Xiaoyu Fu

Mr Xiaoyu Fu


Postgraduate Research Student

Academic and research departments

Astrodynamics, Surrey Space Centre.

About

My research project

Research

Research interests

Publications

Xiaoyu Fu, Nicola Baresi, Roberto Armellin (2022)Stationkeeping of Periodic Orbits Using High-Order Target Phase Approach

To maintain the periodic orbits in a three-body regime, a high-order Target Phase Approach (TPhA) is proposed in this work. Two types of polynomial maps, the phase-angle Poincaré map and high-order maneuver map, are established respectively for the determination of stationkeeping epochs and calculation of correction maneuvers. A stochastic optimization framework tailored for the TPhA-based stationkeeping process is leveraged in search of fuel-optimal and error-robust TPhA parameters. Quasi-Satellite Orbits (QSOs) around Phobos are investigated to demonstrate the efficacy of this approach in both low-and high-fidelity models. Monte-Carlo simulations demonstrate that the baseline QSO of JAXA's Martian Moons eXploration (MMX) mission can be maintained with a monthly manuever budget of around 1.13m/s.

Near Rectilinear Halo Orbits (NRHOs) are orbits of great interest for the upcom-ing lunar missions. To maintain NRHOs in a three-body regime, a stationkeeping strategy based on a high-order Target Point Approach (TPA) is proposed, where fuel-optimal and error-robust TPA parameters are acquired from stochastic global optimization. Accurate TPA manevuers are calculated in a high-order fashion enabled by Differential Algebra (DA) techniques. Stochasticity is handled by incorporating Monte Carlo simulations in the process of optimization and the evaluation of high-order ODE expansions is employed to supplant the time-consuming numerical integration. Multiple candidate NRHOs with different stability properties are investigated.

Space exploration has often benefitted from the qualitative analyses of non integrable problems enabled by numerical continuation procedures. Yet, standard approaches based on Newton’s method typically end with discrete representations of family branches that may be subject to misinterpretation and overlook important dynamical features. In this research, we introduce novel continuation procedures based on the differential algebra of Taylor polynomials. Our algorithms aim at generating dense family branches as an atlas of polynomial charts that are locally valid for a range of system and continuation parameters. Examples of particular solutions will be shown within the framework of the Circular Restricted Three-Body Problem, along with fold and period-doubling bifurcations that are efficiently detected using automatic domain splitting and map inversion techniques.

Xiaoyu Fu, Nicola Baresi, Roberto Armellin (2022)Stochastic optimization for stationkeeping of periodic orbits using a high-order Target Point Approach, In: Advances in Space Research Elsevier

Periodic orbits in the Restricted Three-Body Problem are widely adopted as nominal trajectories by di↵erent missions. To maintain periodic orbits in a three-body regime, a stationkeeping strategy based on a high-order Target Point Approach (TPA) is proposed, where fuel-optimal and error-robust TPA parameters are acquired from stochastic global optimization. Accurate TPA maneuvers are calculated in a high-order fashion enabled by Di↵erential Algebra techniques. Orbit determination epoch is selected using a sensitivity analysis based on the convergence radius of a stroboscopic map. Stochasticity is handled by incorporating Monte Carlo simulations in the process of optimization and the evaluation of high-order ODE expansions is employed to supplant the time-consuming numerical integration. Two specific types of periodic orbits, Near Rectilinear Halo Orbits and Quasi-Satellite Orbits, are investigated to demonstrate the validity and eciency of the strategy.

NICOLA BARESI, NICOLÒ BERNARDINI, EDOARDO CICCARELLI, Xiaoyu Fu, Harry J. Holt, Roberto Armellin (2022)Guidance, Navigation and Control of Retrograde Relative Orbits around Phobos

Despite the advantages of very-low altitude retrograde orbits around Phobos, questions remain about the efficacy of conventional station-keeping strategies in preventing spacecraft such as the Martian Moons eXploration from escaping or impacting against the surface of the small irregular moon. This paper introduces new high-fidelity simulations in which the output of a sequential Square-Root Information Filter is combined with recently developed orbit maintenance strategies based on differential algebra and convex optimization methods. The position and velocity vector of the spacecraft are first estimated using range, range-rate, and additional onboard data types such as LIDAR and camera images. This information is later processed to assess the necessity of an orbit maintenance maneuver based on the estimated relative altitude of MMX about Phobos. If a maneuver is deemed necessary, the state of the spacecraft is fed to either a successive convex optimization procedure or a high-order target phase approach capable of providing sub-optimal station-keeping maneuvers. The performance of the two orbit maintenance approaches is assessed via Monte Carlo simulations and compared against work in the literature so as to identify points of strength and weaknesses.