Placeholder image for staff profiles

Dr Juan Carlos De Luna Ducoing


My publications

Publications

Juan Carlos De Luna Ducoing, Yi Ma, Na Yi, Rahim Tafazolli (2018)A Real-Complex Hybrid Modulation Approach for Scaling Up Multiuser MIMO Detection, In: IEEE Transactions on Communications66(9)pp. 3916-3929 Institute of Electrical and Electronics Engineers (IEEE)

In this paper, a novel approach, namely realcomplex hybrid modulation (RCHM), is proposed to scale up multiuser multiple-input multiple-output (MU-MIMO) detection with particular concern on the use of equal or approximately equal service antennas and user terminals. By RCHM, we mean that user terminals transmit their data sequences with a mix of real and complex modulation symbols interleaved in the spatial and temporal domain. It is shown, through the system outage probability, RCHM can combine the merits of real and complex modulations to achieve the best spatial diversity-multiplexing trade-off that minimizes the required transmit-power given a sum-rate. The signal pattern of RCHM is optimized with respect to the real-to-complex symbol ratio as well as power allocation. It is also shown that RCHM equips the successive interference canceling MU-MIMO receiver with near-optimal performances and fast convergence in Rayleigh fading channels. This result is validated through our mathematical analysis of the average biterror- rate as well as extensive computer simulations considering the case with single or multiple base-stations.

Y Ma, Juan Carlos De Luna Ducoing, N Yi, R Tafazolli (2015)Using Real Constellations in Fully- and Over-loaded Large MU-MIMO Systems with Simple Detection, In: IEEE Wireless Communications LettersPP(99)

The aim of this letter is to exhibit some advantages of using real constellations in large multi-user (MU) MIMO systems. It is shown that a widely linear zero-forcing (WLZF) receiver with M-ASK modulation enjoys a spatial-domain diversity gain, which linearly increases with the MIMO size even in fully- and over-loaded systems. Using the decision of WLZF as the initial state, the likelihood ascent search (LAS) achieves nearoptimal BER performance in fully-loaded large MIMO systems. Interestingly, for coded systems, WLZF shows a much closer BER to that of WLZF-LAS with a gap of only 0:9-2 dB in SNR.

Georgios Georgis, Marcin Filo, Alexios Thanos, Christopher Husmann, Juan Carlos De Luna Ducoing, Rahim Tafazolli, Konstantinos Nikitopoulos (2019)SWORD: Towards a Soft and Open Radio Design for Rapid Development, Profiling, Validation and Testing, In: IEEE Access Institute of Electrical and Electronics Engineers

The vision, as we move to future wireless communication systems, embraces diverse qualities targeting significant enhancements from the spectrum, to user experience. Newly-defined air-interface features, such as large number of base station antennas and computationally complex physical layer approaches come with a non-trivial development effort, especially when scalability and flexibility need to be factored in. In addition, testing those features without commercial, off-the-shelf equipment has a high deployment, operational and maintenance cost. On one hand, industry-hardened solutions are inaccessible to the research community due to restrictive legal and financial licensing. On the other hand, researchgrade real-time solutions are either lacking versatility, modularity and a complete protocol stack, or, for those that are full-stack and modular, only the most elementary transmission modes are on offer (e.g., very low number of base station antennas). Aiming to address these shortcomings towards an ideal research platform, this paper presents SWORD, a SoftWare Open Radio Design that is flexible, open for research, low-cost, scalable and software-driven, able to support advanced large and massive Multiple-Input Multiple- Output (MIMO) approaches. Starting with just a single-input single-output air-interface and commercial off-the-shelf equipment, we create a software-intensive baseband platform that, together with an acceleration/ profiling framework, can serve as a research-grade base station for exploring advancements towards future wireless systems and beyond.

KONSTANTINOS NIKITOPOULOS, MARCIN LUKASZ FILO, MAGODAGE CHATHURA BUDDHIKA JAYAWARDENA, JUAN CARLOS DE LUNA DUCOING, RAHIM TAFAZOLLI (2021)Non-Linear Base-Station Processing within a 3GPP Compliant Framework, In: IEEE Access9pp. 72066-72077 Institute of Electrical and Electronics Engineers (IEEE)

MIMO mobile systems, with a large number of antennas at the base-station side, enable the concurrent transmission of multiple, spatially separated information streams, and therefore, enable improved network throughput and connectivity both in uplink and downlink transmissions. Traditionally, such MIMO transmissions adopt linear base-station processing, that translates the MIMO channel into several single-antenna channels. While such approaches are relatively easy to implement, they can leave on the table a significant amount of unexploited MIMO capacity and connectivity capabilities. Recently-proposed non-linear base-station processing methods claim this unexplored capacity and promise substantially increased network throughput and connectivity capabilities. Still, to the best of the authors' knowledge, non-linear base-station processing methods not only have not yet been adopted by actual systems, but have not even been evaluated in a standard-compliant framework, involving of all the necessary algorithmic modules required by a practical system. In this work, for the first time, we incorporate and evaluate non-linear base-station processing in a 3GPP standard environment. We outline the required research platform modifications and we verify that significant throughput gains can be achieved, both in indoor and outdoor settings, even when the number of base-station antennas is much larger than the number of transmitted information streams. Then, we identify missing algorithmic components that need to be developed to make non-linear base-station practical, and discuss future research directions towards potentially transformative next-generation mobile systems and base-stations (i.e., 6G) that explore currently unexploited non-linear processing gains.

JUAN CARLOS DE LUNA DUCOING, Yiping Qin, Yun Xue, Konstantinos Nikitopoulos (2021)Gyre Precoding for MU-MIMO Systems, In: IEEE Communications Letters Institute of Electrical and Electronics Engineers

—This work introduces Gyre Precoding (GP), a novel linear multiuser multiple-input multiple-output (MU-MIMO) precoding approach. GP performs rotations of the symbols of each spatial layer to optimize the precoding performance. To find the rotation angles, we propose a near-optimal, gradient descent–based low-complexity algorithm. GP is constellation-agnostic and does not require significant changes to conventional receiver procedures or wireless standards. Computer evaluation results show that GP can achieve 8 dB SNR gains over linear precoding techniques and 2 dB over suboptimal symbol-level precoding (SLP) methods for a 16 × 16 MU-MIMO system. Furthermore, in a 64×12 massive-MIMO scenario in a 5G New Radio (5GNR) setup, GP achieves a 13% higher throughput gain over zero-forcing precoding. Index Terms—Multi-user multiple-input multiple-output (MU-MIMO), precoding.

Marcin Filo, J.C De Luna Ducoing, Chathura Jayawardena, Christopher Husmann, Rahim Tafazolli, Konstantinos Nikitopoulos (2021)Evaluating Non-Linear Beamforming in a 3GPP-Compliant Framework Using the SWORD Platform, In: 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communicationspp. 1-6 IEEE

It is well documented that the achievable throughput of MIMO systems that employ linear beamforming can significantly degrade when the number of concurrently transmitted information streams approaches the number of base-station antennas. To increase the number of the supported streams, and therefore, to increase the achievable net throughput, non-linear beamforming techniques have been proposed. These beamforming approaches are typically evaluated via simulations or via simplified over-the-air experiments that are sufficient for validating their basic principles, but they neither provide insights about potential practical challenges when trying to adopt such approaches in a standards-compliant framework, nor they provide any indication about the achievable performance when they are part of a standards-compliant protocol stack. In this work, for first time, we evaluate non-linear beamforming in a 3GPP standards- compliant framework, using our recently-proposed SWORD research platform. SWORD is a flexible, open for research, software-driven platform that enables the rapid evaluation of advanced algorithms without extensive hardware optimizations that can prevent promising algorithms from being evaluated in a standards-compliant stack. We show that in an indoor environment, vector perturbation-based non-linear beamforming can provide up to 46% throughput gains compared to linear approaches for 4×4 MIMO systems, while it can still provide gains of nearly 10% even if the number of base-station antennas is doubled.