Dr Ammarah Farooq

Postgraduate Research Student
+44 (0)1483 684344
09 BA 00


ALI AKBARI, Muhammad Awais, ZHENHUA FENG, AMMARAH FAROOQ, JOSEF VACLAV KITTLER (2021)A Flatter Loss for Bias Mitigation in Cross-dataset Facial Age Estimation, In: 2020 25th International Conference on Pattern Recognition (ICPR)9413134pp. 10629-10635 IEEE

—Existing studies in facial age estimation have mostly focused on intra-dataset protocols that assume training and test images captured under similar conditions. However, this is rarely valid in practical applications, where training and test sets usually have different characteristics. In this paper, we advocate a cross-dataset protocol for age estimation benchmarking. In order to improve the cross-dataset age estimation performance, we mitigate the inherent bias caused by the learning algorithm itself. To this end, we propose a novel loss function that is more effective for neural network training. The relative smoothness of the proposed loss function is its advantage with regards to the optimisation process performed by stochastic gradient descent. Its lower gradient, compared with existing loss functions, facilitates the discovery of and convergence to a better optimum, and consequently a better generalisation. The crossdataset experimental results demonstrate the superiority of the proposed method over the state-of-the-art algorithms in terms of accuracy and generalisation capability.

SYED SAFWAN KHALID, MUHAMMAD AWAIS TANVIR RANA, ZHENHUA FENG, CHI HO CHAN, AMMARAH FAROOQ, ALI AKBARI, JOSEF VACLAV KITTLER (2022)NPT-Loss: Demystifying face recognition losses with Nearest Proxies Triplet, In: IEEE transactions on pattern analysis and machine intelligence IEEE

Face recognition (FR) using deep convolutional neural networks (DCNNs) has seen remarkable success in recent years. One key ingredient of DCNN-based FR is the design of a loss function that ensures discrimination between various identities. The state-of-the-art (SOTA) solutions utilise normalised Softmax loss with additive and/or multiplicative margins. Despite being popular and effective, these losses are justified only intuitively with little theoretical explanations. In this work, we show that under the LogSumExp (LSE) approximation, the SOTA Softmax losses become equivalent to a proxy-triplet loss that focuses on nearest-neighbour negative proxies only. This motivates us to propose a variant of the proxy-triplet loss, entitled Nearest Proxies Triplet (NPT) loss, which unlike SOTA solutions, converges for a wider range of hyper-parameters and offers flexibility in proxy selection and thus outperforms SOTA techniques. We generalise many SOTA losses into a single framework and give theoretical justifications for the assertion that minimising the proposed loss ensures a minimum separability between all identities. We also show that the proposed loss has an implicit mechanism of hard-sample mining. We conduct extensive experiments using various DCNN architectures on a number of FR benchmarks to demonstrate the efficacy of the proposed scheme over SOTA methods.

Ammarah Farooq, Muhammad Awais, Josef Kittler, Ali Akbari, Syed Safwan Khalid (2020)Cross Modal Person Re-identification with Visual-Textual Queries, In: 2020 IEEE International Joint Conference on Biometrics (IJCB)pp. 1-8 IEEE

Classical person re-identification approaches assume that a person of interest has appeared across different cameras and can be queried by one of the existing images. However, in real-world surveillance scenarios, frequently no visual information will be available about the queried person. In such scenarios, a natural language description of the person by a witness will provide the only source of information for retrieval. In this work, person re-identification using both vision and language information is addressed under all possible gallery and query scenarios. A two stream deep convolutional neural network framework supervised by identity based cross entropy loss is presented. Canonical Correlation Analysis is performed to enhance the correlation between the two modalities in a joint latent embedding space. To investigate the benefits of the proposed approach, a new testing protocol under a multi modal ReID setting is proposed for the test split of the CUHK-PEDES and CUHK-SYSU benchmarks. The experimental results verify that the learnt visual representations are more robust and perform 20% better during retrieval as compared to a single modality system.

Syed Khalid, Muhammad Awais, Zhenhua Feng, Chi-Ho Chan, Ammarah Farooq, Josef Kittler (2020)Resolution Invariant Face Recognition using a Distillation Approach, In: IEEE Transactions on Biometrics, Behavior, and Identity Science Institute of Electrical and Electronics Engineers

Modern face recognition systems extract face representations using deep neural networks (DNNs) and give excellent identification and verification results, when tested on high resolution (HR) images. However, the performance of such an algorithm degrades significantly for low resolution (LR) images. A straight forward solution could be to train a DNN, using simultaneously, high and low resolution face images. This approach yields a definite improvement at lower resolutions but suffers a performance degradation for high resolution images. To overcome this shortcoming, we propose to train a network using both HR and LR images under the guidance of a fixed network, pretrained on HR face images. The guidance is provided by minimising the KL-divergence between the output Softmax probabilities of the pretrained (i.e., Teacher) and trainable (i.e., Student) network as well as by sharing the Softmax weights between the two networks. The resulting solution is tested on down-sampled images from FaceScrub and MegaFace datasets and shows a consistent performance improvement across various resolutions. We also tested our proposed solution on standard LR benchmarks such as TinyFace and SCFace. Our algorithm consistently outperforms the state-of-the-art methods on these datasets, confirming the effectiveness and merits of the proposed method.

Ali Akbari, Muhammad Awais, Zhen-Hua Feng, Ammarah Farooq, Josef Kittler (2022)Distribution Cognisant Loss for Cross-Database Facial Age Estimation With Sensitivity Analysis, In: IEEE Transactions on Pattern Analysis and Machine Intelligence44(4)pp. 1869-1887 Institute of Electrical and Electronics Engineers (IEEE)

Existing facial age estimation studies have mostly focused on intra-database protocols that assume training and test images are captured under similar conditions. This is rarely valid in practical applications, where we typically encounter training and test sets with different characteristics. In this article, we deal with such situations, namely subjective-exclusive cross-database age estimation. We formulate the age estimation problem as the distribution learning framework, where the age labels are encoded as a probability distribution. To improve the cross-database age estimation performance, we propose a new loss function which provides a more robust measure of the difference between ground-truth and predicted distributions. The desirable properties of the proposed loss function are theoretically analysed and compared with the state-of-the-art approaches. In addition, we compile a new balanced large-scale age estimation database. Last, we introduce a novel evaluation protocol, called subject-exclusive cross-database age estimation protocol, which provides meaningful information of a method in terms of the generalisation capability. The experimental results demonstrate that the proposed approach outperforms the state-of-the-art age estimation methods under both intra-database and subject-exclusive cross-database evaluation protocols. In addition, in this article, we provide a comparative sensitivity analysis of various algorithms to identify trends and issues inherent to their performance. This analysis introduces some open problems to the community which might be considered when designing a robust age estimation system.

Ammarah Farooq, Muhammad Awais, Josef Kittler, Syed Safwan Khalid (2022)AXM-Net: Implicit Cross-Modal Feature Alignment for Person Re-identification, In: arXiv.org Cornell University Library, arXiv.org

Cross-modal person re-identification (Re-ID) is critical for modern video surveillance systems. The key challenge is to align cross-modality representations induced by the semantic information present for a person and ignore background information. This work presents a novel convolutional neural network (CNN) based architecture designed to learn semantically aligned cross-modal visual and textual representations. The underlying building block, named AXM-Block, is a unified multi-layer network that dynamically exploits the multi-scale knowledge from both modalities and re-calibrates each modality according to shared semantics. To complement the convolutional design, contextual attention is applied in the text branch to manipulate long-term dependencies. Moreover, we propose a unique design to enhance visual part-based feature coherence and locality information. Our framework is novel in its ability to implicitly learn aligned semantics between modalities during the feature learning stage. The unified feature learning effectively utilizes textual data as a super-annotation signal for visual representation learning and automatically rejects irrelevant information. The entire AXM-Net is trained end-to-end on CUHK-PEDES data. We report results on two tasks, person search and cross-modal Re-ID. The AXM-Net outperforms the current state-of-the-art (SOTA) methods and achieves 64.44\% Rank@1 on the CUHK-PEDES test set. It also outperforms its competitors by \(>\)10\% in cross-viewpoint text-to-image Re-ID scenarios on CrossRe-ID and CUHK-SYSU datasets.