
Dr Francesca Marie Contadini
Sustainable development goals
My research interests are related to the following:




Publications
Background: Antibiotic resistance increasingly threatens the interconnected health of humans, animals, and the environment. While misuse of antibiotics is a known driver, environmental factors also play a critical role. A balanced One Health approach—including the environmental sector—is necessary to understand the emergence and spread of resistance. Methods: We systematically searched English-language literature (1990–2021) in MEDLINE, Embase, and Web of Science, plus grey literature. Titles, abstracts, and keywords were screened, followed by full-text reviews using a structured codebook and dual-reviewer assessments. Results: Of 13,667 records screened, 738 met the inclusion criteria. Most studies focused on freshwater and terrestrial environments, particularly associated with wastewater or manure sources. Evidence of research has predominantly focused on Escherichia coli and Pseudomonas spp., with a concentration on ARGs conferring resistance to sulphonamides (sul1–3), tetracyclines (tet), and beta-lactams. Additionally, the People’s Republic of China has produced a third of the studies—twice that of the next country, the United States—and research was largely domestic, with closely linked author networks. Conclusion: Significant evidence gaps persist in understanding antibiotic resistance in non-built environments, particularly in marine, atmospheric, and non-agricultural set65 tings. Stressors such as climate change and microplastics remain notably under-explored. There is also an urgent need for more research in low-income regions, which face higher risks of antibiotic resistance, to support the development of targeted, evidence-based interventions.
Advocates for a One Health approach recognize that global health challenges require multidisciplinary collaborative efforts. While past publications have looked at interdisciplinary competency training for collaboration, few have identified the factors and conditions that enable operational One Health. Through a scoping review of the literature, a multidisciplinary team of researchers analyzed peer-reviewed publications describing multisectoral collaborations around infectious disease-related health events. The review identified 12 factors that support successful One Health collaborations and a coordinated response to health events across three levels: two individual factors (education & training and prior experience & existing relationships), four organizational factors (organizational structures, culture, human resources and, communication), and six network factors (network structures, relationships, leadership, management, available & accessible resources, political environment). The researchers also identified the stage of collaboration during which these factors were most critical, further organizing into starting condition or process-based factors. The research found that publications on multisectoral collaboration for health events do not uniformly report on successes or challenges of collaboration and rarely identify outputs or outcomes of the collaborative process. This paper proposes a common language and framework to enable more uniform reporting, implementation, and evaluation of future One Health collaborations.
Background Human, animal, and environmental health are increasingly threatened by the emergence and spread of antibiotic resistance. Inappropriate use of antibiotic treatments commonly contributes to this threat, but it is also becoming apparent that multiple, interconnected environmental factors can play a significant role. Thus, a One Health approach is required for a comprehensive understanding of the environmental dimensions of antibiotic resistance and inform science-based decisions and actions. The broad and multidisciplinary nature of the problem poses several open questions drawing upon a wide heterogeneous range of studies. Objective This study seeks to collect and catalogue the evidence of the potential effects of environmental factors on the abundance or detection of antibiotic resistance determinants in the outdoor environment, i.e., antibiotic resistant bacteria and mobile genetic elements carrying antibiotic resistance genes, and the effect on those caused by local environmental conditions of either natural or anthropogenic origin. Methods Here, we describe the protocol for a systematic evidence map to address this, which will be performed in adherence to best practice guidelines. We will search the literature from 1990 to present, using the following electronic databases: MEDLINE, Embase, and the Web of Science Core Collection as well as the grey literature. We shall include full-text, scientific articles published in English. Reviewers will work in pairs to screen title, abstract and keywords first and then full-text documents. Data extraction will adhere to a code book purposely designed. Risk of bias assessment will not be conducted as part of this SEM. We will combine tables, graphs, and other suitable visualisation techniques to compile a database i) of studies investigating the factors associated with the prevalence of antibiotic resistance in the environment and ii) map the distribution, network, cross-disciplinarity, impact and trends in the literature.