Professor Nicolas Locker

Professor of Virology
+44 (0)1483 689719
03 AW 01

Academic and research departments

School of Biosciences and Medicine.


Areas of specialism

I am specialised in virus-host interactions, the role of RNA structures in viral life cycle, and the control of gene expression in relation with health and diseases

University roles and responsibilities

  • Module Coordinator for BMS3079 Human Microbial Diseases
  • Module Coordinator for MMIM015 Viral infections
  • Virology Section Lead
  • Chair of the Board of Examiners for the M.Sc in Veterinary Microbiology
  • Member of the University Staff Survey Central Action Group
  • Student-Staff Liaison Committee coordinator for Level 5
  • Academic Integrity Officer

My qualifications

PhD in Protein Engineering
University Paris XI
MSc in Molecular Biophysics
University Paris VI


Research interests

Research projects

Research collaborations


Postgraduate research supervision

Completed postgraduate research projects I have supervised

My teaching

Courses I teach on


My publications


J Choe, N Oh, S Park, Ye Kyung Lee, O-K Song, N Locker, S-G Chi, Yoon Ki Kim (2012)Translation Initiation on mRNAs Bound by Nuclear Cap-binding Protein Complex CBP80/20 Requires Interaction between CBP80/20-dependent Translation Initiation Factor and Eukaryotic Translation Initiation Factor 3g, In: JOURNAL OF BIOLOGICAL CHEMISTRY287(22)pp. 18500-18509 AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Junho Choe, Shuibin Lin, Wencai Zhang, Qi Liu, Longfei Wang, Julia Ramirez-Moya, Peng Du, Wantae Kim, Shaojun Tang, Piotr Sliz, Pilar Santisteban, Rani E George, William G Richards, Kwok-Kin Wong, Nicolas Locker, Frank J Slack, Richard I Gregory (2018)mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis, In: Nature561pp. 556-560 Nature Publishing Group

N6-Methyladenosine (m6A), the most abundant posttranscriptional messenger RNA (mRNA) modification, is emerging as an important regulator of gene expression1. Manipulation of m6A impacts different developmental and biological processes, and altered m6A homeostasis is linked to cancer2-5. m6A is catalyzed by METTL3 and enriched in the 3’ untranslated region (3’ UTR) of a large subset of mRNAs at sites close to the stop codon1. METTL3 can promote translation but the mechanism and widespread relevance remain unknown2. Here we show that METTL3 enhances translation only when tethered to reporter mRNA at sites close to the stop codon supporting a mRNA looping mechanism for ribosome recycling and translational control. Electron microscopy reveals the topology of individual polyribosomes with single METTL3 foci found in close proximity to 5’ cap-binding proteins. We identify a direct physical and functional interaction between METTL3 and the eukaryotic translation initiation factor 3 subunit h (eIF3h). METTL3 promotes translation of a large subset of oncogenic mRNAs, including Bromodomain-containing protein 4 (BRD4) that are also m6A-modified in human primary lung tumors. The METTL3-eIF3h interaction is required for enhanced translation, formation of densely packed polyribosomes, and oncogenic transformation. METTL3 depletion inhibits tumorigenicity and sensitizes lung cancer cells to BRD4 inhibition. These findings uncover a mRNA looping mechanism of translation control and identify METTL3-eIF3h as a potential cancer therapeutic target.

MM Willcocks, N Locker, Z Gomwalk, E Royall, M Bakhshesh, GJ Belsham, N Idamakanti, KD Burroughs, PS Reddy, PL Hallenbeck, LO Roberts (2011)Structural features of the Seneca Valley virus internal ribosome entry site (IRES) element: a picornavirus with a pestivirus-like IRES., In: J Virol85(9)pp. 4452-4461

The RNA genome of Seneca Valley virus (SVV), a recently identified picornavirus, contains an internal ribosome entry site (IRES) element which has structural and functional similarity to that from classical swine fever virus (CSFV) and hepatitis C virus, members of the Flaviviridae. The SVV IRES has an absolute requirement for the presence of a short region of virus-coding sequence to allow it to function either in cells or in rabbit reticulocyte lysate. The IRES activity does not require the translation initiation factor eIF4A or intact eIF4G. The predicted secondary structure indicates that the SVV IRES is more closely related to the CSFV IRES, including the presence of a bipartite IIId domain. Mutagenesis of the SVV IRES, coupled to functional assays, support the core elements of the IRES structure model, but surprisingly, deletion of the conserved IIId(2) domain had no effect on IRES activity, including 40S and eIF3 binding. This is the first example of a picornavirus IRES that is most closely related to the CSFV IRES and suggests the possibility of multiple, independent recombination events between the genomes of the Picornaviridae and Flaviviridae to give rise to similar IRES elements.

Victor Riitho, Magdalena Larska, Rebecca Strong, Anna La Rocca, Nicolas Locker, Stefan Alenius, Falko Steinbach, Lihong Liu, Åse Uttenthal, Simon P. Graham (2018)Comparative analysis of adaptive immune responses following experimental infections of cattle with bovine viral diarrhoea virus-1 and an Asiatic atypical ruminant pestivirus, In: Vaccine36(30)pp. 4494-4500 Elsevier

Atypical ruminant pestiviruses are closely related to the two bovine viral diarrhoea virus (BVDV) species, BVDV-1 and BVDV-2. While there is evidence of cross-protective immune responses between BVDV-1 and BVDV-2, despite antigenic differences, there is little information on the antigenic cross-reactivity with atypical ruminant pestiviruses. The aim of this study was therefore to assess the specificity of antibody and T cell responses induced by experimental infection of calves with BVDV-1 strain Ho916, Th/04_KhonKaen (TKK), an Asiatic atypical ruminant pestivirus, or co-infection with both viruses. Homologous virus neutralization was observed in sera from both single virus infected and co-infected groups, while cross-neutralization was only observed in the TKK infected group. T cell IFN-γ responses to both viruses were observed in the TKK infected animals, whereas Ho916 infected calves responded better to homologous virus. Specifically, IFN-γ responses to viral non-structural protein, NS3, were observed in all infected groups while responses to viral glycoprotein, E2, were virus-specific. Broader antigen-specific cytokine responses were observed with similar trends between inoculation groups and virus species. The limited T cell and antibody immune reactivity of Ho916 inoculated animals to TKK suggests that animals vaccinated with current BVDV-1-based vaccines may not be protected against atypical ruminant pestiviruses.

Z Othman, MK Sulaiman, MM Willcocks, N Ulryck, DJ Blackbourn, B Sargueil, LO Roberts, N Locker (2014)Functional analysis of Kaposi's sarcoma-associated herpesvirus vFLIP expression reveals a new mode of IRES-mediated translation, In: RNA-A PUBLICATION OF THE RNA SOCIETY20(11)pp. 1803-1814 COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
N Chamond, N Locker, B Sargueil (2010)The different pathways of HIV genomic RNA translation, In: BIOCHEMICAL SOCIETY TRANSACTIONS38pp. 1548-1552 PORTLAND PRESS LTD
E Emmott, F Sorgeloos, SL Caddy, S Vashist, S Sosnovtsev, R Lloyd, K Heesom, Nicolas Locker, I Goodfellow (2017)Norovirus-mediated modification of the translational landscape via virus and host-induced cleavage of translation initiation factors, In: Molecular and Cellular Proteomics16pp. S215-S229 American Society for Biochemistry and Molecular Biology

Noroviruses produce viral RNAs lacking a 5’ cap structure and instead use a virus-encoded VPg protein covalently linked to viral RNA to interact with translation initiation factors and drive viral protein synthesis. Norovirus infection results in the induction of the innate response leading to interferon stimulated gene (ISG) transcription. However the translation of the induced ISG mRNAs is suppressed. A SILAC-based mass spectrometry approach was employed to analyse changes to protein abundance in both whole cell and m7GTP-enriched samples to demonstrate that diminished host mRNA translation correlates with changes to the composition of the eukaryotic initiation factor complex. The suppression of host ISG translation correlates with the activity of the viral protease (NS6) and the activation of cellular caspases leading to the establishment of an apoptotic environment. These results indicate that noroviruses exploit the differences between viral VPg-dependent and cellular cap-dependent translation in order to diminish the host response to infection.

Elizabeth Royall, Nicolas Locker (2016)Translational Control during Calicivirus Infection, In: Viruses8(4)pp. 104-104 MDPI AG

In this review, we provide an overview of the strategies developed by caliciviruses to subvert or regulate the host protein synthesis machinery to their advantage. As intracellular obligate parasites, viruses strictly depend on the host cell resources to produce viral proteins. Thus, many viruses have developed strategies that regulate the function of the host protein synthesis machinery, often leading to preferential translation of viral mRNAs. Caliciviruses lack a 5′ cap structure but instead have a virus-encoded VPg protein covalently linked to the 5′ end of their mRNAs. Furthermore, they encode 2–4 open reading frames within their genomic and subgenomic RNAs. Therefore, they use alternative mechanisms for translation whereby VPg interacts with eukaryotic initiation factors (eIFs) to act as a proteinaceous cap-substitute, and some structural proteins are produced by reinitiation of translation events. This review discusses our understanding of these key mechanisms during caliciviruses infection as well as recent insights into the global regulation of eIF4E activity.

Michele Brocard, Alessia Ruggieri, Nicolas Locker (2017)m6A RNA methylation, a new hallmark in virus-host interactions, In: Journal of General Virology98pp. 2207-2214 Microbiology Society

The role of m6A methylation of RNA has remained elusive for decades, however recent technological advances are now allowing the mapping of the m6A methylation landscape at nucleotide level. This has spurred an explosion in our understanding of the role played by RNA epigenetics in RNA biology. m6A modifications have been tied to almost every aspects of the mRNA life cycle and it is now clear that RNA virus genomes are subject to m6A methylation. These modifications play various roles in the viral replication cycle. This review will summarize recent breakthroughs concerning m6A RNA modification and their implications for cellular and viral RNAs.

Jack O Phillips, Louise E Butt, Charlotte A Henderson, Martin Devonshire, Jess Healy, Stuart J Conway, Nicolas Locker, Andrew R Pickford, Helen A Vincent, Anastasia J Callaghan (2018)High-density functional-RNA arrays as a versatile platform for studying RNA-based interactions, In: Nucleic Acids Research46(14) Oxford University Press (OUP)

We are just beginning to unravel the myriad of interactions in which non-coding RNAs participate. The intricate RNA interactome is the foundation of many biological processes, including bacterial virulence and human disease, and represents unexploited resources for the development of potential therapeutic interventions. However, identifying specific associations of a given RNA from the multitude of possible binding partners within the cell requires robust high-throughput systems for their rapid screening. Here, we present the first demonstration of functional-RNA arrays as a novel platform technology designed for the study of such interactions using immobilized, active RNAs. We have generated high-density RNA arrays by an innovative method involving surface-capture of in vitro transcribed RNAs. This approach has significant advantages over existing technologies, particularly in its versatility in regards to binding partner character. Indeed, proof-of-principle application of RNA arrays to both RNA–small molecule and RNA–RNA pairings is demonstrated, highlighting their potential as a platform technology for mapping RNA-based networks and for pharmaceutical screening. Furthermore, the simplicity of the method supports greater user-accessibility over currently available technologies. We anticipate that functional-RNA arrays will find broad utility in the expanding field of RNA characterization.

L Chung, D Bailey, EN Leen, EP Emmott, Y Chaudhry, LO Roberts, S Curry, N Locker, IG Goodfellow (2014)Norovirus Translation Requires an Interaction between the C Terminus of the Genome-linked Viral Protein VPg and Eukaryotic Translation Initiation Factor 4G, In: JOURNAL OF BIOLOGICAL CHEMISTRY289(31)pp. 21738-21750 AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PN Huang, JY Lin, N Locker, YA Kung, CT Hung, JY Lin, HI Huang, ML Li, SR Shih (2011)Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth., In: Nucleic Acids Respp. 1-16 Oxford University Press

Enterovirus 71 (EV71) is associated with severe neurological disorders in children, and has been implicated as the infectious agent in several large-scale outbreaks with mortalities. Upon infection, the viral RNA is translated in a cap-independent manner to yield a large polyprotein precursor. This mechanism relies on the presence of an internal ribosome entry site (IRES) element within the 5'-untranslated region. Virus-host interactions in EV71-infected cells are crucial in assisting this process. We identified a novel positive IRES trans-acting factor, far upstream element binding protein 1 (FBP1). Using binding assays, we mapped the RNA determinants within the EV71 IRES responsible for FBP1 binding and mapped the protein domains involved in this interaction. We also demonstrated that during EV71 infection, the nuclear protein FBP1 is enriched in cytoplasm where viral replication occurs. Moreover, we showed that FBP1 acts as a positive regulator of EV71 replication by competing with negative ITAF for EV71 IRES binding. These new findings may provide a route to new anti-viral therapy.

Translation initiation on HIV genomic RNA relies on both cap and Internal Ribosome Entry Site (IRES) dependant mechanisms that are regulated throughout the cell cycle. During a unique phenomenon, the virus recruits initiation complexes through RNA structures located within Gag coding sequence, downstream of the initiation codon. We analyzed initiation complexes paused on the HIV-2 gag IRES and revealed that they contain all the canonical initiation factors except eIF4E and eIF1. We report that eIF3 and the small ribosomal subunit bind HIV RNA within gag open reading frame. We thus propose a novel two step model whereby the initial event is the formation of a ternary eIF3/40S/IRES complex. In a second step, dependent on most of the canonical initiation factors, the complex is rearranged to transfer the ribosome on the initiation codons. The absolute requirement of this large structure for HIV translation defines a new function for a coding region. Moreover, the level of information compaction within this viral genome reveals an additional level of evolutionary constraint on the coding sequence. The conservation of this IRES and its properties in rapidly evolving viruses suggest an important role in the virus life cycle and highlight an attractive new therapeutic target.

Daniel L. W. Dorey‐Robinson, Nicolas Locker, Falko Steinbach, Bhudipa Choudhury (2019)Molecular characterization of equine infectious anaemia virus strains detected in England in 2010 and 2012, In: Transboundary and Emerging Diseases66(6)pp. 2311-2317 Wiley

Equine infectious anaemia virus (EIAV) is a retrovirus with worldwide distribution which is notifiable to the OIE. Despite its importance to the equine industry, most information regarding its biology have been obtained using only two strains (EIAVWYO and EIAVLIA) from the USA and China, respectively. Recently full genome sequences from Ireland, Italy and Japan have been published; however, this is still not representative of the number of EIAV outbreaks experienced globally each year. The limited availability of published sequences makes design of a universal EIAV PCR difficult, hence diagnosis is solely reliant on serology. Accordingly, it is important to further investigate the re‐emerging cases in other areas of the world. Here, we provide information regarding the outbreaks of EIA in England in 2010 and 2012 including the molecular characterization of strains. Full genome was obtained for two symptomatic cases but could not be resolved for the asymptomatic cases. The two British genomes from 2010 (EIAVDEV) and 2012 (EIAVCOR) each represent a new phylogenetic group, each differing genetically from the other available full genome sequences by 21.1%–25.5%. That the majority of new EIAV full genome sequences to be published adds another phylogenetic group indicates that the surface of EIAV global diversity is just being scratched. These data highlight that further work is needed to fully understand EIAV genetic diversity, namely the full genome sequencing of EIAV cases from a variety of locations and time points. This would aid both the use of phylogenetics in parallel with horse tracing as the epidemiological tool of disease tracking and the design of a universally applicable molecular diagnostic method.

MN Humoud, N Doyle, Elizabeth Royall, MM Willcocks, F Sorgeloos, F van Kuppeveld, LO Roberts, IG Goodfellow, MA Langereis, Nicolas Locker (2016)Feline Calicivirus infection disrupts the assembly of cytoplasmic stress granules and induces G3BP1 cleavage, In: Journal of Virology90(14)pp. 6489-6501 American Society for Microbiology

In response to stress such as virus infection, cells can stall translation by storing mRNAs away in cellular compartments called stress granules (SGs). This defence mechanism favours cell survival by limiting the use of energy and nutrients until the stress is resolved. In some cases it may also block viral propagation as viruses are dependent on the host cell resources to produce viral proteins. Human norovirus is a member of the Caliciviridae family responsible for gastroenteritis outbreaks worldwide. Previous studies on caliciviruses have identified mechanisms by which they can usurp the host translational machinery, using the viral protein genome-linked VPg, or regulate host protein synthesis through the MAPK pathway. Herein we examined the effect of feline calicivirus (FCV) infection on SGs accumulation. We show that FCV infection impairs the assembly of SGs despite an increased phosphorylation of eukaryotic initiation factor eIF2α, a hallmark of stress pathway activation. Furthermore SGs did not accumulate in FCV-infected cells that are stressed with arsenite or hydrogen peroxide. FCV infection resulted in the cleavage of the SG-nucleating protein Ras-GTPase activating SH3 domain-binding protein (G3BP1), which is mediated by the viral 3C-like proteinase NS6Pro 38 . Using mutational analysis, we identified the FCV-induced cleavage site within G3BP1, which differs from the poliovirus 3C proteinase cleavage site previously identified. Finally, we showed that NS6Pro 41 -mediated G3BP1 cleavage impairs SGs assembly. In contrast, murine norovirus (MNV) infection did not impact arsenite-induced SG assembly or G3BP1 integrity suggesting that related caliciviruses have distinct effects on the stress response pathway.

Joseph Lattimer, Hazel Stewart, Nicolas Locker, Andrew Tuplin, Nicola J. Stonehouse, Mark Harris (2019)Structure–function analysis of the equine hepacivirus 5′ untranslated region highlights the conservation of translational mechanisms across the hepaciviruses, In: Journal of General Virology Microbiology Society

Equine hepacivirus (EHcV) (now also classified as hepacivirus A) is the closest genetic relative to hepatitis C virus (HCV) and is proposed to have diverged from HCV within the last 1000 years. The 5′ untranslated regions (UTRs) of both HCV and EHcV exhibit internal ribosome entry site (IRES) activity, allowing cap-independent translational initiation, yet only the HCV 5′UTR has been systematically analysed. Here, we report a detailed structural and functional analysis of the EHcV 5′UTR. The secondary structure was determined using selective 2′ hydroxyl acylation analysed by primer extension (SHAPE), revealing four stem–loops, termed SLI, SLIA, SLII and SLIII, by analogy to HCV. This guided a mutational analysis of the EHcV 5′UTR, allowing us to investigate the roles of the stem–loops in IRES function. This approach revealed that SLI was not required for EHcV IRES-mediated translation. Conversely, SLIII was essential, specifically SLIIIb, SLIIId and a GGG motif that is conserved across the Hepaciviridae. Further SHAPE analysis provided evidence that this GGG motif mediated interaction with the 40S ribosomal subunit, whilst a CUU sequence in the apical loop of SLIIIb mediated an interaction with eIF3. In addition, we showed that a microRNA122 target sequence located between SLIA and SLII mediated an enhancement of translation in the context of a subgenomic replicon. Taken together, these results highlight the conservation of hepaciviral translation mechanisms, despite divergent primary sequences.

Rachel Butler, N Krishnan, W Garcia-Jimenez, R Francis, A Martyn, T Mendum, Shaza Felemban, Nicolas Locker, J Salguero Bodes, B Robertson, Graham Stewart (2017)Susceptibility of M. tuberculosis-infected host cells to phospho-MLKL driven necroptosis is dependent on cell type and presence of TNFα, In: Virulence8(8)pp. 1820-1832 Taylor & Francis

An important feature of Mycobacterium tuberculosis pathogenesis is the ability to control cell death in infected host cells, including inhibition of apoptosis and stimulation of necrosis. Recently an alternative form of programmed cell death, necroptosis, has been described where necrotic cell death is induced by apoptotic stimuli under conditions where apoptotic execution is inhibited. We show for the first time that M. tuberculosis and TNFα synergise to induce necroptosis in murine fibroblasts via RIPK1-dependent mechanisms and characterized by phosphorylation of Ser345 of the MLKL necroptosis death effector. However, in murine macrophages M. tuberculosis and TNFα induce non-necroptotic cell death that is RIPK1-dependent but independent of MLKL phosphorylation. Instead, M. tuberculosis-infected macrophages undergo RIPK3-dependent cell death which occurs both in the presence and absence of TNFα and involves the production of mitochondrial ROS. Immunocytochemical staining for MLKL phosphorylation further demonstrated the occurrence of necroptosis in vivo in murine M. tuberculosis granulomas. Phosphorylated- MLKL immunoreactivity was observed associated with the cytoplasm and nucleus of fusiform cells in M. tuberculosis lesions but not in proximal macrophages. Thus whereas pMLKL-driven necroptosis does not appear to be a feature of M. tuberculosis-infected macrophage cell death, it may contribute to TNFα-induced cytotoxicity of the lung stroma and therefore contribute to necrotic cavitation and bacterial dissemination.

H Roth, V Magg, F Uch, P Mutz, P Klein, K Haneke, V Lohmann, R Bartenschlager, OT Fackler, Nicolas Locker, G Stoecklin, A Ruggieri (2017)Flavivirus infection uncouples translation suppression from cellular stress responses, In: mBio8(1)e02150-16 American Society for Microbiology

As obligate parasites, viruses strictly depend on host cell translation for the production of new progeny, yet infected cells also synthesize antiviral proteins to limit virus infection. Modulation of host cell translation therefore represents a frequent strategy by which viruses optimize their replication and spread. Here we sought to define how host cell translation is regulated during infection of human cells with Dengue Virus (DENV) and Zika Virus (ZIKV), two positive-strand RNA flaviviruses. Polysome profiling and analysis of de novo protein synthesis revealed that flavivirus infection causes potent repression of host cell translation while synthesis of viral proteins remains efficient. Selective repression of host cell translation was mediated by the DENV polyprotein at the level of translation initiation. In addition, DENV and ZIKV infection suppressed host cell stress responses such as the formation of stress granules and phosphorylation of the translation initiation factor eIF2α. Mechanistic analyses revealed that translation repression was uncoupled from the disruption of stress granule formation and eIF2α signaling. Rather, DENV infection induced p38-Mnk1 signaling that resulted in the phosphorylation of the eukaryotic translation initiation factor eIF4E and was essential for the efficient production of virus particles. Together, these results identify the uncoupling of translation suppression from the cellular stress responses as a conserved strategy by which flaviviruses ensure efficient replication in human cells.

Victor Riitho, Adam A. Walters, Satyanarayana Somavarapu, Benjamin Lamp, Till Rümenapf, Thomas Krey, Felix A. Rey, Ernesto Oviedo-Orta, Graham R. Stewart, Nicolas Locker, Falko Steinbach, Simon Graham (2017)Design and evaluation of the immunogenicity and efficacy of a biomimetic particulate formulation of viral antigens, In: Scientific Reports713743 Nature Publishing Group

Subunit viral vaccines are typically not as efficient as live attenuated or inactivated vaccines at inducing protective immune responses. This paper describes an alternative ‘biomimetic’ technology; whereby viral antigens were formulated around a polymeric shell in a rationally arranged fashion with a surface glycoprotein coated on to the surface and non-structural antigen and adjuvant encapsulated. We evaluated this model using BVDV E2 and NS3 proteins formulated in poly-(D, L-lactic-co-glycolic acid) (PLGA) nanoparticles adjuvanted with polyinosinic:polycytidylic acid (poly(I:C) as an adjuvant (Vaccine-NP). This Vaccine-NP was compared to ovalbumin and poly(I:C) formulated in a similar manner (Control-NP) and a commercial adjuvanted inactivated BVDV vaccine (IAV), all inoculated subcutaneously and boosted prior to BVDV-1 challenge. Significant virus-neutralizing activity, and E2 and NS3 specific antibodies were observed in both Vaccine-NP and IAV groups following the booster immunisation. IFN-γ responses were observed in ex vivo PBMC stimulated with E2 and NS3 proteins in both vaccinated groups. We observed that the protection afforded by the particulate vaccine was comparable to the licenced IAV formulation. In conclusion, the biomimetic particulates showed a promising immunogenicity and efficacy profile that may be improved by virtue of being a customisable mode of delivery.

Translation initiation on HIV genomic RNA relies on both cap and Internal Ribosome Entry Site (IRES) dependant mechanisms that are regulated throughout the cell cycle. During a unique phenomenon, the virus recruits initiation complexes through RNA structures located within Gag coding sequence, downstream of the initiation codon. We analyzed initiation complexes paused on the HIV-2 gag IRES and revealed that they contain all the canonical initiation factors except eIF4E and eIF1. We report that eIF3 and the small ribosomal subunit bind HIV RNA within gag open reading frame. We thus propose a novel two step model whereby the initial event is the formation of a ternary eIF3/40S/IRES complex. In a second step, dependent on most of the canonical initiation factors, the complex is rearranged to transfer the ribosome on the initiation codons. The absolute requirement of this large structure for HIV translation defines a new function for a coding region. Moreover, the level of information compaction within this viral genome reveals an additional level of evolutionary constraint on the coding sequence. The conservation of this IRES and its properties in rapidly evolving viruses suggest an important role in the virus life cycle and highlight an attractive new therapeutic target.

J Deforges, N Locker, B Sargueil (2015)mRNAs that specifically interact with eukaryotic ribosomal subunits., In: Biochimie114pp. 48-57

The accuracy of start codon selection is determined by the translation initiation process. In prokaryotes the initiation step on most mRNAs relies on recruitment of the small ribosomal subunit onto the initiation codon by base pairing between the mRNA and the 16S rRNA. Eukaryotes have evolved a complex molecular machinery involving at least 11 initiation factors, and mRNAs do not directly recruit the small ribosomal subunit. Instead the initiation complex is recruited to the 5' end of the mRNA through a complex protein network including eIF4E that interacts with the 5' cap structure and poly-A binding protein that interacts with the 3'end. However, some viral and cellular mRNAs are able to escape this pathway by internal recruitment of one or several components of the translation machinery. Here we review those eukaryotic mRNAs that have been reported to directly recruit the 40S ribosomal subunit internally. In the well characterized cases of viral IRESes, a specific RNA structure is involved in this process, and in addition to recruitment of the ribosome, the mRNA also manipulates the ribosome structure to stimulate the first translocation step. We also review recently described IRES/ribosome interactions in cases where the molecular mechanism leading to translation initiation has yet to be described. Finally we evaluate the possibility that mRNA may recruit the 40S ribosomal subunit through base pairing with the 18S rRNA.

E Royall, N Doyle, A Abdul-Wahab, E Emmott, SJ Morley, I Goodfellow, LO Roberts, N Locker (2015)Murine Norovirus 1 (MNV1) Replication Induces Translational Control of the Host by Regulating eIF4E Activity during Infection, In: JOURNAL OF BIOLOGICAL CHEMISTRY290(8)pp. 4748-4758 AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
MM Willcocks, S Zaini, N Chamond, N Ulryck, D Allouche, N Rajagopalan, NA Davids, U Fahnøe, J Hadsbjerg, TB Rasmussen, LO Roberts, B Sargueil, GJ Belsham, Nicolas Locker (2017)Distinct roles for the IIId2 sub-domain in pestivirus and picornavirus Internal Ribosome Entry Sites, In: Nucleic Acids Research45(22)pp. 13016-13028 Oxford University Press

Viral internal ribosomes entry site (IRES) elements coordinate the recruitment of the host translation machinery to direct the initiation of viral protein synthesis. Within hepatitis C virus (HCV)-like IRES elements, the sub-domain IIId(1) is crucial for recruiting the 40S ribosomal subunit. However, some HCV-like IRES elements possess an additional sub-domain, termed IIId2, whose function remains unclear. Herein we show that IIId2 sub-domains from divergent viruses have different functions. The IIId2 sub-domain present in Seneca valley virus (SVV), a picornavirus, is dispensable for IRES activity, while the IIId2 sub-domains of two pestiviruses, classical swine fever virus (CSFV) and border disease virus (BDV), are required for 80S ribosomes assembly and IRES activity. Unlike in SVV, the deletion of IIId2 from the CSFV and BDV IRES elements impairs initiation of translation by inhibiting the assembly of 80S ribosomes. Consequently, this negatively affects the replication of CSFV and BDV. Finally, we show that the SVV IIId2 sub-domain is required for efficient viral RNA synthesis and growth of SVV, but not for IRES function. This study sheds light on the molecular evolution of viruses by clearly demonstrating that conserved RNA structures, within distantly related RNA viruses, have acquired different roles in the virus life cycles.

Michele Brocard, Valentina Ladevaia, Philipp Klein, Belinda Hall, Glenys Lewis, Jia Lu, James Burke, Margaret Willcocks, Roy Parker, Ian G. Goodfellow, Alessia Ruggieri, Nicolas Locker (2019)Norovirus infection results in eIF2α independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation, In: PLoS Pathogens Public Library of Science

Viral infections impose major stress on the host cell. In response, stress pathways can rapidly deploy defence mechanisms by shutting off the protein synthesis machinery and triggering the accumulation of mRNAs into stress granules to limit the use of energy and nutrients. Because this threatens viral gene expression, viruses need to evade these pathways to propagate. Human norovirus is responsible for gastroenteritis outbreaks worldwide. Here we examined how norovirus interacts with the eIF2α signaling axis controlling translation and stress granules. While norovirus infection represses host cell translation, our mechanistic analyses revealed that eIF2α signaling mediated by the stress kinase GCN2 is uncoupled from translational stalling. Moreover, infection results in a redistribution of the RNA-binding protein G3BP1 to replication complexes and remodelling of its interacting partners, allowing the avoidance from canonical stress granules. These results define novel strategies by which norovirus undergo efficient replication whilst avoiding the host stress response and manipulating the G3BP1 interactome.

Myra Hosmillo, Jia Lu, Michael R McAllaster, James B Eaglesham, Xinjie Wang, Edward Emmott, Patricia Domingues, Yasmin Chaudhry, Tim J Fitzmaurice, Matthew KH Tung, Marc Dominik Panas, Gerald McInerney, Nicolas Locker, Craig B Wilen, Ian G Goodfellow (2019)Noroviruses subvert the core stress granule component G3BP1 to promote viral VPg-dependent translation, In: eLife8e46681pp. 1-35 eLife Sciences Publications

Knowledge of the host factors required for norovirus replication has been hindered by the challenges associated with culturing human noroviruses. We have combined proteomic analysis of the viral translation and replication complexes with a CRISPR screen, to identify host factors required for norovirus infection. The core stress granule component G3BP1 was identified as a host factor essential for efficient human and murine norovirus infection, demonstrating a conserved function across the Norovirus genus. Furthermore, we show that G3BP1 functions in the novel paradigm of viral VPg-dependent translation initiation, contributing to the assembly of translation complexes on the VPg-linked viral positive sense RNA genome by facilitating ribosome recruitment. Our data uncovers a novel function for G3BP1 in the life cycle of positive sense RNA viruses and identifies the first host factor with pan-norovirus pro-viral activity.

Thomas J Sanford, Harriet V Mears, Teodoro Fajardo, Nicolas Locker, Trevor R Sweeney (2019)Circularization of flavivirus genomic RNA inhibits de novo translation initiation, In: Nucleic Acids Research47(18)pp. 9789-9802 Oxford University Press (OUP)

Members of the Flaviviridae family, including dengue virus (DENV) and yellow fever virus, cause serious disease in humans, whilst maternal infection with Zika virus (ZIKV) can induce microcephaly in newborns. Following infection, flaviviral RNA genomes are translated to produce the viral replication machinery but must then serve as a template for the transcription of new genomes. However, the ribosome and viral polymerase proceed in opposite directions along the RNA, risking collisions and abortive replication. Whilst generally linear, flavivirus genomes can adopt a circular conformation facilitated by long-range RNA–RNA interactions, shown to be essential for replication. Using an in vitro reconstitution approach, we demonstrate that circularization inhibits de novo translation initiation on ZIKV and DENV RNA, whilst the linear conformation is translation-competent. Our results provide a mechanism to clear the viral RNA of ribosomes in order to promote efficient replication and, therefore, define opposing roles for linear and circular conformations of the flavivirus genome.

Additional publications