Courtney Hillman


PhD student in Neuropharmacology

Academic and research departments

Surrey Sleep Research Centre.

About

My research project

Publications

Madeleine Cleal, Barbara Fontana, Courtney Hillman, Matthew O. Parker (2023) Ontogeny of working memory and behavioural flexibility in the free movement pattern (FMP) Y-maze in zebrafish

The acquisition of executive skills such as working memory, decision-making and adaptive responding occur at different stages of central nervous system development. Zebrafish (Danio rerio) are increasingly used in behavioural neuroscience for complex behavioural tasks, and there is a critical need to understand the ontogeny of their executive functions. Zebrafish across developmental stages (4, 7, 14, 30 and 90 days post fertilisation (dpf)), were assessed to track development of working memory (WM) and behavioural flexibility (BF) using the free movement pattern Y-maze (FMP Y-maze). Several differences in both WM and BF were identified during the transition from yolk-dependent to independent feeding. Specifically, WM is evident in all age groups, even from 4 dpf. However, BF is not developed until larvae start free feeding, and show significant improvement thereafter, with young adults (90 dpf) demonstrating the most well-defined BF. We demonstrate, for the first time, objective WM processes in 4 dpf zebrafish larvae. This suggests that those wishing to study WM in zebrafish may be able to do so from 4 dpf, thus drastically increasing throughput. In addition, we show that zebrafish follow distinct stages of cognitive development and age-related changes during the early developmental period. Finally, our findings indicate distinct WM and BF mechanisms, which may be useful to study for translational purposes.

Nancy Alnassar, Courtney Hillman, Barbara Fontana, Samuel C. Robson, William N.J. Norton, Matthew O. Parker (2023) angptl4 gene expression as a marker of adaptive homeostatic response to social isolation across the lifespan in zebrafish

Social isolation has detrimental health effects, but the underlying mechanisms are unclear. Here, we investigated the impact of 2 weeks of isolation on behavior and gene expression in the central nervous system at different life stages of zebrafish. Results showed that socially deprived young adult zebrafish experienced increased anxiety, accompanied by changes in gene expression. Most gene expression patterns returned to normal within 24 hours of reintroduction to a social environment, except angptl4, which was upregulated after reintroduction, suggesting an adaptive mechanism. Similarly, aging zebrafish displayed heightened anxiety and increased central nervous system expression of angptl4 during isolation, but effects were reversed upon reintroduction to a social group. The findings imply that angptl4 plays a homeostatic role in response to social isolation, which varies across the lifespan. The study emphasizes the importance of social interactions for psychological well-being and highlights the negative consequences of isolation, especially in older individuals. Further research may unravel how social isolation affects angptl4 expression and its developmental and aging effects.