Dr James Hall
Academic and research departments
Publications
Space photovoltaics is dominated by multi-junction (III-V) technology. However, emerging applications will require solar arrays with; high specific power (kW/kg), flexibility in stowage and deployment and a significantly lower cost than the current III-V technology offers. This research demonstrates direct deposition of thin film CdTe onto the radiation-hard cover glass that is normally laminated to any solar cell deployed in space. Four CdTe samples, with 9 defined contact device areas of 0.25 cm2, were irradiated with protons of 0.5 MeV energy and varying fluences. At the lowest fluence, 1×1012 cm-2, the relative efficiency of the solar cells was 95%. Increasing the proton fluence to 1×1013 cm-2 and then 1×1014 cm-2 decreased the solar cell efficiency to 82% and 4% respectively. At the fluence of 1×1013 cm-2, carrier concentration was reduced by an order of magnitude. Solar Cell Capacitance Simulator (SCAPS) modelling obtained a good fit from a reduction in shallow acceptor concentration with no change in the deep trap defect concentration. The more highly irradiated devices resulted in a buried junction characteristic of the external quantum efficiency, indicating further deterioration of the acceptor doping. This is explained by compensation from interstitial H+ formed by the proton absorption. An anneal of the 1×1014 cm-2 fluence devices gave an efficiency increase from 4% to 73% of the pre-irradiated levels, indicating that the compensation was reversible. CdTe with its rapid recovery through annealing, demonstrates a radiation hardness to protons that is far superior to conventional multi-junction III-V solar cells.
This paper details the AM0 conversion efficiency of a metal-organic chemical vapor phase deposition thin-film cadmium telluride (CdTe) solar cell deposited onto a cerium-doped cover glass (100 μm). An AM0 best cell conversion efficiency of 12.4% (0.25-cm2 contact area) is reported. An AM0 mean efficiency of 12.1% over eight cells demonstrated good spatial uniformity. Excellent adhesion of the cell structure to the cover glass was observed with an adhesive strength of 38 MPa being measured before cohesive failure of the test adhesive. The device structure on cover glass was also subject to severe thermal shock cycling of +80 °C to -196 °C, showing no signs of delamination and no deterioration of the photovoltaic (PV) performance.
This work describes progress towards achieving a flexible, high specific power and low-cost photovoltaic (PV) for emerging large area space applications. The study reports the highest conversion efficiency of 15.3% AM1.5G for a CdTe device on ultra-thin cerium-doped cover glass, the standard protective material for extra-terrestrial PVs. The deposition technique used for all of the semiconductor layers comprising the device structure was atmospheric pressure metal organic chemical vapour deposition. Improvements to the device structure over those previously reported led to a Voc of 788 mV and a relatively low series resistance of 3.3 Ω·cm2. These were largely achieved by the introduction of a post-growth air anneal and a refinement of the front contact bus bars, respectively. The aluminium-doped zinc oxide transparent conductive oxide, being the first layer applied to the cover glass, was subject to thermal shock cycling +80 to (-) 196°C to test the adhesion under the extreme conditions likely to be encountered for space application. Scotch Tape testing and sheet resistance measurements before and after the thermal shock testing demonstrated that the aluminium-doped zinc oxide remained well adhered to the cover glass and its electrical performance unchanged.
The ability to manage the distributed functionality of large multi-vendor networks will be an important step towards ultra-dense 5G networks. Managing distributed scheduling functionality is particularly important, due to its influence over inter-cell interference and the lack of standardization for schedulers. In this paper, we formulate a method of managing distributed scheduling methods across a small cluster of cells by dynamically selecting schedulers to be implemented at each cell. We use deep reinforcement learning methods to identify suitable joint scheduling policies, based on the current state of the network observed from data already available in the RAN. Additionally, we also explore three methods of training the deep reinforcement learning based dynamic scheduler selection system. We compare the performance of these training methods in a simulated environment against each other, as well as homogeneous scheduler deployment scenarios, where each cell in the network uses the same type of scheduler. We show that, by using deep reinforcement learning, the dynamic scheduler selection system is able to identify scheduler distributions that increase the number of users that achieve their quality of service requirements in up to 77% of the simulated scenarios when compared to homogeneous scheduler deployment scenarios.
Space photovoltaics is dominated by multi‐junction (III‐V) technology. However, emerging applications will require solar arrays with high specific power (kW/kg), flexibility in stowage and deployment, and a significantly lower cost than the current III‐V technology offers. This research demonstrates direct deposition of thin film CdTe onto the radiation‐hard cover glass that is normally laminated to any solar cell deployed in space. Four CdTe samples, with 9 defined contact device areas of 0.25 cm2, were irradiated with protons of 0.5‐MeV energy and varying fluences. At the lowest fluence, 1 × 1012 cm−2, the relative efficiency of the solar cells was 95%. Increasing the proton fluence to 1 × 1013 cm−2 and then 1 × 1014 cm−2 decreased the solar cell efficiency to 82% and 4%, respectively. At the fluence of 1 × 1013 cm−2, carrier concentration was reduced by an order of magnitude. Solar Cell Capacitance Simulator (SCAPS) modelling obtained a good fit from a reduction in shallow acceptor concentration with no change in the deep trap defect concentration. The more highly irradiated devices resulted in a buried junction characteristic of the external quantum efficiency, indicating further deterioration of the acceptor doping. This is explained by compensation from interstitial H+ formed by the proton absorption. An anneal of the 1 × 1014 cm−2 fluence devices gave an efficiency increase from 4% to 73% of the pre‐irradiated levels, indicating that the compensation was reversible. CdTe with its rapid recovery through annealing demonstrates a radiation hardness to protons that is far superior to conventional multijunction III‐V solar cells.