Rachel Moloney

Rachel Moloney

My research project

My publications


D. Staab, A. Frey, A. Garbayo, L. Shadbolt, Andrea Lucca Fabris, Antonio Gurciullo, Pascaline Grondein, Rachel Moloney, D. Faircloth, S. Lawrie (2019)AQUAJET: an Electrodeless ECR Water Thruster, In: Space Propulsion Conference Proceedings 2018

We present the AQUAJET propulsion system, a cathodeless, ambipolar thruster test bed operating on multiple propellants including water. It is based on Electron Cyclotron Resonance (ECR) at 2.45 GHz using a simple permanent magnet configuration of the plasma source. We discuss the theoretical background of the technology, our flexible modular design that allows testing of many thruster geometry configurations, and modelling work done in preparation for testing.

Andrea Lucca Fabris, Tom Wantock, Antonio Gurciullo, Rachel Moloney, A. Knoll, T. Potterton, P. Bianco (2019)Overview of Halo thruster research and development activities, In: Space Propulsion Conference Proceedings 2018

The Halo thruster is a low-power plasma propulsion concept, currently under investigation and development within the Surrey Space Centre at the University of Surrey in collaboration with Surrey Satellite Technology Ltd, Airbus DS and Imperial College London. The device is based on the electrostatic acceleration of propellant ions produced in a DC-powered magnetized plasma discharge characterized by a closed-loop electron drift sustained by the combination of electric and magnetic fields. Current research and development activities include: (i) experimental testing of different laboratory models to optimize the thruster performance in the 100 – 200 W power range; (ii) detailed plasma measurements to determine the underlying plasma physics; (iii) implementation of a plasma model for hollow cathode design; (iv) design and manufacturing of an optimized Halo thruster Engineering Model, including a tailored hollow cathode. This paper presents an overview of the aforementioned activities.