
Dr Jai Mehat
About
Biography
Jai obtained his PhD from University of Surrey in 2017, working on the zoonotic pathogens Campylobacter jejuni and Campylobacter coli. His post-doctoral research focussed on the conception, design, and development of novel vaccines for the control of disease in farmed poultry, in collaboration with veterinary pharmaceutical companies. In 2022, he took up a position as Lecturer in Molecular Bacteriology in the School of Biosciences, University of Surrey.
Jai's research is focused on understanding the adaption strategies employed by bacterial pathogens of veterinary and medical significance. His group uses using genomic and genetic approaches, in combination with in vitro and in vivo models to elucidate the basis of bacterial host adaption and pathobiology, with the aim of developing novel intervention improved vaccines, probiotics and immune-modulators for the non-antibiotic control of zoonotic pathogens.
Areas of specialism
University roles and responsibilities
- Member of the NASPA Committee
ResearchResearch interests
Avian Colibacillosis
Alternatives to Antibiotics
The role of the Microbiome in health, disease, and welfare of farmed livestock
Research interests
Avian Colibacillosis
Alternatives to Antibiotics
The role of the Microbiome in health, disease, and welfare of farmed livestock
Supervision
Postgraduate research supervision
The role of mobile DNA in the evolution, fitness, and pathogenicity of avian Escherichia coli populations
(PhD Studentship, on-going)
Postgraduate research supervision
Control of avian pathogenic Escherichia coli by non-antibiotic compounds inducing trained immunity of chicken macrophages
(PhD studentship, on-going)
Teaching
Module Lead for BMS1035 Practical and Biomedical Bacteriology
Publications
Therapeutic options for infections caused by vancomycin-resistant enterococci are currently suboptimal. Combination regimens where fosfomycin is used alongside existing treatments are emerging given the proven synergistic potential and PK/PD properties. In the studies presented here, we tested five vanA and five vanB clinical isolates of Enterococcus faecium using a combination of oritavancin + fosfomycin both in vitro (checkerboard, time killing) and in vivo ( Galleria mellonella ). The combination of oritavancin and fosfomycin increased drug susceptibility, showing a synergistic effect in 80% of isolates and an additive effect in the remaining isolates. The combination restored fosfomycin susceptibility in 85% of fosfomycin-resistant isolates. Time killing on four selected isolates demonstrated that the combination of oritavancin and fosfomycin provided a CFU/mL reduction > 2 log 10 compared with the most effective drug alone and prevented the bacterial regrowth seen after 8–24 h at sub-inhibitory drug concentrations. In addition, the combination was also tested in a biofilm assay with two isolates, and a strong synergistic effect was observed in one isolate and an additive effect in the other. Finally, we demonstrated in vivo ( Galleria mellonella ) a higher survival rate of the larvae treated with the combination therapy compared to monotherapy (fosfomycin or oritavancin alone). Our study provides preclinical evidence to support trials combining oritavancin and fosfomycin for VRE BSI in humans, even when biofilm is involved.
Avian Pathogenic E. coli (APEC) is the causative agent of avian colibacillosis, resulting in economic losses to the poultry industry through morbidity, mortality and carcass condemnation, and impacts the welfare of poultry. Colibacillosis remains a complex disease to manage, hampered by diagnostic and classification strategies for E. coli that are inadequate for defining APEC. However, increased accessibility of whole genome sequencing (WGS) technology has enabled phylogenetic approaches to be applied to the classification of E. coli and genomic characterisation of the most common APEC serotypes associated with colibacillosis O1, O2 and O78. These approaches have demonstrated that that the O78 serotype is representative of two distinct APEC lineages, ST-23 in phylogroup C and ST-117 in phylogroup G. The O1, and O2 serotypes belong to a third lineage comprised of 3 sub-populations in phylogroup B2; ST-95, ST-140 and ST-428/ST-429. The frequency with which these genotypes are associated with colibacillosis implicates them as the predominant APEC populations and distinct from those causing incidental or opportunistic infections. The fact that these are disparate clusters from multiple phylogroups suggests that these lineages may have become adapted to the poultry niche independently. WGS studies have highlighted the limitations of traditional APEC classification and can now provide a path towards a robust and more meaningful definition of the APEC pathotype. Future studies should focus on characterising individual APEC populations in detail and use this information to develop improved diagnostics and interventions.
Klebsiella pneumoniae is an important pathogenic bacterium commonly associated with human healthcare and community-acquired infections. In recent years, K. pneumoniae has become a significant threat to global public and veterinary health, because of its high rates of antimicrobial resistance (AMR). Early diagnosis of K. pneumoniae infection and detection of any associated AMR would help to accelerate directed therapy and reduce the risk of the emergence of multidrug-resistant isolates. In this study, we identified three target genes (yhaI, epsL, and xcpW) common to K. pneumoniae isolates from both China and Europe and designed loop-mediated isothermal amplification (LAMP) assays for the detection of K. pneumoniae in clinical samples. We also designed LAMP assays for the detection of five AMR genes commonly associated with K. pneumoniae. The LAMP assays were validated on a total of 319 type reference strains and clinical isolates of diverse genetic backgrounds, in addition to 40 clinical human sputum samples, and were shown to be reliable, highly specific, and sensitive. For the K. pneumoniae-specific LAMP assay, the calculated sensitivity, specificity, and positive and negative predictive values (comparison with culture and matrix-assisted laser desorption/ionization-time of flight mass spectrometry) were all 100% on clinical isolates and, respectively, of 100%, 91%, and 90%, and 100% when tested on clinical sputum samples, while being significantly faster than the reference methods. For the bla(KPC) and other carbapenemases' LAMP assays, the concordance between the LAMP results and the references methods (susceptibility tests) was 100%, on both pure cultures (n = 125) and clinical samples (n = 18). In conclusion, we developed highly sensitive and specific LAMP assays for the clinical identification of K. pneumoniae and detection of carbapenem resistance.
Campylobacter jejuni and Campylobacter coli are important bacterial causes of human foodborne illness. Despite several years of reduced antibiotics usage in livestock production in the United Kingdom (UK) and United States (US), a high prevalence of antimicrobial resistance (AMR) persists in . Both countries have instigated genome sequencing-based surveillance programs for , and in this study, we have identified AMR genes in 32,256 C. jejuni and 8,776 C. coli publicly available genome sequences to compare the prevalence and trends of AMR in isolated in the UK and US between 2001 and 2018. AMR markers were detected in 68% of C. coli and 53% of C. jejuni isolates, with 15% of C. coli isolates being multidrug resistant (MDR), compared to only 2% of C. jejuni isolates. The prevalence of aminoglycoside, macrolide, quinolone, and tetracycline resistance remained fairly stable from 2001 to 2018 in both C. jejuni and C. coli, but statistically significant differences were observed between the UK and US. There was a statistically significant higher prevalence of aminoglycoside and tetracycline resistance for US C. coli and C. jejuni isolates and macrolide resistance for US C. coli isolates. In contrast, UK C. coli and C. jejuni isolates showed a significantly higher prevalence of quinolone resistance. Specific multilocus sequence type (MLST) clonal complexes (e.g., ST-353/464) showed >95% quinolone resistance. This large-scale comparison of AMR prevalence has shown that the prevalence of AMR remains stable for in the UK and the US. This suggests that antimicrobial stewardship and restricted antibiotic usage may help contain further expansion of AMR prevalence in but are unlikely to reduce it in the short term.
Background: Campylobacter jejuni and Campylobacter coli are major global causes of bacterial gastroenteritis. Whilst several individual colonisation and virulence factors have been identified, our understanding of their role in the transmission, pathogenesis and ecology of Campylobacter has been hampered by the genotypic and phenotypic diversity within C. jejuni and C. coli. Autotransporter proteins are a family of outer membrane or secreted proteins in Gram-negative bacteria such as Campylobacter, which are associated with virulence functions. In this study we have examined the distribution and predicted functionality of the previously described capC and the newly identified, related capD autotransporter gene families in Campylobacter. Results: Two capC-like autotransporter families, designated capC and capD, were identified by homology searches of genomes of the genus Campylobacter. Each family contained four distinct orthologs of CapC and CapD. The distribution of these autotransporter genes was determined in 5829 C. jejuni and 1347 C. coli genomes. Autotransporter genes were found as intact, complete copies and inactive formats due to premature stop codons and frameshift mutations. Presence of inactive and intact autotransporter genes was associated with C. jejuni and C. coli multi-locus sequence types, but for capC, inactivation was independent from the length of homopolymeric tracts in the region upstream of the capC gene. Inactivation of capC or capD genes appears to represent lineagespecific gene decay of autotransporter genes. Intact capC genes were predominantly associated with the C. jejuni ST-45 and C. coli ST-828 generalist lineages. The capD3 gene was only found in the environmental C. coli Clade 3 lineage. These combined data support a scenario of inter-lineage and interspecies exchange of capC and subsets of capD autotransporters. Conclusions: In this study we have identified two novel, related autotransporter gene families in the genus Campylobacter, which are not uniformly present and exhibit lineage-specific associations and gene decay. The distribution and decay of the capC and capD genes exemplifies the erosion of species barriers between certain lineages of C. jejuni and C. coli, probably arising through co-habitation. This may have implications for the phenotypic variability of these two pathogens and provide opportunity for new, hybrid genotypes to emerge.
In recent years, several plasmids harbouring genes encoding phosphoethanolamine transferases conferring colistin resistance have been described in multiple Enterobacteriaceae species. Avian Pathogenic E. coli (APEC) causes colibacillosis and is responsible for a considerable proportion of the disease burden in commercial poultry flocks, and may be linked to zoonotic infections in humans. Here, we describe the genotypic and phenotypic characteristics of a multidrug-resistant APEC ST69 isolate (APECA2), recovered in 2016 from a diseased broiler at post-mortem examination in Germany. The isolate was resistant to several antibiotics of human and veterinary importance, including colistin. The mcr-1 gene was detected on a mobile genetic element located on an IncHI2/ST4 plasmid, which was characterized using long-read Nanopore and short-read Illumina sequencing of purified plasmid. Isolate APECA2 displayed resistance to chicken serum and harbours numerous virulence genes. This study highlights the public health importance of enhanced antimicrobial resistance surveillance and strict antimicrobial stewardship in human and veterinary healthcare.
Campylobacter jejuni is recognized as an important causative agent of bacterial gastroenteritis in the developed world. Despite the identification of several factors contributing to infection, characterization of the virulence strategies employed by C. jejuni remains a significant challenge. Bacterial autotransporter proteins are a major class of secretory proteins in Gram-negative bacteria and notably many autotransporter proteins contribute to bacterial virulence. The aim of this study was to characterise the C. jejuni 81116 C8J_1278 gene (capC), predicted to encode an autotransporter protein, and examine the contribution of this factor to virulence of Campylobacter jejuni. The predicted CapC protein has a number of features that are consistent with autotransporters including the N-terminal signal sequence and the C-terminal β-barrel domain and was determined to localise to the outer membrane. Inactivation of the capC gene in C. jejuni 81116 and C. jejuni M1 resulted in reduced insecticidal activity in Galleria mellonella larvae. Furthermore, C. jejuni capC mutants displayed significantly reduced adherence to and invasion of non-polarized, partially differentiated Caco-2 and T84 intestinal epithelial cells. Gentamicin treatment showed that the reduced invasion of the capC mutant is primarily caused by reduced adherence to intestinal epithelial cells, not by reduced invasion capability. C. jejuni capC mutants caused reduced IL-8 secretion from intestinal epithelial cells and elicited a significantly diminished immune reaction in Galleria larvae indicating that CapC functions as an immunogen. In conclusion, CapC is a new virulence determinant of C. jejuni that contributes to the integral infection process of adhesion to human intestinal epithelial cells.