Dr Xiaoyu Fu


Postgraduate Research Student

About

My research project

Research

Research interests

Publications

Xiaoyu Fu, Nicola Baresi, Roberto Armellin (2024)A high-order target phase approach for the station-keeping of periodic orbits, In: Astrodynamics8(1)pp. 61-75 Springer Nature

A novel high-order target phase approach (TPhA) for the station-keeping of periodic orbits is proposed in this work. The key elements of the TPhA method, the phase-angle Poincare map and high-order maneuver map, are constructed using differential algebra (DA) techniques to determine station-keeping epochs and calculate correction maneuvers. A stochastic optimization framework tailored for the TPhA-based station-keeping process is leveraged to search for fuel-optimal and error-robust TPhA parameters. Quasi-satellite orbits (QSOs) around Phobos are investigated to demonstrate the efficacy of TPhA in mutli-fidelity dynamical models. Monte Carlo simulations demonstrated that the baseline QSO of JAXA's Martian Moons eXploration (MMX) mission could be maintained with a monthly maneuver budget of approximately 1 m/s.

Nicola Baresi, Harry James Holt, Nicolò Bernardini, Xiaoyu Fu, Mansur Tisaev, Yang Gao, Chris Bridges, Andrea Lucca Fabris, Roberto Armellin, Piotr Murzionak, Roman Kruzelecky (2021)Mission Analysis and Design of VMMO: The Volatile Mineralogy Mapping Orbiter

Water ice and other volatile compounds found in permanently shadowed regions near the lunar poles have attracted the interests of space agencies and private companies due to their great potential for in-situ resource utilization and scientific breakthroughs. This paper presents the mission design and trade-off analyses of the Volatile Mineralogy Mapping Orbiter, a 12U CubeSat to be launched in 2023 with the goal of understanding the composition and distribution of water ice near the lunar South pole. Spacecraft configurations based on chemical and electric propulsion systems are investigated and compared for different candidate science orbits and rideshare opportunities.

CubeSat missions that take advantage of ride-sharing opportunities to the Moon are typically limited by a small v budget. In this paper, a patching point method is applied to design a low-energy lunar transfer for a spacecraft initially placed into a circumlunar free-return trajectory. Initial conditions generated within weak stability boundaries further guarantee ballistic lunar capture upon arrival. A large number of optimised trajectories are produced, with a minimum mission v cost of 32.51 m/s. Additionally, the B-plane values of the spacecraft during its initial flyby of the Moon are investigated. A relationship between the initial position of the Sun in the synodic frame and the B-plane values is observed, in which successful trajectories appear to favour entering into certain orbital resonances with the Moon.

Xiaoyu Fu, Nicola Baresi, Roberto Armellin (2022)Stochastic optimization for stationkeeping of periodic orbits using a high-order Target Point Approach, In: Advances in Space Research Elsevier

Periodic orbits in the Restricted Three-Body Problem are widely adopted as nominal trajectories by di↵erent missions. To maintain periodic orbits in a three-body regime, a stationkeeping strategy based on a high-order Target Point Approach (TPA) is proposed, where fuel-optimal and error-robust TPA parameters are acquired from stochastic global optimization. Accurate TPA maneuvers are calculated in a high-order fashion enabled by Di↵erential Algebra techniques. Orbit determination epoch is selected using a sensitivity analysis based on the convergence radius of a stroboscopic map. Stochasticity is handled by incorporating Monte Carlo simulations in the process of optimization and the evaluation of high-order ODE expansions is employed to supplant the time-consuming numerical integration. Two specific types of periodic orbits, Near Rectilinear Halo Orbits and Quasi-Satellite Orbits, are investigated to demonstrate the validity and eciency of the strategy.

Xiaoyu Fu, Nicola Baresi, Roberto Armellin (2022)Stationkeeping of Periodic Orbits Using High-Order Target Phase Approach

To maintain the periodic orbits in a three-body regime, a high-order Target Phase Approach (TPhA) is proposed in this work. Two types of polynomial maps, the phase-angle Poincaré map and high-order maneuver map, are established respectively for the determination of stationkeeping epochs and calculation of correction maneuvers. A stochastic optimization framework tailored for the TPhA-based stationkeeping process is leveraged in search of fuel-optimal and error-robust TPhA parameters. Quasi-Satellite Orbits (QSOs) around Phobos are investigated to demonstrate the efficacy of this approach in both low-and high-fidelity models. Monte-Carlo simulations demonstrate that the baseline QSO of JAXA's Martian Moons eXploration (MMX) mission can be maintained with a monthly manuever budget of around 1.13m/s.

Near Rectilinear Halo Orbits (NRHOs) are orbits of great interest for the upcom-ing lunar missions. To maintain NRHOs in a three-body regime, a stationkeeping strategy based on a high-order Target Point Approach (TPA) is proposed, where fuel-optimal and error-robust TPA parameters are acquired from stochastic global optimization. Accurate TPA manevuers are calculated in a high-order fashion enabled by Differential Algebra (DA) techniques. Stochasticity is handled by incorporating Monte Carlo simulations in the process of optimization and the evaluation of high-order ODE expansions is employed to supplant the time-consuming numerical integration. Multiple candidate NRHOs with different stability properties are investigated.

Space exploration has often benefitted from the qualitative analyses of non integrable problems enabled by numerical continuation procedures. Yet, standard approaches based on Newton’s method typically end with discrete representations of family branches that may be subject to misinterpretation and overlook important dynamical features. In this research, we introduce novel continuation procedures based on the differential algebra of Taylor polynomials. Our algorithms aim at generating dense family branches as an atlas of polynomial charts that are locally valid for a range of system and continuation parameters. Examples of particular solutions will be shown within the framework of the Circular Restricted Three-Body Problem, along with fold and period-doubling bifurcations that are efficiently detected using automatic domain splitting and map inversion techniques.

NICOLA BARESI, NICOLÒ BERNARDINI, EDOARDO CICCARELLI, Xiaoyu Fu, Harry J. Holt, Roberto Armellin (2022)Guidance, Navigation and Control of Retrograde Relative Orbits around Phobos

Despite the advantages of very-low altitude retrograde orbits around Phobos, questions remain about the efficacy of conventional station-keeping strategies in preventing spacecraft such as the Martian Moons eXploration from escaping or impacting against the surface of the small irregular moon. This paper introduces new high-fidelity simulations in which the output of a sequential Square-Root Information Filter is combined with recently developed orbit maintenance strategies based on differential algebra and convex optimization methods. The position and velocity vector of the spacecraft are first estimated using range, range-rate, and additional onboard data types such as LIDAR and camera images. This information is later processed to assess the necessity of an orbit maintenance maneuver based on the estimated relative altitude of MMX about Phobos. If a maneuver is deemed necessary, the state of the spacecraft is fed to either a successive convex optimization procedure or a high-order target phase approach capable of providing sub-optimal station-keeping maneuvers. The performance of the two orbit maintenance approaches is assessed via Monte Carlo simulations and compared against work in the literature so as to identify points of strength and weaknesses.