Placeholder image for staff profiles

Dr Maria Angeles Bonmati-Carrion


Research Fellow in the School of Biosciences
+44 (0)1483 683728
21 MA 00

My publications

Publications

Bonmati-Carrion MA, Hild K, Isherwood C, Sweeney SJ, Revell VL, Skene DJ, Rol MA, Madrid JA (2016) Relationship between Human Pupillary Light Reflex and Circadian System Status, PLoS One 11 (9) e0162476 Public Library of Science (PLoS)
Intrinsically photosensitive retinal ganglion cells (ipRGCs), whose photopigment melanopsin
has a peak of sensitivity in the short wavelength range of the spectrum, constitute a common
light input pathway to the olivary pretectal nucleus (OPN), the pupillary light reflex
(PLR) regulatory centre, and to the suprachiasmatic nuclei (SCN), the major pacemaker of
the circadian system. Thus, evaluating PLR under short wavelength light (»max 500 nm)
and creating an integrated PLR parameter, as a possible tool to indirectly assess the status
of the circadian system, becomes of interest. Nine monochromatic, photon-matched light
stimuli (300 s), in 10 nm increments from »max 420 to 500 nm were administered to 15
healthy young participants (8 females), analyzing: i) the PLR; ii) wrist temperature (WT) and
motor activity rhythms (WA), iii) light exposure (L) pattern and iv) diurnal preference (Horne-
Östberg), sleep quality (Pittsburgh) and daytime sleepiness (Epworth). Linear correlations
between the different PLR parameters and circadian status index obtained from WT, WA
and L recordings and scores from questionnaires were calculated. In summary, we found
markers of robust circadian rhythms, namely high stability, reduced fragmentation, high
amplitude, phase advance and low internal desynchronization, were correlated with a
reduced PLR to 460?490 nm wavelengths. Integrated circadian (CSI) and PLR (cp-PLR)
parameters are proposed, that also showed an inverse correlation. These results demonstrate,
for the first time, the existence of a close relationship between the circadian system
robustness and the pupillary reflex response, two non-visual functions primarily under melanopsin-ipRGC
input.
Sterr Annette, Ebajemito James, Mikkelsen Kaare B., Bonmati-Carrion Maria, Santhi Nayantara, della Monica Ciro, Grainger Lucinda, Atzori Giuseppe, Revell Victoria, Debener Stefan, Dijk Derk-Jan, DeVos Maarten (2018) Sleep EEG Derived From Behind-the-Ear Electrodes (cEEGrid) Compared to Standard Polysomnography: A Proof of Concept Study, Frontiers in Human Neuroscience 12 452 Frontiers Research Foundation
Electroencephalography (EEG) recordings represent a vital component of the
assessment of sleep physiology, but the methodology presently used is costly, intrusive
to participants, and laborious in application. There is a recognized need to develop more
easily applicable yet reliable EEG systems that allow unobtrusive long-term recording
of sleep-wake EEG ideally away from the laboratory setting. cEEGrid is a recently
developed flex-printed around-the-ear electrode array, which holds great potential for
sleep-wake monitoring research. It is comfortable to wear, simple to apply, and minimally
intrusive during sleep. Moreover, it can be combined with a smartphone-controlled
miniaturized amplifier and is fully portable. Evaluation of cEEGrid as a motion-tolerant
device is ongoing, but initial findings clearly indicate that it is very well suited for cognitive
research. The present study aimed to explore the suitability of cEEGrid for sleep
research, by testing whether cEEGrid data affords the signal quality and characteristics
necessary for sleep stage scoring. In an accredited sleep laboratory, sleep data from
cEEGrid and a standard PSG system were acquired simultaneously. Twenty participants
were recorded for one extended nocturnal sleep opportunity. Fifteen data sets were
scored manually. Sleep parameters relating to sleep maintenance and sleep architecture
were then extracted and statistically assessed for signal quality and concordance. The
findings suggest that the cEEGrid system is a viable and robust recording tool to capture
sleep and wake EEG. Further research is needed to fully determine the suitability of
cEEGrid for basic and applied research as well as sleep medicine.