Micro-dosimetric characterisation of clinical hadron beams

The project focuses on developing medical physics techniques for dosimetry of clinically used proton and hadron beams at the micrometre scale in order to improve cancer treatment with biologically optimised planning.

4 years
Application deadline
Funding source
EPSRC, NPL and Detector Ltd
Funding information

The studentship is sponsored by EPSRC and the National Physical Laboratory (NPL) and part of the strategic partnership between the University of Surrey and NPL. The studentship will cover University fees and student stipend at normal research council rates. Funding is provided for the duration of the PhD. A supplement of £15,000 is available from a collaborating company (Detector) for travel and research needs.


Hadron therapy is the fastest growing cancer treatment strategy providing therapeutic advantages for treatments where a localised energy deposition and/ or sparing of healthy tissues is required. The NHS has invested over £250m for two clinical centres and several private initiatives are ongoing to support world class cancer treatment in the UK. However, there are still scientific and technological challenges that need to be addressed in order to achieve hadron therapy's full potential, for example accounting for the increased effectiveness of hadron beams compared to photon beams conventionally used in radiotherapy. Despite it being understood that biological effects are driven by the dose distribution at the micrometre scale, this is currently not taken into account in clinical practice due to the lack of tools and methodology to perform accurate and reproducible micro-dosimetric measurements in clinically relevant settings.

This project aims to develop micro-dosimetry techniques for routine clinical measurements. Gas based and solid state detector technologies will be exploited to develop and optimise well characterised reference micro-dosimeters, establishing a traceable measurement chain for spectra of energy deposition in sensitive volumes of the order of a micrometre for clinical hadron beams. This project will contribute to the definition of new track structures operational quantities for clinical use and it will support personalised radiotherapy approaches in accordance to UK life science strategy. Moreover, it will contribute to the development of world first reference detector for micro-dosimetry, aiming at reducing uncertainties for measurement in clinical hadron.

The student will take part in experimental campaigns at national and international clinical facilities and will interact with radiation dosimetry and micro-dosimetry detector experts. A key aspect of the project will be the multidisciplinary component and interaction with the clinical, research and industrial partners of the project for the development of micro-dosimetry tools and measurement skills. The student will be part of the Radiation and Medical Physics Group at the University, with a research focus on development of radiation detectors for medical application, dosimetry and biological effectiveness for advanced radiotherapy modalities. The project will also include an extensive placement at the National Physical Laboratory (NPL), where the student will be working within the Medical Radiation Science group. NPL staff will provide training and insight into development, use and application of primary standard and radiation dosimetry traceability chain, Monte Carlo simulations and detector characterisation.

Collaboration between international leading institutes in Italy, Austria and the UK will provide the student with access to a unique range of multidisciplinary expertise, equipment and facilities. The project aims to deliver high-impact research papers and attract interest from industry and healthcare providers offering unique career development opportunities to the student.

Related links
NHS: What is proton beam therapy International Atomic Energy Agency International Commission on Radiation Units and Measurements

The project is part of a collaboration between the University of Surrey, the National Physical Laboratory, MedAustron (Austria) and the Instituto Nazionale di Fisica Nucleare (INFN, Italy).

Eligibility criteria

To be eligible, you will be a UK or EU applicant, holding a First or 2:1 UK honours degree in a relevant subject area, or a 2:2 alongside a good masters degree (a distinction is usually required). For EU candidates the standard EPSRC residence requirements apply, although exceptions could be made for exceptionally talented candidates.

If English is not your first language, you will be required to have an IELTS Academic of 6.5 or above (or equivalent), with no sub-test score below 6.

How to apply

Applications can be made through our Physics PhD course page. Please state the project title and supervisor clearly on your application.

Physics PhD

Application deadline

Contact details

If you have any queries, please contact Prof. Giuseppe Schettino or Dr Francesco Romano.

Giuseppe Schettino
14 BC 04
Telephone: +44 (0)1483 689320
E-mail: giuseppe.schettino@surrey.ac.uk

Research areas


Studentships at Surrey

We have a wide range of studentship opportunities available.