Placeholder image for staff profiles

Kristian Stockbridge


Postgraduate research student
+44 (0)1483 689402
08 ATI 02

My publications

Publications

Peach T., Stockbridge K., Li Juerong, Homewood K. P., Lourenco M. A., Chick S., Hughes M. A., Murdin B. N., Clowes S. K. (2019) Enhanced diffusion and bound exciton interactions of high density implanted bismuth donors in silicon,Applied Physics Letters 115 (7) 072102 pp. 1-8 AIP Publishing
This study reports the effect of an increasing ion dose on both the electrical activation yield and the characteristic properties of implanted bismuth donors in silicon. A strong dependence of implant fluence is observed on both the yield of bismuth donors and the measured impurity diffusion. This is such that higher ion concentrations result in both a decrease in activation and an enhancement in donor migration through interactions with mobile silicon lattice vacancies and interstitials. Furthermore, the effect of implant fluence on the properties of the Si:Bi donor bound exciton, D0X, is also explored using photoluminescence (PL) measurements. In the highest density sample, centers corresponding to the PL of bismuth D0Xs within both the high density region and the lower concentration diffused tail of the implanted donor profile are identifiable.
Stockbridge Kristian, Chick Steven, Crane E., Fisher A., Murdin Benedict (2020) Using non-homogeneous point process statistics to find multi-species
event clusters in an implanted semiconductor
,
Journal of Physics Communications IOP Publishing
The Poisson distribution of event-to-ith-nearest-event radial distances is well known for homogeneous processes that do not depend on location or time. Here we investigate the case of a non-homogeneous point process where the event probability (and hence the neighbour configuration) depends on location within the event space. The particular non-homogeneous scenario of interest to us is ion implantation into a semiconductor for the purposes of studying interactions between the implanted impurities. We calculate the probability of a simple cluster based on nearest neighbour distances, and specialise to a particular two-species cluster of interest for qubit gates. We show that if the
two species are implanted at different depths there is a maximum in the cluster probability and an optimum density
profile.