
Courtney Hillman
About
My research project
Bridging in vivo and in vitro approaches to understand the physiological and behavioural effects of substance of abuse including poly-substance use and novel synthetic substances.I am a neuropharmacology researcher funded by Defence Science and Technology Laboratory (DSTL). My PhD project is focused on the use of larval zebrafish (Danio rerio) as a model for studying the abuse liability and as a hazard assessment model of novel pharmaceutical agents and poly-substance use. I am integrating pharmacology, behaviour and to a lesser extent analytical chemistry to determine their suitability for this.
Supervisors
I am a neuropharmacology researcher funded by Defence Science and Technology Laboratory (DSTL). My PhD project is focused on the use of larval zebrafish (Danio rerio) as a model for studying the abuse liability and as a hazard assessment model of novel pharmaceutical agents and poly-substance use. I am integrating pharmacology, behaviour and to a lesser extent analytical chemistry to determine their suitability for this.
Publications
The acquisition of executive skills such as working memory, decision-making and adaptive responding occur at different stages of central nervous system development. Zebrafish (Danio rerio) are increasingly used in behavioural neuroscience for complex behavioural tasks, and there is a critical need to understand the ontogeny of their executive functions. Zebrafish across developmental stages (4, 7, 14, 30 and 90 days post fertilisation (dpf)), were assessed to track development of working memory (WM) and behavioural flexibility (BF) using the free movement pattern Y-maze (FMP Y-maze). Several differences in both WM and BF were identified during the transition from yolk-dependent to independent feeding. Specifically, WM is evident in all age groups, even from 4 dpf. However, BF is not developed until larvae start free feeding, and show significant improvement thereafter, with young adults (90 dpf) demonstrating the most well-defined BF. We demonstrate, for the first time, objective WM processes in 4 dpf zebrafish larvae. This suggests that those wishing to study WM in zebrafish may be able to do so from 4 dpf, thus drastically increasing throughput. In addition, we show that zebrafish follow distinct stages of cognitive development and age-related changes during the early developmental period. Finally, our findings indicate distinct WM and BF mechanisms, which may be useful to study for translational purposes.
Social isolation has detrimental health effects, but the underlying mechanisms are unclear. Here, we investigated the impact of 2 weeks of isolation on behavior and gene expression in the central nervous system at different life stages of zebrafish. Results showed that socially deprived young adult zebrafish experienced increased anxiety, accompanied by changes in gene expression. Most gene expression patterns returned to normal within 24 hours of reintroduction to a social environment, except angptl4, which was upregulated after reintroduction, suggesting an adaptive mechanism. Similarly, aging zebrafish displayed heightened anxiety and increased central nervous system expression of angptl4 during isolation, but effects were reversed upon reintroduction to a social group. The findings imply that angptl4 plays a homeostatic role in response to social isolation, which varies across the lifespan. The study emphasizes the importance of social interactions for psychological well-being and highlights the negative consequences of isolation, especially in older individuals. Further research may unravel how social isolation affects angptl4 expression and its developmental and aging effects.
ADHD is a chronic neurodevelopmental disorder that significantly affects life outcomes, and current treatments often have adverse side effects, high abuse potential, and a 25% non-response rate, highlighting the need for new therapeutics. This study investigates amlodipine, an L-type calcium channel blocker, as a potential foundation for developing a novel ADHD treatment by integrating findings from animal models and human genetic data. Amlodipine reduced hyperactivity in SHR rats and decreased both hyperactivity and impulsivity in adgrl3.1−/− zebrafish. It also crosses the blood-brain barrier, reducing telencephalic activation. Crucially, Mendelian Randomization analysis linked ADHD to genetic variations in L-type calcium channel subunits (α1-C; CACNA1C, β1; CACNB1, α2δ3; CACNA2D3) targeted by amlodipine, while polygenic risk score analysis showed symptom mitigation in individuals with high ADHD genetic liability. With its well-tolerated profile and efficacy across species, supported by genetic evidence, amlodipine shows potential to be refined and developed into a novel treatment for ADHD.
Despite being one of the most used laboratory species in biomedical, behavioral and physiological research, the nutritional requirements of zebrafish (Danio rerio) are poorly understood, and no standardized laboratory diet exists. Diet and feeding regimen can substantially impact the welfare of the fish and, in turn, experimental reproducibility. Consequently, the establishment of a standardized diet and feeding protocol for laboratory zebrafish is imperative to enhance animal welfare, guarantee research reproducibility and advance the economic and environmental sustainability of laboratory dietary practices. Here the aim of this systematic review is to provide an overview of the parameters that need to be standardized in future nutritional studies to facilitate future meta-analyses for confirmation of an optimal juvenile diet for growth. A comprehensive search was conducted in PubMed and Scopus to identify relevant studies published up to August 2023, and the studies were selected on the basis of the predefined inclusion/exclusion criteria. The databases yielded a total of 1,065 articles, of which 14 were included in this review. We conducted data extraction and risk-of-bias analysis in the included studies. Statistical comparisons for specific growth rate, weight gain (%) and length gain (%) parameters were performed to determine the optimal feed for enhanced juvenile growth. We identified significant heterogeneity and caveats to our findings owing to a lack of standardization of experimental conditions in nutritional studies. Our findings highlight an urgent need for research on zebrafish nutrition. Therefore, the standardized parameters we have reported here represent a critical starting point for studies.
Externalizing disorders (ED) are a cause of concern for public health, and their high heritability makes genetic risk factors a priority for research. Adhesion G-Protein-Coupled Receptor L3 (ADGRL3) is strongly linked to several EDs, and loss-of-function models have shown the impacts of this gene on several core ED-related behaviors. For example, adgrl3.1-/- zebrafish show high levels of hyperactivity. However, our understanding of the mechanisms by which this gene influences behavior is incomplete. Here we characterized, for the first time, externalizing behavioral phenotypes of adgrl3.1-/- zebrafish and found them to be highly impulsive, show risk-taking in a novel environment, have attentional deficits, and show high levels of hyperactivity. All of these phenotypes were rescued by atomoxetine, demonstrating noradrenergic mediation of the externalizing effects of adgrl3.1. Transcriptomic analyses of the brains of adgrl3.1-/- vs. wild-type fish revealed several differentially expressed genes and enriched gene clusters that were independent of noradrenergic manipulation. This suggests new putative functional pathways underlying ED-related behaviors, and potential targets for the treatment of ED.
Zebrafish (Danio rerio) larvae offer a unique avenue for high-throughput in vivo investigation. The light/dark locomotor assay is widely used but lacks experimental consistency. Here, we present a protocol for a standardized light/dark assay by describing the steps for plating, acclimatizing larvae, performing the assay, and preparing drug exposure solutions. We also detail procedures for substance exposure and data analysis. For complete details on the use and execution of this protocol, please refer to Hillman et al.1.
Zebrafish are a dynamic research model in the domains of neuropsychopharmacology, biological psychiatry and behaviour. Working with larvae ≤4 days post-fertilisation (dpf) offers an avenue for high-throughput investigation whilst aligning with the 3Rs principles of animal research. The light/dark assay, which is the most widely used behavioural assay for larval neuropharmacology research, lacks experimental reliability and standardisation. This study aimed to formulate a robust, reproducible and standardised light/dark behavioural assay using 4 dpf zebrafish larvae. Considerable between-batch and inter-individual variability was found, which we rectified with a normalisation approach to ensure a reliable foundation for analysis. We then identified that 5-min light/dark transition periods are optimal for locomotor activity. We also found that a 30-min acclimation in the light was found to produce significantly increased dark phase larval locomotion. Next, we confirmed the pharmacological predictivity of the standardised assay using ethanol which, as predicted, caused hyperlocomotion at low concentrations and hypolocomotion at high concentrations. Finally, the assay was validated by assessing the behavioural phenotype of hyperactive transgenic (adgrl3.1-/-) larvae, which was rescued with psychostimulant medications. Our standardised assay not only provides a clear experimental and analytical framework to work with 4 dpf larvae, but also facilitates between-laboratory collaboration using our normalisation approach.