Development of a nasal epithelial brush model (NBM) to study equine respiratory disease (ERD) in the racehorse
Start date
01 April 2019End date
31 March 2022Funder
Team
Principal investigator

Professor Mark Chambers
Professor of Microbiology and Disease Intervention, Head of Department of Microbial Sciences
Biography
Mark graduated in 1989 from the University of Bristol with a BSc (Hons) in Cell and Molecular Pathology and went on to gain a PhD from University of Cambridge in 1992 for his work on the immune responses to human papillomavirus type 16 in a mouse model. Then followed two post-doctoral positions at Imperial College London, working on viral and bacterial adhesins in recombinant hepatitis B core antigen particles and the rational attenuation of Mycobacterium tuberculosis and expression of cytokine genes in recombinant Mycobacterium bovis BCG. In 1996 he moved to the government Veterinary Laboratories Agency (now Animal and Plant Heath Agency, APHA) to undertake work on vaccines, pathology, small animal models, and diagnostics for animal tuberculosis. There he led a number of Defra projects in this area, most notably resulting in 2010 with the licensing of BadgerBCG - the first licensed vaccine against TB in any animal species.
Mark has published extensively in the area of human and animal tuberculosis and related disciplines. He is a former acting TB Science Lead and Head of the Bacteriology Department at APHA. In October 2013 he was appointed Professor of Veterinary Bacteriology at the University of Surrey and held a joint position with APHA until February 2020. In March 2020, he joined the University of Surrey full-time to take up a new Chair as Professor of Microbiology and Disease Intervention. He splits his time 50/50 between the School of Veterinary Medicine and the School of Biosciences & Medicine where he is also Head of Department of Microbial Sciences. The joint Schools appointment reflects his research interest in both animal and human health, with particular focus on the replacement of animals in research and reducing antimicrobial use and resistance.