Placeholder image for staff profiles

Chunxu Mao


Senior Research Fellow

Academic and research departments

Department of Electrical and Electronic Engineering.

My publications

Publications

Mao Chunxu, Khalily Mohsen, Singh Vikrant, Xiao Pei (2020) Low-Profile Vertically Polarized Wearable Antenna with Omni-Directional Radiation,2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting
In this paper, a single-layer planar antenna with vertical polarization and omni-directional radiation is proposed for wearable applications. The antenna consists of two identical shorted patches which are face-to-face located and fed by a microstrip line at the center. Due to the structural symmetry, the current distribution and electric-field distribution are symmetrical regarding the feed, which result in vertical linear polarization normal to the antenna and omni-directional radiation pattern in the azimuthal plane. To verify the design concept, an antenna prototype operating at 2.45 GHz is designed, fabricated and tested. Measured results concur well with the simulations, showing that the antenna has a good impedance matching, omnidirectional radiation pattern, and vertical polarization in the band of interest. The proposed antenna can be a good candidate for wearable and other wireless communication systems.
Mao Chunxu, Khalily Mohsen, Xiao Pei, Brown Tim, Gao Steven (2019) Planar Sub-Millimeter-Wave Array Antenna with Enhanced Gain and Reduced Sidelobes for 5G Broadcast Applications,IEEE Transactions on Antennas and Propagation 67 (1) pp. 160-168 IEEE
In this paper, a compact, broadband, planar array antenna with omnidirectional radiation in horizontal plane is proposed for the 26 GHz fifth-generation (5G) broadcast applications. The antenna element is composed of two dipoles and a substrate integrated cavity (SIC) as the power splitter. The two dipoles are placed side-by-side at both sides of the SIC and they are compensated with each other to form an omni-directional pattern in horizontal plane. By properly combing the resonant frequencies of the dipoles and the SIC, a wide impedance bandwidth from 24 to 29.5 GHz is achieved. To realize a large array while reducing the complexity, loss and size of the feeding network, a novel dual-port structure combined with radiation and power splitting functions is proposed for the 1st time. The amplitude and phase on each element of the array can be tuned, and therefore, the grating lobes level can be significantly reduced. Based on the dual-port structure, an 8-element array with an enhanced gain of over 12 dBi is designed and prototyped. The proposed antenna also features low profile, low weight and low cost, which is desirable for 5G commercial applications. Measured results agree well with the simulations, showing that the proposed high-gain array antenna has a broad bandwidth, omni-directional pattern in horizontal plane, and low side-lobes.
Mao Chunxu, Khalily Mohsen, Xiao Pei (2019) Integrated Design of Dual-Band Antenna with Uni-/Omni-Directional Radiations,Proceedings 14th European Conference on Antennas and Propagation IEEE
A multifunctional antenna with diverse radiation
patterns in different frequency bands (2.45/5.8 GHz) is
presented in this paper. The antenna has a low profile but
exhibits an omni-directional radiation pattern in the low-band
operation and uni-directional pattern in the high-band
operation. For the high-band operation, a 2 × 2 patch arrays
are designed by employing a out-of-phase feeding method. The
low-band operation with the omni-directional pattern is
achieved by exciting four open-ended slots in-phase. The four
slots are slit in the ground of the high-band array and in this
way, this footprint of the antenna is maintained. The operating
principles of the antenna are studied with the aid of equivalent
circuit model and the current distribution. The antenna is
prototyped and measured, demonstrating good results in terms
of bandwidths, inter-channel isolation, radiation
characteristics.
Mao Chun Xu, Khalily Mohsen, Xiao Pei, Zhang Long, Tafazolli Rahim (2020) High-Gain Phased Array Antenna with End-Fire Radiation for 26 GHz Wide-Beam-Scanning Applications,IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
In this paper, a high-gain phased array antenna with wide-angle beam-scanning capability is proposed for fifth- generation (5G) millimeter-wave applications. First, a novel, end-fire, dual-port antenna element with dual functionalities of radiator and power splitter is designed. The element is composed a substrate integrated cavity (SIC) and a dipole based on it. The resonant frequencies of the SIC and dipole can be independently tuned to broaden the impedance bandwidth. Based on this dual-port element, a 4-element subarray can be easily constructed without resorting to a complicated feeding network. The end-fire subarray features broad beam-width of over 180 degrees, high isolation, and low profile, rendering it suitable for wide-angle beam-scanning applications in the H-plane. In addition, the methods of steering the radiation pattern downwards or upwards in the E-plane are investigated. As a proof-of-concept, two phased array antennas each consisting of eight subarrays are designed and fabricated to achieve the broadside and wide-angle beam-scanning radiation. Thanks to the elimination of surface wave, the mutual coupling between the subarrays can be reduced for improving the scanning angle while suppressing the side-lobe level. The experimental predictions are validated by measurement results, showing that the beam of the antenna can be scanned up to 65 degrees with a scanning loss only 3.7 dB and grating lobe less than -15 dB.