Placeholder image for staff profiles

Professor Mike Fitch


Sat5G Senior Project Manager

My publications

Publications

Liolis Konstantinos, Geurtz Alexander, Sperber Ray, Schulz Detlef, Watts Simon, Poziopoulou Georgia, Evans Barry, Wang Ning, Vidal Oriol, Tiomela Jou Boris, Fitch Michael, Diaz Salva Sendra, Khodashenas Pouria Sayyad, Chuberre Nicolas (2018) Satellite use cases and scenarios for 5G eMBB,In: Satellite Communications in the 5G Era pp. 25-60 The Institution of Engineering and Technology
This chapter presents initial results available from the European Commission H2020 5G PPP Phase 2 project SaT5G (Satellite and Terrestrial Network for 5G) [1]. It specifically elaborates on the selected use cases and scenarios for satellite communications (SatCom) positioning in the 5G usage scenario of eMBB (enhanced mobile broadband), which appears the most commercially attractive for SatCom. After a short introduction to the satellite role in the 5G ecosystem and the SaT5G project, the chapter addresses the selected satellite use cases for eMBB by presenting their relevance to the key research pillars (RPs), their relevance to key 5G PPP key performance indicators (KPIs), their relevance to the 3rd Generation Partnership Project (3GPP) SA1 New Services and Markets Technology Enablers (SMARTER) use case families, their relevance to key 5G market verticals, and their market size assessment. The chapter then continues by providing a qualitative high-level description of multiple scenarios associated to each of the four selected satellite use cases for eMBB. Useful conclusions are drawn at the end of the chapter.
Liolis Konstantinos, Geurtz Alexander, Sperber Ray, Schulz Detlef, Watts Simon, Poziopoulou Georgia, Evans Barry, Wang Ning, Vidal Oriol, Tiomela Jou Boris, Fitch Michael, Diaz Sendra Salva, Sayyad Khodashenas Pouria, Chuberre Nicolas (2019) Use cases and scenarios of 5G integrated satellite?terrestrial networks for enhanced mobile broadband: The SaT5G approach,International Journal of Satellite Communications and Networking 37 (2) pp. 91-112 Wiley
This paper presents initial results available from the European Commission Horizon 2020 5G Public Private Partnership Phase 2 project ?SaT5G? (Satellite and Terrestrial Network for 5G).1 After describing the concept, objectives, challenges, and research pillars addressed by the SaT5G project, this paper elaborates on the selected use cases and scenarios for satellite communications positioning in the 5G usage scenario of enhanced mobile broadband.
Bouali Faouzi, Moessner Klaus, Fitch Michael (2020) Energy-efficient QoE-driven Strategies forContext-aware RAT Selection,IEEE Transactions on Green Communications and Networking Institute of Electrical and Electronics Engineers
This paper formulates an optimization problem thatmaximizes an aggregate utility that captures the ?in-context? suit-ability of available radio access technologies (RATs) to supportadaptive video streaming subject to a single-homing constraint.To efficiently solve the considered problem, a novel network-assisted quality-of-experience (QoE)-driven methodology is de-vised, and its impact on the end-user devices is evaluated.The proposed approach is evaluated and benchmarked againstits distributed and centralized counterparts from a cost-benefitperspective. The results reveal that the proposed strategy sig-nificantly outperforms its distributed counterpart, and performsdifferently with respect to its centralized counterpart dependingon the number of video clients. At low loads, it performs similarlywith much less control overhead. At high loads, the proposedstrategy scales up well, while the centralized approach getsoverwhelmed by an increasing uplink signaling. A practicalityanalysis of the proposed strategy for battery-powered devicesreveals that its gain in terms of uplink signaling outweighs its costin terms of processing load, which results in a drastic reduction ofthe consumed energy. Therefore, the proposed solution providesa win-win situation, where the video clients can sustain goodQoE levels at reduced energy consumption, while the networkcan accommodate more users with existing capacity.