Mamatha Tomson

Postgraduate Research Student
MTech (Construction Technology and Management); BTech (Civil Engineering)
+44 (0)1483 686648
01 AA 01
10am - 5pm


Mamatha Tomson, PRASHANT KUMAR, Yendle Barwise, Pascal Perez, Hugh Forehead, Kristine French, Lidia Morawska, John F Watts (2021)Green infrastructure for air quality improvement in street canyons, In: Environment International146pp. 106288-106288 Elsevier Ltd

Street canyons are generally highly polluted urban environments due to high traffic emissions and impeded dispersion. Green infrastructure (GI) is one potential passive control system for air pollution in street canyons, yet optimum GI design is currently unclear. This review consolidates findings from previous research on GI in street canyons and assesses the suitability of different GI forms in terms of local air quality improvement. Studies on the effects of various GI options (trees, hedges, green walls, green screens and green roofs) are critically evaluated, findings are synthesised, and possible recommendations are summarised. In addition, various measurement methods used for quantifying the effectiveness of street greening for air pollution reduction are analysed. Finally, we explore the findings of studies that have compared plant species for pollution mitigation. We conclude that the influences of different GI options on air quality in street canyons depend on street canyon geometry, meteorological conditions and vegetation characteristics. Green walls, green screens and green roofs are potentially viable GI options in existing street canyons, where there is typically a lack of available planting space. Particle deposition to leaves is usually quantified by leaf washing experiments or by microscopy imaging techniques, the latter of which indicates size distribution and is more accurate. The pollutant reduction capacity of a plant species largely depends on its macromorphology in relation to the physical environment. Certain micromorphological leaf traits also positively correlate with deposition, including grooves, ridges, trichomes, stomatal density and epicuticular wax amount. The complexity of street canyon environments and the limited number of previous studies on novel forms of GI in street canyons mean that offering specific recommendations is currently unfeasible. This review highlights a need for further research, particularly on green walls and green screens, to substantiate their efficacy and investigate technical considerations.

Prashant Kumar, Juan C. Zavala-Reyes, Mamatha Tomson, Gopinath Kalaiarasan (2022)Understanding the effects of roadside hedges on the horizontal and vertical distributions of air pollutants in street canyons, In: Environment International158106883 Elsevier

Built-up environments limit air pollution dispersion in street canyons and lead to complex trade-offs between green infrastructure (GI) usage and its potential to reduce near-road exposure. This study evaluated the effects of an evergreen hedge on the distribution of particulate matter (PM1, PM2.5, PM10), black carbon (BC) and particle number concentrations (PNCs) in a street canyon in West London. Instrumentation was deployed around the hedge at 13 fixed locations to assess the impact of the hedge on vertical and horizontal concentration distributions. Changes in concentrations behind the hedge were measured with reference to the corresponding sampling point in front of the hedge for all sets of measurements. Results showed a significant reduction in vertical concentrations between 1 and 1.7 m height, with maximum reductions of –16% (PM1 and PM10) and –17% (PM2.5) at ∼1 m height. Horizontal concentrations revealed two zones between the building façade and the hedge, with opposite trends: (i) close to hedge (within 0.2 m), where a reduction of PM1 and PM2.5 was observed, possibly due to dilution, deposition and the barrier effect; and (ii) 0.2–3 m from the hedge, showing an increase of 13–37% (PM1) and 7–21% (PM2.5), possibly due to the blockage effect of the building, restricting dispersion. BC showed a significant reduction at breathing height (1.5 m) of between –7 and –50%, followed by –15% for PNCs in the 0.02–1 µm size range. The ELPI + analyser showed a peak of ∼30 nm. The presence of the hedge led to a ∼39 ± 32% decrease in total PNCs (0.006–10 µm), suggesting a greater removal in different modes, such as a 83 ± 12% reduction in nucleation mode (0.006–0.030 µm), 74 ± 15% in ultrafine (≤0.1 µm), and 34 ± 30% in accumulation mode (0.03–0.3 µm). These findings indicate graded filtering of particles by GI in a near-road street canyon environment. This insight will guide the improved design of GI barriers and the validation of microscale dispersion models.

Mamatha Tomson, Prashant Kumar, Gopinath Kalaiarasan, Juan C. Zavala-Reyes, Marta Chiapasco, Mark A. Sephton, Gloria Young, Alexandra E. Porter (2023)Corrigendum to “Pollutant concentrations and exposure variability in four urban microenvironments of London” [Atmos. Environ. 298 (2023) 119624] (Atmospheric Environment (2023) 298, (S135223102300050X), (10.1016/j.atmosenv.2023.119624)), In: Atmospheric environment (1994)310119934 Elsevier Ltd
Mamatha Tomson, Prashant Kumar, Gopinath Kalaiarasan, Juan C. Zavala-Reyes, Marta Chiapasco, Mark A. Sephton, Gloria Young, Alexandra E. Porter (2023)Pollutant concentrations and exposure variability in four urban microenvironments of London, In: Atmospheric environment (1994)119624 Elsevier

We compared various pollutant concentrations (PM1, PM2.5, PM10, PNC, BC) at four different urban microenvironments (MEs) in London (Indoor, IN; Traffic Intersection, TI; Park, PK; and Street Canyon, SC). The physico-chemical characteristics of particles were analysed, and the respiratory deposition doses (RDD) were estimated. Field measurements were conducted over a period of 121 days. The mean PM2.5 (PNC) concentrations were found to be 9.47 ± 7.05 (16366 ± 11815), 8.09 ± 4.57 (10951 ± 6445), 5.11 ± 2.96 (7717 ± 4576), 3.88 ± 3.06 (5672 ± 2934) μg m−3 (# cm−3) at TI, SC, PK and IN, respectively. PM2.5, PM10 and PNC exhibited a trend of TI > SC > PK > IN; higher concentrations for PM1 and BC were observed at IN than PK due to the emissions from printers, producing a trend of TI > SC > IN > PK. We observed 12%–30% higher fine PM concentrations at TI and SC sites during morning peak (07:00–09:30) than the evening peak hours (16:00–19:00); while IN showed a smaller variation in fine PM concentrations compared with outdoor TI, PK and SC sites owing to their prevalence in the IN for a longer time. Fine and ultrafine PM containing potentially toxic trace transition metals including Fe, Ti, Cr, Mn, Al and Mg were detected by high resolution electron microscopy at all sites. There was a similar relative abundance of different elements at the TI, IN and PK sites, which suggests a transport of PM between MEs. RDD for PM1 was highest (2.45 ± 2.27 μg h−1) at TI for females during running; PM2.5 and PM10 were highest at SC (11.23 ± 6.34 and 37.17 ± 20.82 μg h−1, respectively). The results show that the RDD variation between MEs does not follow the PM concentration trend. RDD at PK was found to be 39%–53% lower than TI and SC during running for all the PM fractions. Overall, the study findings show the air quality variation at different MEs and reveals the exposure inequalities around the city, which enable the management of personal exposure by selecting appropriate MEs for different activities.

Gopinath Kalaiarasan, Prashant Kumar, Mamatha Tomson, Juan C. Zavala-Reyes, Alexandra E. Porter, Gloria Young, Mark A. Sephton, Hisham Abubakar-Waziri, Christopher C. Pain, Ian M Adcock, Sharon Mumby, Claire Dilliway, Fangxing Fang, Rossella Arcucci, Kian Fan Chung (2023)Particle Number Size Distribution in Three Different Microenvironments of London, In: Atmosphere15(1)45 MDPI

We estimated the particle number distributions (PNDs), particle number concentrations (PNCs), physicochemical characteristics, meteorological effects, and respiratory deposition doses (RDD) in the human respiratory tract for three different particle modes: nucleation (N6–30), accumulation (N30–300), and coarse (N300–10,000) modes. This study was conducted in three different microenvironments (MEs) in London (indoor, IN; traffic intersection, TI; park, PK) measuring particles in the range of 6 nm–10,000 nm using an electrical low-pressure impactor (ELPI+). Mean PNCs were 1.68 ± 1.03 × 104 #cm−3, 7.00 ± 18.96 × 104 #cm−3, and 0.76 ± 0.95 × 104 #cm−3 at IN, TI, and PK, respectively. The PNDs were high for nucleation-mode particles at the TI site, especially during peak traffic hours. Wind speeds ranging from 0 to 6 ms−1 exhibit higher PNCs for nucleation- and accumulation-mode particles at TI and PK sites. Physicochemical characterisation shows trace metals, including Fe, O, and inorganic elements, that were embedded in a matrix of organic material in some samples. Alveolar RDD was higher for the nucleation and accumulation modes than the coarse-mode particles. The chemical signatures from the physicochemical characterisation indicate the varied sources at different MEs. These findings enhance our understanding of the different particle profiles at each ME and should help devise ways of reducing personal exposure at each ME.

PRASHANT KUMAR, GOPINATH KALAIARASAN, MAMATHA TOMSON, JUAN DE LA CRUZ ZAVALA REYES, ARVIND TIWARI, Sarkawt Hama (2021)Fine and ultra fine particles in micro environments of London: Findings of INHALE project