
Harry Addison
Academic and research departments
Faculty of Engineering and Physical Sciences, Astrophysics Research Group.About
My research project
SNe Spectroscopy and CosmologyThe Time-Domain Extragalactic Survey (TiDES) will conduct spectroscopic follow up of optical transients observed by upcoming sky surveys such as the Large Synoptic Survey Telescope (LSST). Over TiDES proposed observing timeline, it will observe spectra of over 30,000 supernovae (SN), of which about 25,000 will be type Ia SN. This will be the largest spectroscopic sample of SNe Ia to date and will allow us to further investigate the properties of sub-types of SN Ia and their systematic effects in the use for constraining the cosmological model and dark energy. Due to the large number of spectra that will be observed, we are at a stage where visually analysing data is impractical. Therefore, we are currently developing a pipeline for TiDES that will automate the spectroscopic analysis of the observed supernovae spectra. In the future, we hope to the use the results from the spectral analysis to investigate the systematics present in using SNe Ia for constraining the cosmological model and dark matter.
Supervisors
The Time-Domain Extragalactic Survey (TiDES) will conduct spectroscopic follow up of optical transients observed by upcoming sky surveys such as the Large Synoptic Survey Telescope (LSST). Over TiDES proposed observing timeline, it will observe spectra of over 30,000 supernovae (SN), of which about 25,000 will be type Ia SN. This will be the largest spectroscopic sample of SNe Ia to date and will allow us to further investigate the properties of sub-types of SN Ia and their systematic effects in the use for constraining the cosmological model and dark energy. Due to the large number of spectra that will be observed, we are at a stage where visually analysing data is impractical. Therefore, we are currently developing a pipeline for TiDES that will automate the spectroscopic analysis of the observed supernovae spectra. In the future, we hope to the use the results from the spectral analysis to investigate the systematics present in using SNe Ia for constraining the cosmological model and dark matter.