
Xiyuan Kang
About
My research project
Human Pose EstimationMy research project is about 3D HPE.
My research project is about 3D HPE.
Publications
Generative models have shown significant achievements in audio generation tasks. However, existing models struggle with complex and detailed prompts, leading to potential performance degradation. We hypothesize that this problem stems from the simplicity and scarcity of the training data. This work aims to create a large-scale audio dataset with rich captions for improving audio generation models. We first develop an automated pipeline to generate detailed captions by transforming predicted visual captions, audio captions, and tagging labels into comprehensive descriptions using a Large Language Model (LLM). The resulting dataset, Sound-VECaps, comprises 1.66M high-quality audio-caption pairs with enriched details including audio event orders, occurred places and environment information. We then demonstrate that training the text-to-audio generation models with Sound-VECaps significantly improves the performance on complex prompts. Furthermore, we conduct ablation studies of the models on several downstream audio-language tasks, showing the potential of Sound-VECaps in advancing audio-text representation learning.Dataset and demos are available at https://yyua8222.github.io/Sound-VECaps-demo/.
Foley sound generation aims to synthesise the background sound for multimedia content. Previous models usually employ a large development set with labels as input (e.g., single numbers or one-hot vector). In this work, we propose a diffusion model based system for Foley sound generation with text conditions. To alleviate the data scarcity issue, our model is initially pre-trained with large-scale datasets and fine-tuned to this task via transfer learning using the contrastive language-audio pertaining (CLAP) technique. We have observed that the feature embedding extracted by the text encoder can significantly affect the performance of the generation model. Hence, we introduce a trainable layer after the encoder to improve the text embedding produced by the encoder. In addition, we further refine the generated waveform by generating multiple candidate audio clips simultaneously and selecting the best one, which is determined in terms of the similarity score between the embedding of the candidate clips and the embedding of the target text label. Using the proposed method, our system ranks \({1}^{st}\) among the systems submitted to DCASE Challenge 2023 Task 7. The results of the ablation studies illustrate that the proposed techniques significantly improve sound generation performance. The codes for implementing the proposed system are available online.
Foley sound presents the background sound for multimedia content and the generation of Foley sound involves computationally modelling sound effects with specialized techniques. In this work, we proposed a system for DCASE 2023 challenge task 7: Foley Sound Synthesis. The proposed system is based on AudioLDM, which is a diffusion-based text-to-audio generation model. To alleviate the data-hungry problem, the system first trained with large-scale datasets and then downstreamed into this DCASE task via transfer learning. Through experiments, we found out that the feature extracted by the encoder can significantly affect the performance of the generation model. Hence, we improve the results by leveraging the input label with related text embedding features obtained by a significant language model, i.e., contrastive language-audio pertaining (CLAP). In addition, we utilize a filtering strategy to further refine the output, i.e. by selecting the best results from the candidate clips generated in terms of the similarity score between the sound and target labels. The overall system achieves a Frechet audio distance (FAD) score of 4.765 on average among all seven different classes, substantially outperforming the baseline system which performs a FAD score of 9.7.