Dr Gabriel Secheli
Publications
Secheli GA, Viquerat AD, Aglietti GS (2017) A Model of Packaging Folds in Thin Metal-Polymer Laminates,Journal of Applied Mechanics84(10)101005 American Society of Mechanical Engineers
Thin metal-polymer laminates make excellent materials for
use in inflatable space structures. By inflating a stowed envelope
using pressurized gas, and by increasing the internal
pressure slightly beyond the yield point of the metal films,
the shell rigidizes in the deployed shape. Structures constructed
with such materials retain the deployed geometry
once the inflation gas has either leaked away, or it has been
intentionally vented. For flight, these structures must be initially
folded and stowed. This paper presents a numerical
method for predicting the force required to achieve a given
fold radius in a three-ply metal-polymer-metal laminate and
to obtain the resultant springback. A coupon of the laminate
is modeled as a cantilever subject to an increasing tip
force. Fully elastic, elastic-plastic, relaxation and springback
stages are included in the model. The results show good
agreement when compared with experimental data at large
curvatures.