Engineered anammox biofilms for low-energy wastewater treatment and environmental remediation

On this interdisciplinary research project, you will help to tackle the urgent environmental problem of nitrogen in wastewater using materials design and processing. You will create polymer coatings containing living bacteria that will convert ammonium to nitrogen gas.

Start date

1 October 2023

Duration

3.5 years

Application deadline

Funding source

NERC

Funding information

UKRI stipend plus an additional £3,000 per annum; payment of tuition fees (for UK student), £3,000 Research training Support Grant.

About

Nitrogen, in the forms of ammonium and nitrates ions, is a serious problem in the UK and elsewhere in water being discharged into the environment because it can harm aquatic ecology and detrimentally affect human health. Run-off of water from agricultural land and effluent from sewage are both major sources of nitrogen in water. In this research project, an improved way to employ a biological process to remove nitrogen will be investigated and developed.

Combinations of nitrifying and denitrifying bacteria are already used to convert ammonium ions to nitrates and then to nitrogen gas. But the processes consume a large amount of energy and are expensive, making them less viable. An attractive alternative, consuming less energy and being less expensive, is to use anammox bacteria, which convert ammonium and nitrites directly to nitrogen gas. The name “anammox” is derived from the phrase “anaerobic ammonia oxidation”.

Although anammox bacteria are a promising way to tackle an environmental problem, with 200 anammox facilities operating worldwide, they are not easy to work with. To perform their function, they need to be immobilized and remain active in biofilms across a range of temperatures. A biofilm is the natural habitat of bacteria in the form of a layer of organisms surrounded by natural molecules, such as saccharides and glycoproteins, to form a matrix. In this research, you will investigate ways to make a type of “synthetic biofilm” by encapsulating anammox bacteria into water-based paint coatings. These so-called “biocoatings” can be used in the future in bioreactors for agricultural or city wastewater. In natural systems, an anammox process relying on biocoatings could be employed in wetlands constructed by humans.

Already at the University of Surrey, our team has demonstrated a biocoating containing metabolically-active E. coli bacteria. In follow-up work, we added nitrifying bacteria to a biocoating and showed that it could successfully remove ammonium in a bioreactor. In this project, collaborators at Thames Water will provide anammox bacteria that will be mixed with a polymer binder material.

Fieldwork

There will be an opportunity for fieldwork (collection of surface water in wetlands). The student will work in an interdisciplinary environment using civil engineering laboratories Soft Matter Group facilities. Important skills in environmental science, including water engineering, microbiology, and analytical chemistry will be developed.

Related links

Painting with bacteria could revolutionise wastewater treatment Introducing Porosity in Colloidal Biocoatings to Increase Bacterial Viability Waterborne Coatings Encapsulating Living Nitrifying Bacteria for Wastewater Tre…

Eligibility criteria

UK candidates only.

Applicants are expected to hold a first or upper-second class degree in a relevant discipline (or equivalent overseas qualification), or a lower second plus a good masters degree (distinction normally required).

This opportunity will be ideal for a candidate with keen interests in environmental science and with a relevant degree in biomaterials engineering, physical chemistry or microbiology. Good practical laboratory skills, analytical skills, and team working skills are desirable. The project would particularly suit a versatile researcher who can collaborate across disciplinary boundaries. Ideally, the candidate should have experience (or at least an interest) in physical and chemical analysis, techniques of microbiology, and materials design.

English language requirement

IELTS minimum 6.5 overall with 6.0 in writing, or equivalent.

How to apply

To apply, please follow the instructions on the Scenario website.

Studentship FAQs

Read our studentship FAQs to find out more about applying and funding.

Application deadline

Contact details

Joseph Keddie
09 BB 03
Telephone: +44 (0)1483 686803
E-mail: j.keddie@surrey.ac.uk
studentship-cta-strip

Studentships at Surrey

We have a wide range of studentship opportunities available.