^2$; thin film units are very convenient and do not involve the sample density, but do assume that the stoichiometry is known.

The pitfall that must be avoided is to forget that presenting depth profiles with a linear depth scale (in nm) hides assumptions about the density of the sample, which may not be well known, and may be greatly different from what is expected. Some IBA codes allow the analyst to fit the data using molecules, and using mixtures of molecular densities. In Fig.6 for example, the depth scale is in thin film units. To plot the profiles in nm one must correctly assign the oxide densities, which is not entirely trivial.

9. S.K.Allison (1958), *Experimental results on charge-changing collisions of H and He atoms and ions at energies >0.2keV*, Rev.Mod.Phys. 30(4) 1137-1168
16. NDFv9 Manual: www.ee.surrey.ac.uk/ibc/ndf
N.P. Barradas, M.A. Reis (2006), Accurate calculation of pileup effects in PIXE spectra from first principles, X-ray Spectrometry 35(4), 323-327

Sjöland KA, Munnik F, Chaves C, Wätjen U (1999), Time-resolved pile-up compensation in PIXE analysis with list-mode collected data, Nucl. Instr. and Meth. B150, 69-75

J.B. Marioni (1967), Accelerator Calibration Energies, Rev. Mod. Phys. 38, 660-668

Davies, J.A. and Norton, P.R. (1980), Absolute coverage measurement of adsorbed Co and D2 on platinum, Nucl. Instr. and Meth. 168, 611-615

Christensen, N.S., Jensen, F., Besenbacher, F. and Stensgaard, I. Absolute calibration of the 18O(p, a0)15N nuclear-reaction, Nucl. Instr. and Meth. B51, 97-101

Abel, F., Amsel, G., d'Artemare, E., Ortega, C., Siejka, J. and Vizkelethy, G. (1990), Use of the 16O(3He,a)15O reaction for studying oxygen-containing thin-films, Nucl. Instr. and Meth. B45, 100-104

Möller, W. and Besenbacher, F. (1980), Note on the 3He+d nuclear-reaction cross-section, Nucl. Instr. and Meth. 168, 111.

Alexander, T.K., Ball, G.C., Lennard, W.N., Geissel, H. and Mak, H.-B (1984), Measurement of the absolute cross-section of the 3He(3He,4He)7Be reaction at Ecm = 525 keV, Nucl. Phys. A427, 526-544

Amsel, G. and Davies, J.A. (1983), Precision standard reference targets for microanalysis by nuclear-reactions, Nucl. Instr. and Meth. 218, 177-182

45 D. Niemann, G. Konac, S. Kalbitzer, *Stopping power measurements of 1H, 4He, and 14N in the energy range of 0.02 - 1 MeV/amu*, Nucl. Instr. and Methods **B118** (1996) 11-18

47 www.srim.org; J. F. Ziegler

57 D. K. Brice, B. L. Doyle (1990), *A curved detection slit to improve ERD energy and depth resolution*, Nucl.Instrum.Methods B45, 265-269

64 The IBANDL database at www-nds.iaea.org/ibandl maintained by A. F. Gurbich.

65 The SigmaCalc database at www-nds.iaea.org/sigmacalc built by A. F. Gurbich.

91 Given variously as: Pluralitas non est ponenda sine neceessitate (plurality should not be posited without necessity) or non sunt multiplicanda entia praeter necessitatem (entities are not to be multiplied except of necessity).

