Dr Ibtissam Jabre

Research Fellow

Academic and research departments

School of Biosciences.


Ana M Matia-González, Ibtissam Jabre, Emma E Laing, André P Gerber (2021)Oxidative stress induces coordinated remodeling of RNA-enzyme interactions, In: iScience24(7)102753 Elsevier Inc

RNA-binding proteins (RBPs) are key post-transcriptional regulators that play a substantial role during stress adaptation. Recent proteome-wide surveys have uncovered a large number of new and “unconventional” RBPs such as metabolic enzymes, yet little is known about the reconfiguration of the RNA-binding proteome (RBPome) and RNA-enzyme interactions in response to cellular stress. Here, we applied RNA-interactome capture to monitor the dynamics of the mRBPome upon mild oxidative stress in the yeast Saccharomyces cerevisiae. Among the 257 proteins that significantly changed RNA associations, we observed the coordinated remodeling of RNA-binding enzymes — particularly of the central carbon metabolism — that complemented known metabolic responses. Furthermore, we recognized the propensity for paralogous specific alterations of enzyme-RNA interactions. Our results suggest coordinated cross talk between RNA-enzyme interactions and intermediary metabolism to maintain the physiological and molecular balance upon oxidative stress, perhaps through specialization of paralogous during evolution.

Ana M. Matia-González, Ibtissam Jabre, André P. Gerber (2021)Biochemical approach for isolation of polyadenylated RNAs with bound proteins from yeast, In: STAR Protocols2100929 Elsevier

In vivo characterization of RNA-protein interactions is the key for understanding RNA regulatory mechanisms. Herein, we describe a protocol for detection of proteins interacting with polyadenylated RNAs in the yeast Saccharomyces cerevisiae. Proteins are crosslinked to nucleic acids in vivo by ultraviolet (UV) irradiation of cells, and poly(A)-containing RNAs with bound proteins are isolated from cell lysates using oligo[dT]25 beads. RBPs can be detected by immunoblot analysis or with mass spectrometry to define the mRNA-binding proteome (mRBPome) and its changes under stress.