SCENARIO: a holistic framework for assessing co-benefits of street-scale green infrastructure interventions

There is a need to develop an evidence-based holistic assessment framework for street-scale greening that is generic, inclusive of pollution-cooling-noise-biodiversity trade-offs, and also easily implementable.

Start date

1 October 2022

Duration

3 years

Application deadline

Funding source

Scenario NERC Doctoral Training Partnership

Funding information

This research project is one of a number of projects at this institution. It is in competition for funding with one or more of these projects. Usually the project which receives the best applicant will be awarded the funding.

This project is potentially funded by the Scenario NERC Doctoral Training Partnership, subject to a competition to identify the strongest applicants. Due to UKRI rules, the DTP can only fund a very limited number of international students. We will only consider applications from international students with an outstanding academic background placing them in the top 10% of their cohort.

This studentship covers both fees and stipend – a tax-free maintenance grant which was £15,609 per year in 2021-22. You will also receive a Research Training and Support budget to cover costs such as conferences, workshops and equipment.

About

Core urban areas tend to be made up of street-canyons and are one of the most polluted urban environments, due to the restricted dispersion of traffic emissions by surrounding buildings.

Use of green infrastructure (GI) such as roadside hedges, trees, green walls and roofs in urban areas are on the rise since they can help to abate the exposure to traffic emissions in roadside environments and offer many other co-benefits such as heat amelioration to reduce the impact of urban heat island, noise reduction and increased biodiversity. However, these benefits (including moderating air pollution) are very sensitive to local contexts, and badly planned GI can make situations worse or achieve only limited co-benefits.

For example, dense trees in deep street canyon environments can increase pollutant exposure by trapping air pollutants at ground-level yet the same configuration can be beneficial in cooling the street. Such two-way trade-offs (e.g. pollution versus cooling) are rarely considered in GI implementation. Furthermore, other factors such as noise reduction and biodiversity are very seldom considered in such assessments. Additional complexity arises when vegetation releases biogenic volatile organic compounds that combine with traffic-emitted pollutants to produce secondary pollutants such as ozone and particulate matter. All these factors interact with the built environment (height to width ratios of buildings, and their spatial arrangement), leading to a wide range of potential outcomes from highly positive to net negative.

To support decision-makers and address this global need, there is a need to develop an evidence-based holistic assessment framework for street-scale greening that is generic, inclusive of pollution-cooling-noise-biodiversity trade-offs, and also easily implementable.

About the project

This project will use a combination of experimental and modelling approaches to build such a framework. The student will undertake trial demonstrations, and modify and apply existing models for pollution, noise and heat, and integrate their results to create a holistic framework for assessing co-benefits of street-scale green infrastructure interventions.

In year 1, the student will create a practical framework for the model and will focus on developing scaling functions to bridge the current gap that exists between large-scale atmospheric transport models for air quality and numerical/computational models, which operate at street-canyon scale. The outcome will be a meta-model or set of generalizable transfer-functions to extrapolate from individual streets to other contexts, based on key parameters.

In year 2, the student will build on this experience using spatial models developed by the UKCEH for heat and noise mitigation provided by urban GI. In Year 3, the student will review the main spatial biodiversity functions used in the literature, to create an urban meta-model for biodiversity benefits of small-scale GI features. All these components will then be consolidated into the assessment framework.

Each step of the project will produce high quality science innovations, and the student will be encouraged to publish these in ISI journals. The outcome of the project will be an ‘easy to use’ assessment framework that helps plan multiple co-benefits for small scale GI features, accounting for local context, which is sorely needed in urban planning. The student can work with city councils in Liverpool and Guildford.

Training opportunities

The Air Quality Laboratory of Surrey’s Global Centre for Clean Air Research (GCARE) is equipped with state-of-the-art equipment and novel indigenous setups, offering direct opportunity for the student to work with research grade instrumentation and affordable sensors.

The GCARE/UKCEH team is specialised in running street/city scale models, allowing the student direct access and training opportunities to apply relevant models. UKCEH has developed urban GI models for a range of benefits, including heat mitigation and noise reduction, designed to work at city scale. The student will learn how to use and adapt these.

Please visit the Global Centre for Clean Air Research site to know more about ongoing research.

Duration

All Scenario studentships are initially offered for 3 years. If at the start of the studentship a gap in knowledge or training is identified for the specific project, the studentship can be extended to 3.5 years at that point. Towards the end of the PhD, there is the opportunity to apply for an extension, based on set criteria. The maximum duration of funding is 4 years.

References

  • Kumar, P., et al., 2022. Understanding the effects of roadside hedges on the horizontal and vertical distributions of air pollutants in street canyons. Environment International 258,106883
  • Fletcher, D.H., et al., 2021. Using demand mapping to assess the benefits of urban green and blue space in cities from four continents. Science of the Total Environment 785,147238
  • Hutchins, M., et al., 2021. Why scale is vital to plan optimal nature-based solutions for resilient cities. Environmental Research Letters 16,044008Tomson, M., et al., 2021. Green infrastructure for air quality improvement in street canyons. Environment International 146,106288
  • Kumar, P., et al., 2019. The Nexus between Air Pollution, Green Infrastructure and Human Health. Environment International 133,105181.

Eligibility criteria

Applicants should hold or expect to gain a minimum of one of the following:

  • 2:1 bachelor degree
  • Masters degree with merit
  • Equivalent in science (atmospheric/physics/mathematics/forestry), engineering (environmental/civil/mechanical/chemical/computer), or a closely related environmental/physical science discipline.

Some experience of running models, and spatial analysis would be extremely useful.

How to apply

Please follow the application instructions on the SCENARIO website.

Studentship FAQs

Read our studentship FAQs to find out more about applying and funding.

Application deadline

Contact details

Prashant Kumar
26 AA 03
Telephone: +44 (0)1483 682762
E-mail: p.kumar@surrey.ac.uk

Research

Please visit our GCARE page to know more about ongoing research.

studentship-cta-strip

Studentships at Surrey

We have a wide range of studentship opportunities available.