Dr Claudio Avignone Rossa FRSB


Reader in Systems Microbiology
PhD Biochem Sci, Lic Biochem Sci, BSc Chem (La Plata. Argentina)
+44 (0)1483 686457
09 AX 01

Biography

Areas of specialism

Microbial Biotechnology; Metabolic Modelling; Microbial Communities

University roles and responsibilities

  • Examination Officer Level 6
  • Academic Integrity Officer
  • Admissions Tutor MSc Medical Microbiology

Affiliations and memberships

Fellow of the Royal Society of Biology
Member of the Microbiology Society
Member of the Society for Applied Microbiology

Research

Research interests

My teaching

My publications

Highlights

Paper of the year 2018 - The article by Toro Navarro et al has been awarded the Paper of the Year Award by the journal Biosystems and Bioprocess Engineering (Springer)

New paper published: Chen et al (2019) Electron communication of Bacillus subtilis in harsh environments. iScience 12, 260–269. https://doi.org/10.1016/j.isci.2019.01.020

 

Publications

Quantitative microbial physiology

  • Toro Navarro et al (2018). An enhanced genome-scale metabolic reconstruction of Streptomyces clavuligerus identifies novel strain improvement strategies. Bioproc. Biosys. Eng. 41:657–669. https://doi.org/10.1007/s00449-018-1900-9
  • Pinilla et al (2018). Streptomyces clavuligerus strain selection for clavulanic acid biosynthesis: a study based on culture composition effects and statistical analysis. Dyna 85:111-118. doi: 10.15446/dyna.v85n205.69560. 
  • Menendez-Bravo et al (2017) Identification of FadAB Complexes Involved in Fatty Acid β-Oxidation in Streptomyces coelicolor and Construction of a Triacylglycerol Overproducing strain. Front. Microbiol. 8:1428. doi: 10.3389/fmicb.2017.01428
  • Kim et al (2016) Properties of alternative microbial hosts used in Synthetic Biology: Towards the design of a modular chassis. Essays Biochem 60, 303–313
  • Avignone Rossa et al (2013) Systems Biology of antibiotic production in Streptomyces. In: Dubitzky, Wolkenhauer, Cho, Yokota (Eds). Encyclopedia of Systems Biology. Springer, Heidelberg. ISBN 978-1-4419-9862-0
  • Gevorgyan et al (2011). SurreyFBA: a command line tool and graphics user interface for constraint-based modeling of genome-scale metabolic reaction networks. Bioinformatics 27(3), 433 – 434.
  • Sroka et al (2011). Acorn: a grid computing system for constraint based modeling and visualization of the genome scale metabolic reaction networks via a web interface. BMC Bioinformatics. 12, 196.
  • Ahmed et al (2011). Metabolomic Profiling Can Differentiate Between Bactericidal Effects of Free and Polymer Bound Halogen. J Appl Polym Sci, 119, 709 – 718.
  • Efthimiou et al (2008). A novel finding that Streptomyces clavuligerus can produce the antibiotic clavulanic acid using olive oil as a sole carbon source. J Appl Microbiol, 105, 2058-2064.
  • Khannapho et al (2008). Selection of objective function in genome scale flux balance analysis for process feed development in antibiotic production. Metabolic Eng 10, 227 – 233

Bioelectrochemical systems and Microbial Communities

  • Naz et al. (2018). Investigation of the active biofilm communities on polypropylene filter media in a fixed biofilm reactor for wastewater treatment. J. Chem. Technol. Biotechnol. doi 10.1002/jctb.5686
  • Hodgson et al (2016) Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade. Front. Microbiol. 7, 699.
  • Nez et al (2016). Effect of the Chemical Composition of Filter Media on the Microbial Community in Wastewater Biofilms at Different Temperatures. RSC Adv. 6, 104345 - 104353
  • Grüning et al (2015). Low-potential respirators support electricity production in Microbial Fuel Cells. Microbial Ecol. 70, 266–273
  • Stratford et al (2014). Anodic microbial community diversity as a predictor of the power output of microbial fuel cells. Biores. Technol. 156, 84–91.
  • Beecroft et al (2012). Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Appl Microbiol Biotechnol. 93, 423 – 437.
  • Kim et al (2011). Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell. Appl Microbiol Biotechnol. 90, 1179 – 1191.
  • Wu et al (2011). A role for microbial palladium nanoparticles in extracellular electron transfer. Angew Chem Int Ed 50, 427 – 430.
  • Wu et al (2009). A one-compartment fructose/air biological fuel cell based on direct electron transfer. Biosens Bioelectron 25, 326 – 331
  • Wu et al (2009). Direct electron transfer of glucose oxidase immobilized in an ionic liquid reconstituted cellulose-carbon nanotube matrix, Bioelectrochem 77, 64 – 68
  • Zhao et al (2008). Factors affecting the performance of microbial fuel cells for sulfur pollutants removal. Biosens Bioelectr 24, 1931–1936
  • Zhao et al (2008). Activated Carbon Cloth as Anode for Sulfate Removal in a Microbial Fuel Cell. Environ Sci Technol 42, 4971 – 4976