
Professor Ben Murdin
Biography
1966 born Rochester NY, USA
1989 BA in Physics from Cambridge University, UK (upgraded to a free MA after a couple of years!)
1990 MSc in Optoelectronics from Heriot-Watt University, Edinburgh, UK
1993 PhD in Semiconductor spectroscopy from Heriot-Watt University Edinburgh, UK
1993 - 1996 European Union Marie Curie fellow at FOM-Rijnhuizen, Utrecht, NL
1996 - 2002, Lecturer at University of Surrey.
2002 - 2004, Reader
2004 - present, Professor of Physics
2005 - 2007 School Director of Research
2007 - 2011 Associate Dean (Research and Enterprise)
2009 - 2014, COMPASSS grant PI (compasss.net)
2015 - 2020, ADDRFSS grant PI (addrfss.net)
University roles and responsibilities
- I am the Chair of the Department's Equality, Diversity and Inclusion Committee
- I am the Group Leader for Photonics and Quantum Sciences
My qualifications
Supervisor Prof Carl Pidgeon
Previous roles
Affiliations and memberships
News
Research
Research interests
I am an experimentalist interested in the study of electronic and optical properties of semiconductors and semiconductor nanostructures using high-pressures, magnetic-fields, and linear, nonlinear and time resolved infrared spectroscopy. I am a regular user of the Free-Electron Laser, FELIX, in Holland, and I am the coordinator and spokesperson for UK Condensed Matter Physics users there. I am also a Scientific Advisory Committee member for the Dresden laser, FELBE. I like "applicable physics" rather than really pure or really applied physics, for example I study how quickly and why electron spins lose their memory (applicable to spintronic devices), and use THz lasers to control electronic orbitals in silicon for quantum information devices.
Research collaborations
I have strong research links with the groups of Prof. Carl Pidgeon (my best friend and mentor) at Heriot-Watt University (UK), Dr Neil Curson at University College London (UK), Dr Britta Redlich at Radboud University (NL), and Prof Gabriel Aeppli at Paul Scherrer Institute (CH).
Further details can be found on compasss.net.
My teaching
In the Physics Department I teach level one Data Handling (aka probability and statistics), level three Light and Matter. On the MSc in Medical Physics I teach Medical Statistics.
Courses I teach on
Postgraduate taught
Undergraduate
My publications
Publications
We present what we believe to be the first ever high-pressure and spontaneous emission measurements on quantum dash lasers. The results show that temperature sensitivity of these lasers is caused by nonradiative processes, which depend on the lasing wavelength.
We present what we believe to be the first ever high-pressure and spontaneous emission measurements on quantum dash lasers. The results show that temperature sensitivity of these lasers is caused by nonradiative processes, which depend on the lasing wavelength.
We report on the pressure dependence of the threshold current in 1.3 mum InGaAsP and 1.5 mum InGaAs quantum-well lasers measured at low temperatures similar to100 K. It was found that the threshold current of both devices slowly increases with increasing pressure (i.e., increasing band gap) at similar to100 K consistent with the calculated variation of the radiative current. In contrast, at room temperature we observed a reduction of the threshold current with increasing pressure. Our low-temperature, high-pressure data confirm the results of previous atmospheric pressure measurements on the same devices which indicated a transition in the dominant recombination mechanism from radiative to Auger as the device temperature is increased from similar to100 to 300 K.
Dilute nitrogen alloys of InSb exhibit extremely strong band gap bowing with nitrogen composition that has been associated with anticrossing between the localized resonant states of the nitrogen within the conduction band and the extended states of the conduction band itself. This also results in the conduction band dispersion having an enhanced nonparabolicity. We have measured the electron effective mass near the anticrossing by cyclotron resonance in InNxSb1–x alloys with absorption edge near 15 µm, using pulsed fields up to 150 T. The results directly demonstrate the band anticrossing and quantitatively confirm the increase of effective mass versus x predicted for InNxSb1–x by a tight binding calculation for low nitrogen concentration (x<0.01).
We report on the pressure dependence of the threshold current in 1.3 µm InGaAsP and 1.5 µm InGaAs quantum-well lasers measured at low temperatures ~100 K. It was found that the threshold current of both devices slowly increases with increasing pressure (i.e., increasing band gap) at ~100 K consistent with the calculated variation of the radiative current. In contrast, at room temperature we observed a reduction of the threshold current with increasing pressure. Our low-temperature, high-pressure data confirm the results of previous atmospheric pressure measurements on the same devices which indicated a transition in the dominant recombination mechanism from radiative to Auger as the device temperature is increased from ~100 to 300 K
The spontaneous electroluminescence emission of InAs light-emitting diodes (LEDs) operating at 3.3 µm was studied as a function of applied hydrostatic pressure. An enhancement of a factor of almost four in radiative efficiency at room temperature was observed in the range 0 to 10 kbar. Analysis of the dependence of electroluminescence emission intensity on hydrostatic pressure at constant current reveals that nonradiative Auger recombination dominates the quantum efficiency of these LEDs.
Dilute nitrogen alloys of InSb exhibit strong band gap bowing with increasing nitrogen composition, shifting the absorption edge to longer wavelengths. The conduction band dispersion also has an enhanced nonparabolicity, which suppresses Auger recombination. We have measured Auger lifetimes in alloys with 11 and 15 µm absorption edges using a time-resolved pump-probe technique. We find the lifetimes to be longer at room temperature than equivalent band gap Hg1–yCdy/sub>Te alloys at the same quasi-Fermi level separation. The results are explained using a modified k·p Hamiltonian which explicitly includes interactions between the conduction band and a higher lying nitrogen-related resonant band.
The temperature dependence of the threshold current of InGaAsSb/AlGaAsSb compressively strained lasers is investigated by analyzing the spontaneous emission from working laser devices through a window formed in the substrate metallization and by applying high pressures. It is found that nonradiative recombination accounts for 80% of the threshold current at room temperature and is responsible for the high temperature sensitivity. The authors suggest that Auger recombination involving hot holes is suppressed in these devices because the spin-orbit splitting energy is larger than the band gap, but other Auger processes persist and are responsible for the low T0 values.
The spontaneous electroluminescence emission of InAs light-emitting diodes (LEDs) operating at 3.3 μm was studied as a function of applied hydrostatic pressure. An enhancement of a factor of almost four in radiative efficiency at room temperature was observed in the range 0 to 10 kbar. Analysis of the dependence of electroluminescence emission intensity on hydrostatic pressure at constant current reveals that nonradiative Auger recombination dominates the quantum efficiency of these LEDs
The temperature dependence of the threshold current of InGaAsSb/AlGaAsSb compressively strained lasers is investigated by analyzing the spontaneous emission from working laser devices through a window formed in the substrate metallization and by applying high pressures. It is found that nonradiative recombination accounts for 80% of the threshold current at room temperature and is responsible for the high temperature sensitivity. The authors suggest that Auger recombination involving hot holes is suppressed in these devices because the spin-orbit splitting energy is larger than the band gap, but other Auger processes persist and are responsible for the low T-0 values.
The authors have measured the output spectrum and the threshold current in 9.2 mu m wavelength GaAs/Al0.45Ga0.55As quantum-cascade lasers at 115 K as a function of hydrostatic pressure up to 7.3 kbars. By extrapolation back to ambient pressure, thermally activated escape of electrons from the upper lasing state up to delocalized states of the Gamma valley is shown to be an important contribution to the threshold current. On the other hand leakage into the X valley, although it has a very high density of states and is nearly degenerate with the Gamma band edge in the barrier, is insignificant at ambient pressure.
The spin relaxation in undoped InSb films grown on GaAs has been investigated in the temperature range from 77 to 290 K. Two distinct lifetime values have been extracted, 1 and 2.5 ps, dependent on film thickness. Comparison of this data with a multilayer transport analysis of the films suggests that the longer time (~2.5 ps at 290 K) is associated with the central intrinsic region of the film, while the shorter time (~1 ps) is related to the highly dislocated accumulation region at the film-substrate interface. Whereas previous work on InAs films grown on GaAs showed that the native surface defect resulted in an additional charge accumulation layer with high conductivity but very short spin lifetime, in InSb layers the surface states introduce a depletion region. We infer that InSb could be a more attractive candidate for spintronic applications than InAs.
We have used time-resolved spectroscopy to measure the relaxation of spin polarizations in the narrow gap semiconductor material n-InAs as a function of temperature, doping, and pump wavelength. The results are consistent with the D'Yakonov-Perel mechanism for temperatures between 77 and 300 K. However, the data suggest that electron-electron scattering should be taken into account in determining the dependence of the spin lifetime on the carrier concentration in the range 5.2x10(16)-8.8x10(17) cm(-3). For a sample with doping of 1.22x10(17) cm(-3) the spin lifetime was 24 ps at room temperature. By applying a magnetic field in the sample plane we also observed coherent precession of the spins in the time domain, with a g factor g(*)=-13, also at room temperature.
A brief review is given of lifetime and line broadening studies with the free electron laser at FOM-Rijnhuizen (FELIX), emphasising work on far infrared (FIR) modulated photoluminescence (PL) of bound-to-bound transitions in InAs/GaAs quantum dots and mid-infrared (MIR) four wave mixing experiments on localised modes of H- ions in calcium fluoride crystals. We have made new far/near infrared double resonance measurements of self-assembled InAs/GaAs quantum dots. The FIR resonance is unambiguously associated with a bound-bound intraband transition in the neutral dots, and analysis of the FIR double resonance linewidth enables us to show that the inhomogeneous broadening of the PL cannot be attributed solely to size and composition fluctuation. In addition we have made time resolved studies of local modes in ionic crystals, where nonradiative decay plays an important role in the optical pumping cycle of laser gain media. We have made pump-probe studies of the local modes created upon the introduction of a light impurity, in particular the H - ion, in CaF2 in the spectral region 700 to 1200 cm-1. We have also measured the free induction decay of this mode using a noncollinear degenerate four wave mixing geometry. The observed coherent transient is striking in having large quantum beat modulations at negative time which are associated with vibrational ladder climbing.
Optical waveguides containing high percentages of colloidal nanocrystals have been fabricated by layer-by-layer deposition on planar and patterned glass substrates. The two- and one-dimensional waveguidings in these structures are demonstrated by propagation loss experiments. The experimental results obtained for various film thicknesses and widths of the waveguide stripes together with simulations of the light propagation indicate that the losses are dominated by surface roughness. The variable stripe length method is used to determine the optical gain of 230 cm–1 from the amplified spontaneous emission. This high value makes the authors' waveguide structures very promising for applications in amplifiers and lasers with reduced threshold powers.
The spin-orbit (SO) coupling parameters for the lowest conduction subband due to structural inversion asymmetry (SIA) and bulk inversion asymmetry (BIA) are calculated for a range of carrier densities in [001]-grown delta-doped n-type InSb/In1-xAlxSb quantum wells using the established eight-band k center dot p formalism [J. Deng , Phys. Rev. B 59, R5312 (1999)]. We present calculations for conditions of zero bias at 10 K. It is shown that both the SIA and BIA parameters scale approximately linearly with carrier density, and exhibit a marked dependence on well width when alloy composition is adjusted to allow maximum upper barrier height for a given well width. In contrast to other material systems, the BIA contribution to spin splitting is found to be of significant and comparable value to the SIA mechanism in these structures. We calculate the spin lifetime tau(s[1 (1) over bar0]) for spins oriented along [1 (1) over bar0] based on D'yakonov-Perel' mechanism using both the theory of Averkiev [J. Phys.: Condens. Matter 14, R271 (2002)] and also directly the rate of precession of spins about the effective magnetic field, taking into account all three SO couplings, which show good agreement. tau(s[1 (1) over bar0]) is largest in the narrowest wells over the range of moderate carrier densities considered, which is attributed to the reduced magnitude of the k-cubic BIA parameter in narrow wells. The inherently large BIA induced SO coupling in these systems is shown to have considerable effect on tau(s[1 (1) over bar0]), which exhibits significant reduction in the maximum spin lifetime compared to previous studies that consider systems with relatively weak BIA induced SO coupling. The relaxation rate of spins oriented in the [001] direction is found to be dominated by the k-linear SIA and BIA coupling parameters and at least an order of magnitude greater than in the [1 (1) over bar0] direction.
Optical waveguides containing high percentages of colloidal nanocrystals have been fabricated by layer-by-layer deposition on planar and patterned glass substrates. The two- and one-dimensional waveguidings in these structures are demonstrated by propagation loss experiments. The experimental results obtained for various film thicknesses and widths of the waveguide stripes together with simulations of the light propagation indicate that the losses are dominated by surface roughness. The variable stripe length method is used to determine the optical gain of 230 cm(-1) from the amplified spontaneous emission. This high value makes the authors' waveguide structures very promising for applications in amplifiers and lasers with reduced threshold powers.
Measurements of the THz absorption and the time-resolved photoluminescence have been performed on the same GaAs quantum well sample. The strength of the absorption at the internal 1s-2p exciton transition frequency is used as a measure of the density of excitons in the sample. When the interband pump laser is resonant with the 1s exciton frequency, induced absorption at the s-2p frequency is clearly seen. If the same density of carriers is created pumping in the continuum, no significant 1s-2p absorption is seen in a time window of 450 ps. Complementary time-resolved photoluminescence experiments, detecting the emission at the exciton energy under the same pump conditions, show the PL intensity in resonant and nonresonant cases to be similar. The counter-intuitive existence of luminescence at the exciton energy simultaneously with the absence of the s-2p absorption is consistent with the recent theoretical predictions of Kira et al., Phys. Rev. Lett. 81, 3263 (1998).
We report the quantitative and direct determination of hole intersubband relaxation times in a voltage biased SiGe heterostructure using density matrix calculations applied to a four-level system in order to interpret photocurrent (PC) pump–pump experiments. One consistent set of parameters allows the simulation of two kinds of experiments, namely pump–pump photocurrent experiments at a free electron laser (wavelength 7.9 μm) and the laser-power dependence of the PC signal. This strongly confirms the high reliability of these parameter values, of which the most interesting in respect to Si based quantum cascade laser development is the extracted heavy-hole relaxation time. The simulations show that this relaxation time directly determines the experimentally observed decay of the pump–pump photocurrent signal as a function of the delay time. For a heavy hole intersubband spacing of 160 meV, a value of 550 fs was obtained. The experimental method was further applied to determine the LH1–HH1 relaxation time of a second sample with a transition energy below the optical phonon energy. The observed relaxation time of 16 ps is consistent with the value found for the same structure by transmission pump–probe experiments.
We report Larmor precession in bulk InSb observed in the time domain from 77 to 300 K. The optically oriented polarization precesses coherently even at 300 K. The inferred Zeeman spin splitting is strongly nonparabolic, and the electron g factor (g*) is in good agreement with k·p theory (provided we take only the dilational contribution to the change in energy gap with temperature). We also show here that correct application of the 14-band k·p model agrees with apparently anomalous trends previously reported for GaAs and confirm that the most widely quoted formula for g* in GaAs is incomplete.
Photoluminescence (PL) has been used as a means of unambiguously observing band gap reduction in InNAs epilayers grown by molecular beam epitaxy. The observed redshift in room temperature emission as a function of nitrogen concentration is in agreement with the predictions of the band anticrossing (BAC) model, as implemented with model parameters derived from tight-binding calculations. The temperature dependence of the emission from certain samples exhibits a signature non-Varshni-like behavior indicative of electron trapping in nitrogen-related localized states below the conduction-band edge, as predicted by the linear combination of isolated nitrogen states (LCINS) model. This non-Varshni-like behavior tends to grow more pronounced with increasing nitrogen content, but for the highest nitrogen concentration studied, the more familiar Varshni-like behavior is recovered. Although unexpected, this observation is found to be consistent with the BAC and LCINS models. With consideration given to the effects of conduction-band nonparabolicity on the emission line shapes, the BAC model parameters extracted from the measured PL transition energies are found to be in excellent agreement with the predictions of the aforementioned tight-binding calculations.
Under oblique incidence of circularly polarized infrared radiation the spin-galvanic effect (SGE) has been unambiguously observed in (001)-grown n-type GaAs quantum well structures in the absence of any external magnetic field. Resonant intersubband transitions have been obtained making use of the tunability of the free-electron laser FELIX. A microscopic theory of the SGE for intersubband transitions has been developed, which is in good agreement with experimental findings.
Producing an electrically pumped silicon-based laser at terahertz frequencies is gaining increased attention these days. This paper reviews the recent advances in the search for a silicon-based terahertz laser. Topics covered include resonant tunneling in p-type Si/SiGe, terahertz intersubband electroluminescence from quantum cascade structures, intersubband lifetime measurements in Si/SiGe quantum wells, enhanced optical guiding using buried silicide layers, and the potential for exploiting common impurity dopants in silicon such as boron and phosphorus to realize a terahertz laser
The authors report a direct measurement of the optical phonon intersubband hole relaxation time in a SiGe heterostructure and a quantitative determination of hole relaxation under electrically active conditions. The results were obtained by femtosecond resolved pump-pump photocurrent experiments using a free electron laser (wavelength 7.9 µm). Additionally, the intensity dependence of the nonlinear photocurrent response was measured. Both types of experiments were simulated using a density matrix description. With one parameter set, a consistent modeling was achieved confirming the significance of the extracted heavy hole relaxation times. For an intersublevel spacing of 160 meV, a value of 550 fs was obtained.
We present theoretical results on the nonlinear optics of semiconductor quantum wells in intense THz electric fields (the dynamic Franz-Keldysh effect or DFKE). The absorption spectra show a rich variety of behavior, including THz replicas of the 2p exciton and THz sidebands of the 1s exciton. We calculate the dependence of these features on the phase and intensity of the THz field using the extended semiconductor Bloch equations, and discuss the relevance of our results to future experiments. The 1s-sideband absorption feature shows a strong dependence on the phase of the THz field, and phase averages to zero. We also discuss the relative advantages and disadvantages of reflectivity and absorption spectroscopies for probing the DFKE.
By measuring THz absorption and time-resolved photoluminescence on the same GaAs quantum well sample we confirm the recent prediction of Kira that PL at the exciton frequency does not require a population of bound excitons.
Producing an electrically pumped silicon-based laser at terahertz frequencies is gaining increased attention these days. This paper reviews the recent advances in the search for a silicon-based terahertz laser. Topics covered include resonant tunneling in p-type Si/SiGe, terahertz intersubband electroluminescence from quantum cascade structures, intersubband lifetime measurements in Si/SiGe quantum wells, enhanced optical guiding using buried silicide layers, and the potential for exploiting common impurity dopants in silicon such as boron and phosphorus to realize a terahertz laser.
Photoluminescence (PL) has been used as a means of unambiguously observing band gap reduction in InNAs epilayers grown by molecular beam epitaxy. The observed redshift in room temperature emission as a function of nitrogen concentration is in agreement with the predictions of the band anticrossing (BAC) model, as implemented with model parameters derived from tight-binding calculations. The temperature dependence of the emission from certain samples exhibits a signature non-Varshni-like behavior indicative of electron trapping in nitrogen-related localized states below the conduction-band edge, as predicted by the linear combination of isolated nitrogen states (LCINS) model. This non-Varshni-like behavior tends to grow more pronounced with increasing nitrogen content, but for the highest nitrogen concentration studied, the more familiar Varshni-like behavior is recovered. Although unexpected, this observation is found to be consistent with the BAC and LCINS models. With consideration given to the effects of conduction-band nonparabolicity on the emission line shapes, the BAC model parameters extracted from the measured PL transition energies are found to be in excellent agreement with the predictions of the aforementioned tight-binding calculations.
We have made direct pump-probe measurements of spin lifetimes in intrinsic and degenerate n-InAs at 300 K. In particular, we measure remarkably long spin lifetimes (tau(s)similar to1.6 ns) for near-degenerate epilayers of n-InAs. For intrinsic material, we determine tau(s)similar to20 ps, in agreement with other workers. There are two main models that have been invoked for describing spin relaxation in narrow-gap semiconductors: the D'yakonov-Perel (DP) model and the Elliott-Yafet (EY) model. For intrinsic material, the DP model is believed to dominate in III-V materials above 77 K, in agreement with our results. We show that in the presence of strong n-type doping, the DP relaxation is suppressed both by the degeneracy condition and by electron-electron scattering, and that the EY model then dominates for the n-type material. We show that this same process is also responsible for a hitherto unexplained lengthening of tau(s) with n-type doping in our earlier measurements of n-InSb.
Measurements of the THz absorption and the time-resolved photoluminescence have been performed on the same GaAs quantum well sample. The strength of the absorption at the internal 1s-2p exciton transition frequency is used as a measure of the density of excitons in the sample. When the interband pump laser is resonant with the Is exciton frequency, induced absorption at the 1s-2p frequency is clearly seen. If the same density of carriers is created pumping in the continuum, no significant 1s-2p absorption is seen in a time window of 450 ps. Complementary time-resolved photoluminescence experiments, detecting the emission at the exciton energy under the same pump conditions, show the PL intensity in resonant and nonresonant cases to be similar. The counter-intuitive existence of luminescence at the exciton energy simultaneously with the absence of the 1s-2p absorption is consistent with the recent theoretical predictions of Kira et al., Phys. Rev. Lett. 81, 3263 (1998).
Pump-probe transmission experiments have been performed on PbSe above the fundamental absorption edge near 4 μm in the temperature range 30 to 300 K, using the Dutch ps free-electron laser. For temperatures below 200 K and carrier densities above the threshold for stimulated emission, stimulated recombination represents the most efficient recombination mechanism with relatively fast kinetics in the 50–100-ps regime, in good agreement with earlier reports of photoluminescent emission. Above this temperature Auger recombination dominates, and the Auger coefficient C is determined from the pump-probe decay curves. In the low-temperature regime the Auger coefficient is determined from the decay curves at times beyond 100 ps. The Auger coefficient is approximately constant (with a value of about 8×10-28 cm6 s-1) between 300 and 70 K, and then drops a value of about 1×10-28 cm6 s-1 at 30 K, in good agreement with the theory for nonparabolic near-mirror bands and nondegenerate statistics. It is found that C for PbSe is between one and two orders of magnitude lower than for Hg1-xCdxTe of comparable band gap.
Photoluminescence (PL) has been observed from dilute InNxAs1-x epilayers grown by molecular-beam epitaxy. The PL spectra unambiguously show band gap reduction with increasing N content. The variation of the PL spectra with temperature is indicative of carrier detrapping from localized to extended states as the temperature is increased. The redshift of the free exciton PL peak with increasing N content and temperature is reproduced by the band anticrossing model, implemented via a (5x5) k center dot p Hamiltonian.
We have used time resolved spectroscopy to measure the relaxation of spin polarization in InSb/AlInSb quantum wells (QWs) as a function of temperature and mobility. The results are consistent with the D'yakonov - Perel (DP) mechanism for high mobility samples over the temperature range from 50 to 300 K. For low mobility samples at high temperature the Elliott - Yafet and DP mechanisms become comparable. We show that the mobility can in certain circumstances determine which mechanism is dominant, and that above 1 m(2) V-1 s(-1) in 20 nm wide InSb QWs it is the DP mechanism. We also give a criterion for the maximum spin lifetime in terms of mobility and temperature, and show that for our 20 nm wide QWs this corresponds to 0.5 ps at 300 K and mobility 1 m(2) V-1 s(-1).
We have used two-color time-resolved spectroscopy to measure the relaxation of electron spin polarizations in a bulk semiconductor. The circularly polarized pump beam induces a polarization either by direct excitation from the valence band, or by free-carrier (Drude) absorption when tuned to an energy below the band gap. We find that the spin relaxation time, measured with picosecond time resolution by resonant induced Faraday rotation in both cases, increases in the presence of photogenerated holes. In the case of the material chosen, n-InSb, the increase was from 14 to 38 ps.
We report the direct determination of nonradiative lifetimes in Si/SiGe asymmetric quantum well structures designed to access spatially indirect (diagonal) interwell transitions between heavy-hole ground states, at photon energies below the optical phonon energy. We show both experimentally and theoretically, using a six-band k·p model and a time-domain rate equation scheme, that, for the interface quality currently achievable experimentally (with an average step height 1 greater than or equal to Å), interface roughness will dominate all other scattering processes up to about 200 K. By comparing our results obtained for two different structures we deduce that in this regime both barrier and well widths play an important role in the determination of the carrier lifetime. Comparison with recently published experimental and theoretical data obtained for mid-infrared GaAs/AlxGa1−xAs multiple quantum well systems leads us to the conclusion that the dominant role of interface roughness scattering at low temperature is a general feature of a wide range of semiconductor heterostructures not limited to IV-IV materials.
We report the direct determination of nonradiative lifetimes in Si/SiGe asymmetric quantum well structures designed to access spatially indirect (diagonal) interwell transitions between heavy-hole ground states, at photon energies below the optical phonon energy. We show both experimentally and theoretically, using a six-band k center dot p model and a time-domain rate equation scheme, that, for the interface quality currently achievable experimentally (with an average step height >= 1 A), interface roughness will dominate all other scattering processes up to about 200 K. By comparing our results obtained for two different structures we deduce that in this regime both barrier and well widths play an important role in the determination of the carrier lifetime. Comparison with recently published experimental and theoretical data obtained for mid-infrared GaAs/AlxGa1-xAs multiple quantum well systems leads us to the conclusion that the dominant role of interface roughness scattering at low temperature is a general feature of a wide range of semiconductor heterostructures not limited to IV-IV materials.
Photogalvanic effects are observed and investigated in wurtzite (0001)-oriented GaN/AlGaN low-dimensional structures excited by terahertz radiation. The structures are shown to represent linear quantum ratchets. Experimental and theoretical analysis exhibits that the observed photocurrents are related to the lack of an inversion center in the GaN-based heterojunctions.
We have used time-resolved spectroscopy to measure the relaxation of spin polarizations in the narrow gap semiconductor material n-InAs as a function of temperature, doping, and pump wavelength. The results are consistent with the D'Yakonov-Perel mechanism for temperatures between 77 and 300 K. However, the data suggest that electron-electron scattering should be taken into account in determining the dependence of the spin lifetime on the carrier concentration in the range 5.2×1016–8.8×1017 cm–3. For a sample with doping of 1.22×1017 cm–3 the spin lifetime was 24 ps at room temperature. By applying a magnetic field in the sample plane we also observed coherent precession of the spins in the time domain, with a g>/i> factor g*=–13, also at room temperature.
The spin relaxation in undoped InSb films grown on GaAs has been investigated in the temperature range from 77 to 290 K. Two distinct lifetime values have been extracted, 1 and 2.5 ps, dependent on film thickness. Comparison of this data with a multilayer transport analysis of the films suggests that the longer time (similar to 2.5 ps at 290 K) is associated with the central intrinsic region of the film, while the shorter time (similar to 1 ps) is related to the highly dislocated accumulation region at the film-substrate interface. Whereas previous work on InAs films grown on GaAs showed that the native surface defect resulted in an additional charge accumulation layer with high conductivity but very short spin lifetime, in InSb layers the surface states introduce a depletion region. We infer that InSb could be a more attractive candidate for spintronic applications than InAs.
We present far-/near-infrared double resonance measurements of self-assembled InAs/GaAs quantum dots. The far-infrared resonance is unambiguously associated with a bound-bound intraband transition in the neutral dots. The results show that the interband photoluminescence (PL) lines originate from conduction levels with successively increasing in-plane quantum numbers. We determine the confinement energies for both electrons and holes in the same dots. Furthermore, we show that the inhomogeneous broadening of the PL cannot be attributed solely to size and composition fluctuation.
We model theoretically the dependence of excitonic absorption spectra of semiconductor quantum wells in intense THz electric fields on the phase and intensity of those fields, and discuss the implications of our results for experiment.
We report investigation of the spin relaxation in InAs films grown on GaAs at a temperature range from 77 K to 290 K. InAs is known to have a surface accumulation layer and the depth profile of the concentration and mobility is strongly nonuniform. We have correlated the spin relaxation with a multilayer analysis of the transport properties and find that the surface and the interface with the GaAs substrate both have subpicosecond lifetimes (due to the high carrier concentration), whereas the central semiconducting layer has a lifetime of an order of 10 ps. Even for the thickest film studied (1 micro-m, the semiconducting layer only carried 30% of the total current (with 10% through the interface layer and 60% through the surface accumulation layer). Designs for spintronic devices that utilize InAs, which is attractive due to its narrow gap and strong Rashba effect, will need to include strategies for minimizing the effects of the surface.
The authors report a direct measurement of the optical phonon intersubband hole relaxation time in a SiGe heterostructure and a quantitative determination of hole relaxation under electrically active conditions. The results were obtained by femtosecond resolved pump-pump photocurrent experiments using a free electron laser (wavelength 7.9 mu m). Additionally, the intensity dependence of the nonlinear photocurrent response was measured. Both types of experiments were simulated using a density matrix description. With one parameter set, a consistent modeling was achieved confirming the significance of the extracted heavy hole relaxation times. For an intersublevel spacing of 160 meV, a value of 550 fs was obtained. (c) 2006 American Institute of Physics.
We have used time resolved spectroscopy to measure the relaxation of spin polarization in InSb/AlInSb quantum wells (QWs) as a function of temperature and mobility. The results are consistent with the D'yakonov–Perel (DP) mechanism for high mobility samples over the temperature range from 50 to 300 K. For low mobility samples at high temperature the Elliott–Yafet and DP mechanisms become comparable. We show that the mobility can in certain circumstances determine which mechanism is dominant, and that above 1 m2 V-1 s-1 in 20 nm wide InSb QWs it is the DP mechanism. We also give a criterion for the maximum spin lifetime in terms of mobility and temperature, and show that for our 20 nm wide QWs this corresponds to 0.5 ps at 300 K and mobility 1 m2 V-1 s-1.
The structural and optoelectronic properties in GaNxSb1−x alloys (0≤x<0.02) grown by molecular-beam epitaxy on both GaSb substrates and AlSb buffer layers on GaAs substrates are investigated. High-resolution x-ray diffraction (XRD) and reciprocal space mapping indicate that the GaNxSb1−x epilayers are of high crystalline quality and the alloy composition is found to be independent of substrate, for identical growth conditions. The band gap of the GaNSb alloys is found to decrease with increasing nitrogen content from absorption spectroscopy. Strain-induced band-gap shifts, Moss-Burstein effects, and band renormalization were ruled out by XRD and Hall measurements. The band-gap reduction is solely due to the substitution of dilute amounts of highly electronegative nitrogen for antimony, and is greater than observed in GaNAs with the same N content.
The first far-infrared modulated photoluminescence (FIRM-PL) measurements in InSb/GaSb quantum dots have been performed. Far-infrared absorption is found to both enhance and suppress the quantum dot PL depending on the FIR intensity. This behavior is attributed to the nonthermal distribution of carriers amongst the quantum dots. The spectral dependence of the FIRM-PL signal measures the energy spectrum of the quantum dots, showing a peak at 14.5 meV corresponding to transitions between the first two energy levels of the dot distribution.
We have used two-color time-resolved spectroscopy to measure the relaxation of electron spin polarizations in a bulk semiconductor. The circularly polarized pump beam induces a polarization either by direct excitation from the valence band, or by free-carrier (Drude) absorption when tuned to an energy below the band gap. We find that the spin relaxation time, measured with picosecond time resolution by resonant induced Faraday rotation in both cases, increases in the presence of photogenerated holes. In the case of the material chosen, n-InSb, the increase was from 14 to 38 ps.
We report investigation of the spin relaxation in InAs films grown on GaAs at a temperature range from 77 K to 290 K. InAs is known to have a surface accumulation layer and the depth profile of the concentration and mobility is strongly nonuniform. We have correlated the spin relaxation with a multilayer analysis of the transport properties and find that the surface and the interface with the GaAs substrate both have subpicosecond lifetimes (due to the high carrier concentration), whereas the central semiconducting layer has a lifetime of an order of 10 ps. Even for the thickest film studied (1 mu m), the semiconducting layer only carried 30% of the total current (with 10% through the interface layer and 60% through the surface accumulation layer). Designs for spintronic devices that utilize InAs, which is attractive due to its narrow gap and strong Rashba effect, will need to include strategies for minimizing the effects of the surface.
Picosecond time-resolved far-infrared measurements are presented of the scattering between conduction-band states in a doped quasi quantum dot. These states are created by the application of a magnetic field along the growth direction of an InAs/AlSb quantum well. A clear suppression of the cooling rate is seen, from 1012 s-1 when the level spacing is equal to the phonon energy, to 1010 s-1 away from this resonance, and thus the results provide unambiguous evidence for the phonon bottleneck. Furthermore, the lifetimes had only weak dependence on temperature between 4 and 80 K.
We report the quantitative and direct determination of hole intersubband relaxation times in a voltage biased SiGe heterostructure using density matrix calculations applied to a four-level system in order to interpret photocurrent (PC) pump-pump experiments. One consistent set of parameters allows the simulation of two kinds of experiments, namely pump-pump photocurrent experiments at a free electron laser (wavelength 7.9 mu m) and the laser-power dependence of the PC signal. This strongly confirms the high reliability of these parameter values, of which the most interesting in respect to Si based quantum cascade laser development is the extracted heavy-hole relaxation time. The simulations show that this relaxation time directly determines the experimentally observed decay of the pump-pump photocurrent signal as a function of the delay time. For a heavy hole intersubband spacing of 160 meV, a value of 550 fs was obtained. The experimental method was further applied to determine the LH1-HH1 relaxation time of a second sample with a transition energy below the optical phonon energy. The observed relaxation time of 16 ps is consistent with the value found for the same structure by transmission pump-probe experiments.
Photoluminescence (PL) has been observed from dilute InNxAs1–x epilayers grown by molecular-beam epitaxy. The PL spectra unambiguously show band gap reduction with increasing N content. The variation of the PL spectra with temperature is indicative of carrier detrapping from localized to extended states as the temperature is increased. The redshift of the free exciton PL peak with increasing N content and temperature is reproduced by the band anticrossing model, implemented via a (5×5) k·p Hamiltonian.
The structural and optoelectronic properties in GaNxSb1-x alloys (0 <= x < 0.02) grown by molecular-beam epitaxy on both GaSb substrates and AlSb buffer layers on GaAs substrates are investigated. High-resolution x-ray diffraction (XRD) and reciprocal space mapping indicate that the GaNxSb1-x epilayers are of high crystalline quality and the alloy composition is found to be independent of substrate, for identical growth conditions. The band gap of the GaNSb alloys is found to decrease with increasing nitrogen content from absorption spectroscopy. Strain-induced band-gap shifts, Moss-Burstein effects, and band renormalization were ruled out by XRD and Hall measurements. The band-gap reduction is solely due to the substitution of dilute amounts of highly electronegative nitrogen for antimony, and is greater than observed in GaNAs with the same N content. (C) 2005 American Institute of Physics.