2pm - 3pm
Tuesday 14 February 2017

Part 2: Exponential estimates for symplectic slow manifolds

Claudia Wulff (University of Surrey) will be speaking.

Room 39 AA 04
back to all events

This event has passed

Abstract

In this talk consider analytic Hamiltonian slow-fast systems with finitely many slow degrees of freedom. We allow for infinitely many fast degrees of freedom. We present a result on the existence of an almost invariant symplectic slow manifold for which the error field is exponentially small.  The method we use is motivated by a paper of MacKay from 2004.

The method does not notice resonances, and therefore we do not pose any restrictions on the motion normal to the  slow manifold other  than it being fast and analytic.  We also present a stability result and obtain a generalization  of a result  of Gelfreich and Lerman on an invariant slow manifold  to (finitely) many  fast degrees of freedom. This is joint work with Kristian Kristiansen (Copenhagen).

In part 1 I only talked about slow manifolds of general, i.e. ,non-Hamiltonian systems. In part 2 I will very briefly review part 1 and then focus on symplectic slow manifolds for Hamiltonian systems. So if you have not  attended part 1, but are interested in Hamiltonian systems then you are welcome to join.