Dr Diane Lee


Research Fellow B in Infectious Diseases
PhD, MSc, BSc (Hons)

Academic and research departments

School of Veterinary Medicine.

About

Areas of specialism

Primary and secondary tissue culture; Epithelial cell biology (lung and GI tract) ; Protein purification ; Molecular biology

University roles and responsibilities

  • Athena Swan SAT member (Vet School)
  • Research Culture Committee representative
  • NASPA Sub-committee member

    Research

    Research interests

    Teaching

    Publications

    DIANE LEE, Clare L. Thompson, Ronald E. Baynes, Hiroko Enomoto, Geof W. Smith, MARK CHAMBERS (2022)Development and evaluation of a bovine lung-on-chip (bLOC) to study bovine respiratory diseases, In: In vitro models Springer
    Kevin Maringer, A Yousuf, KJ Heesom, J Fan, D Lee, A Fernandez-Sesma, C Bessant, DA Matthews, AD Davidson (2017)Proteomics Informed by Transcriptomics for Characterising Active Transposable Elements and Genome Annotation in Aedes Aegypti, In: BMC Genomics18(101) BioMed Central

    Background: Aedes aegypti is a vector for the (re-)emerging human pathogens dengue, chikungunya, yellow fever and Zika viruses. Almost half of the Ae. aegypti genome is comprised of transposable elements (TEs). Transposons have been linked to diverse cellular processes, including the establishment of viral persistence in insects, an essential step in the transmission of vector-borne viruses. However, up until now it has not been possible to study the overall proteome derived from an organism’s mobile genetic elements, partly due to the highly divergent nature of TEs. Furthermore, as for many non-model organisms, incomplete genome annotation has hampered proteomic studies on Ae. aegypti. Results: We analysed the Ae. aegypti proteome using our new proteomics informed by transcriptomics (PIT) technique, which bypasses the need for genome annotation by identifying proteins through matched transcriptomic (rather than genomic) data. Our data vastly increase the number of experimentally confirmed Ae. aegypti proteins. The PIT analysis also identified hotspots of incomplete genome annotation, and showed that poor sequence and assembly quality do not explain all annotation gaps. Finally, in a proof-of principle study, we developed criteria for the characterisation of proteomically active TEs. Protein expression did not correlate with a TE’s genomic abundance at different levels of classification. Most notably, long terminal repeat (LTR) retrotransposons were markedly enriched compared to other elements. PIT was superior to ‘conventional’ proteomic approaches in both our transposon and genome annotation analyses. Conclusions: We present the first proteomic characterisation of an organism’s repertoire of mobile genetic elements, which will open new avenues of research into the function of transposon proteins in health and disease. Furthermore, our study provides a proof-of concept that PIT can be used to evaluate a genome’s annotation to guide annotation efforts which has the potential to improve the efficiency of annotation projects in non-model organisms. PIT therefore represents a valuable new tool to study the biology of the important vector species Ae. aegypti, including its role in transmitting emerging viruses of global public health concern.

    Diane Frances Lee, Mark Andrew Chambers (2019)Isolation of Alveolar Type II Cells from Adult Bovine Lung, In: Current Protocols in Toxicology80(1)e71 John Wiley & Sons Ltd

    Alveolar type II (ATII) cells play a key role as part of the distal lung epithelium, including in the innate immune response and as self‐renewing progenitors to replace alveolar type I (ATI) cells during epithelial regeneration. Their secretion of surfactant protein helps maintain homeostasis and exerts protective, antimicrobial properties. ATII cells remain difficult to study, partly due to inefficient and expensive isolation methods, a propensity to differentiate into ATI cells, and susceptibility to fibroblast contamination. Published methods of isolation often require specialized technology, negatively impacting the development of in vitro models of disease, including bovine tuberculosis. Presented here is a simple and cost‐effective method for generation of bovine primary ATII cells. These cells exhibit an ATII phenotype in 2D and 3D culture and are conducive to further study of the role of ATII cells in bovine respiratory diseases.

    Diane Frances Lee, Francisco Javier Salguero, Duncan Grainger, Robert James Francis, Kirsty MacLellan-Gibson, Mark Andrew Chambers (2018)Isolation and characterisation of alveolar type II pneumocytes from adult bovine lung, In: Scientific Reports8(1) Nature Publishing Group

    Alveolar type II (ATII) cells play a key role as part of the distal lung epithelium, including roles in the innate immune response and as self-renewing progenitors to replace alveolar type I (ATI) cells during regeneration of the alveolar epithelium. Their secretion of surfactant protein helps to maintain homeostasis in the distal lung and exert protective, antimicrobial properties. Despite the cell’s crucial roles, they remain difficult to study, in part due to inefficient and expensive isolation methods, a propensity to differentiate into alveolar type I cells in culture and susceptibility to fibroblast overgrowth from primary isolations. Published methods of isolation often require specialist technology, negatively impacting the development of in vitro models of disease, including bovine tuberculosis (BTB), a serious re-emerging disease in both animals and humans worldwide. We present here a simple and cost effective method that may be utilised in the generation of bovine primary ATII cells. These exhibit an ATII phenotype in 2D and 3D culture in our studies and are conducive to further study of the role of ATII cells in bovine respiratory diseases.

    Additional publications