Tom Bond

Dr Tom Bond


Lecturer
PhD, MSc, MSci
+44 (0)1483 684474
01A AA 02

Academic and research departments

Department of Civil and Environmental Engineering.

Biography

Biography

I joined the University of Surrey in March 2017 as Lecturer in Civil and Environmental Engineering. My first degree is in chemistry from the University of Bristol. Subsequently I undertook a master's degree, then a PhD, in water engineering at Cranfield University. After finishing my PhD I worked as a science writer at the Royal Society of Chemistry, then as a postdoctoral researcher at Imperial College London. After a year as a research fellow at the University of KwaZulu-Natal in Durban, South Africa, researching the anaerobic digestion of sewage, I returned to Imperial College, developing an independent research programme as an Imperial College Research Fellow. My research has been funded by various sources, including EPSRC, Defra, UK water companies and the South African Water Research Commission.

Research interests

My research has the ultimate goal of engineering solutions to the impacts of hazardous pollutants, through investigating the underlying chemical pathways which define their fate in aquatic systems. This involves addressing key research questions which link disciplines including civil engineering, public health, chemistry and sustainable development:

  • Drinking water disinfection byproducts - which byproducts, if any, can explain the association between bladder cancer and long-term exposure to chlorinated drinking water identified from epidemiological studies? How can their formation be controlled during potable water treatment? How will deterioration in raw water quality alter the profile of byproducts formed during drinking water disinfection?
  • Aquatic microplastics - what is the eventual fate of the vast amounts of plastic litter in both the ocean and freshwater? Do certain types of plastics degrade to more benign products than others?
  • Sustainable treatment technologies - which methods, ideally involving minimal consumption of energy and chemicals, have the potential to revolutionise the approaches used to purify water in both developing and developed countries?

My publications

Publications

Chu W, Yao D, Gao N, Bond T, Templeton MR (2015) The enhanced removal of carbonaceous and nitrogenous disinfection by-product precursors using integrated permanganate oxidation and powdered activated carbon adsorption pretreatment, Chemosphere 141 pp. 1-6 Elsevier
Pilot-scale tests were performed to reduce the formation of a range of carbonaceous and nitrogenous disinfection by-products (C-, N-DBPs), by removing or transforming their precursors, with an integrated permanganate oxidation and powdered activated carbon adsorption (PM?PAC) treatment process before conventional water treatment processes (coagulation?sedimentation?filtration, abbreviated as CPs). Compared with the CPs, PM?PAC significantly enhanced the removal of DOC, DON, NH3+?N, and algae from 52.9%, 31.6%, 71.3%, and 83.6% to 69.5%, 61.3%, 92.5%, and 97.5%, respectively. PM pre-oxidation alone and PAC pre-adsorption alone did not substantially reduce the formation of dichloroacetonitrile, trichloroacetonitrile, N-nitrosodimethylamine and dichloroacetamide. However, the PM?PAC integrated process significantly reduced the formation of both C-DBPs and N-DBPs by 60?90% for six C-DBPs and 64?93% for six N-DBPs, because PM oxidation chemically altered the molecular structures of nitrogenous organic compounds and increased the adsorption capacity of the DBP precursors, thus highlighting a synergistic effect of PM and PAC. PM?PAC integrated process is a promising drinking water technology for the reduction of a broad spectrum of C-DBPs and N-DBPs.
Bond T, Goslan EH, Jefferson B, Roddick F, Fan L, Parsons SA (2009) Chemical and biological oxidation of NOM surrogates and effect on HAA formation, Water Research 43 (10) pp. 2615-2622 Elsevier
Formation of disinfection by-products (DBPs) can be controlled by removal of disinfection by-product precursors before disinfection. Variable success has been reported, depending on the treatment used and water tested. Chemical and biological oxidations are candidate technologies to control DBP formation. Given the uncertainty over the identity of DBP precursors, the use of surrogates of natural organic matter (NOM) allows fundamental probing of the links between compound character, removal and DBP formation. Nine compounds were chosen to represent NOM and their removal by two advanced oxidation processes (AOPs), UV-C irradiation and biological treatment compared while haloacetic acid (HAA) formation before and after treatment was measured. Although AOPs were able to fully remove all compounds, incomplete mineralisation led to increased HAA levels, dramatically in the case of two amino acids. Biological treatment was effective in removing amino acids but also moderately increased the HAA formation potential (HAAFP) of hydrophilic compounds. These findings indicate waters with high amino acid concentrations will be susceptible to raised HAA levels following AOP treatment and careful process selection for HAA control is required in such cases.
Chu W, Li X, Bond T, Gao N, Yin D (2016) The formation of haloacetamides and other disinfection by-products from non-nitrogenous low-molecular weight organic acids during chloramination, Chemical Engineering Journal 285 pp. 164-171
Low-molecular weight organic acids (LMWOAs) are widespread in nature, and many are recalcitrant during conventional drinking water treatment, due to their LMW and hydrophilic character. This study assessed the formation of a range of disinfection by-products (DBPs) from the chloramination of seven non-nitrogenous LMWOA precursors, with an emphasis on the contribution of N-chloramine incorporation to haloacetamide (HAcAm) formation. The other DBPs comprised chlorinated halomethanes, haloacetonitriles and haloacetic acids. Citric acid generated higher yields of trichloromethane and two chloroacetic acids than the other LMWOAs. Further, the unsaturated acids (fumaric acid and itaconic acid) formed more chloroacetic acids than saturated acids (oxalic acid, succinic acid, adipic acid). Importantly, non-nitrogenous LMWOAs formed three nitrogenous DBPs (dichloroacetamide, trichloroacetamide, and small amounts of dichloroacetonitrile) during chloramination, firstly indicating the monochloramine can supply the nitrogen in nitrogenous DBPs, and the formation of haloacetamides at least in part is independent of the hydrolysis of haloacetonitriles. To the authors? knowledge, this is the first time formation of halogenated nitrogenous DBPs (N-DBPs) has been reported from chloramination of non-nitrogenous LMWOA precursors. This indicates that concentrations of dissolved organic nitrogen compounds in drinking water are not a reliable surrogate for formation of N-DBPs during chloramination. Bromine incorporation factor increased with increasing bromide during chloramination of citric acid, and bromine was easier to incorporate into di-HAcAms than mono- and tri-HAcAms during chloramination.
Bond T, Templeton MR (2011) History and future of domestic biogas plants in the developing world, Energy for Sustainable Development 15 (4) pp. 347-354 Elsevier
Technologies which recover biogas do so by harnessing anaerobic degradation pathways controlled by a suite of microorganisms. The biogas released acts as an environmentally sustainable energy source, while providing a method for disposal of various wastes. Biogas contains 50?70% methane and 30?50% carbon dioxide, as well as small amounts of other gases and typically has a calorific value of 21?24 MJ/m3. Various appliances can be fuelled by biogas, with stoves offering an application appropriate for deployment in developing countries. Widespread dissemination of biogas digesters in developing countries stems from the 1970s and there are now around four and 27 million biogas plants in India and China respectively. These are typically small systems in rural areas fed by animal manure. However, in many other countries technology spread has foundered and/or up to 50% of plants are non-functional. This is linked to inadequate emphasis on maintenance and repair of existing facilities. Hence for biogas recovery technology to thrive in the future, operational support networks need to be established. There appear to be opportunities for biogas stoves to contribute to projects introducing cleaner cookstoves, such as the Global Alliance for Clean Cookstoves. Beyond this, there remains potential for domestic plants to utilise currently underexploited biogas substrates such as kitchen waste, weeds and crop residues. Thus there is a need for research into reactors and processes which enable efficient anaerobic biodegradation of these resources.
Bond T, Tang C, Graham N, Templeton MR (2016) Emerging investigators series: formation of disinfection byproducts during the preparation of tea and coffee, Environmental Science: Water Research & Technology 2 (1) pp. 196-205 The Royal Society of Chemistry
This study examined the formation of selected disinfection byproducts (DBPs) during the chlorination of breakfast, Earl Grey and green tea, and from instant and filter coffee. Eight model compounds representing the organics in tea and coffee were also tested. Initially, experiments using water pre-spiked with chlorine demonstrated chlorine concentrations of 1?19 mg L?1 were reduced by 5?19% through boiling in a kettle. The chloroform (trichloromethane) yield of 47.6 ± 0.3% from chlorination of catechin hydrate is high compared with surrogates of drinking water natural organic matter (NOM). Chloroform yields from tea chlorinated under formation potential conditions were similar to reactive drinking water NOM isolates and higher than from coffee. Chloroform generated during the preparation of tea reached 30?43 ¼g L?1 at the highest chlorine dose of 14.2 mg L?1. Under the same conditions no chloroform was detected in instant coffee, whereas up to 3 ¼g L?1 chloroform was generated from filter coffee. Overall, this study demonstrates the potential for DBP formation when tea is prepared in water containing elevated chlorine concentrations, such as following point-of-use treatment. Conversely, chloroform concentrations in tea prepared with water containing 1 mg L?1 chlorine were d4 ¼g L?1 and therefore trichloromethane (THM) concentrations in tea made using municipal tap water are likely to be insignificant.
Chen B, Zhang T, Bond T, Gan Y (2015) Development of quantitative structure activity relationship (QSAR) model for disinfection byproduct (DBP) research: A review of methods and resources, Journal of Hazardous Materials 299 pp. 260-279 Elsevier
Quantitative structure?activity relationship (QSAR) models are tools for linking chemical activities with molecular structures and compositions. Due to the concern about the proliferating number of disinfection byproducts (DBPs) in water and the associated financial and technical burden, researchers have recently begun to develop QSAR models to investigate the toxicity, formation, property, and removal of DBPs. However, there are no standard procedures or best practices regarding how to develop QSAR models, which potentially limit their wide acceptance. In order to facilitate more frequent use of QSAR models in future DBP research, this article reviews the processes required for QSAR model development, summarizes recent trends in QSAR-DBP studies, and shares some important resources for QSAR development (e.g., free databases and QSAR programs). The paper follows the four steps of QSAR model development, i.e., data collection, descriptor filtration, algorithm selection, and model validation; and finishes by highlighting several research needs. Because QSAR models may have an important role in progressing our understanding of DBP issues, it is hoped that this paper will encourage their future use for this application.
Sule MN, Templeton MR, Bond T (2015) Rejection of organic micro-pollutants from water by a tubular, hydrophilic pervaporative membrane designed for irrigation applications, Environmental Technology 37 (11) pp. 1382-1389 Taylor & Francis
The links between chemical properties, including those relating to molecular size, solubility, hydrophobicity and vapour pressure, and rejection of model aromatic micro-pollutants by a tubular, hydrophilic polymer pervaporation membrane designed for irrigation applications were investigated. Open air experiments were conducted at room temperature for individual solutions of fluorene, naphthalene, phenol, 1,2-dichlorobenzene, 1,2-diethylbenzene and 2-phenoxyethanol. Percentage rejection generally increased with increased molecular size for the model micro-pollutants (47?86%). Molecular weight and log Kow had the strongest positive relationships with rejection, as demonstrated by respective correlation coefficients of r = 0.898 and 0.824. Rejection was also strongly negatively correlated with aqueous solubility and H-bond ´. However, properties which relate to vapour phase concentrations of the micro-pollutants were not well correlated with rejection. Thus, physicochemical separation processes, rather than vapour pressure, drive removal of aromatic contaminants by the investigated pervaporation tube. This expanded knowledge could be utilized in considering practical applications of pervaporative irrigation systems for treating organic-contaminated waters such as oilfield-produced waters.
Bond T, Goslan EH, Parsons SA, Jefferson B (2010) Disinfection by-product formation of natural organic matter surrogates and treatment by coagulation, MIEX and nanofiltration, Water Research 44 (5) pp. 1645-1653 Elsevier
Potentially the most effective means of controlling disinfection by-products (DBPs) is to remove precursors before disinfection. To understand relationships between physical properties, treatability and DBP formation, nine natural organic matter (NOM) surrogates were studied. Their DBP formation and removal by coagulation, MIEX® anion exchange resin and two nanofiltration membranes was measured. Whereas treatability of NOM surrogates was explained in terms of their physicochemical properties, the same was not true of DBP formation. Hence it was not possible to selectively remove compounds which generate high amounts of DBPs. Instead, precursor removal strategies based upon empirical DBP formation potential testing are more apt. Under conditions simulating full-scale performance, MIEX® did not offer improved performance over coagulation. A hydrophobic nanofiltration membrane proved successful for removing neutral, hydrophilic surrogates, and hence is also suitable for DBP precursors of this character.
Bond T, Kamal NM, Bonnisseau T, Templeton MR (2014) Disinfection by-product formation from the chlorination and chloramination of amines, Journal of Hazardous Materials 278 pp. 288-296 Elsevier
This study investigated the relative effect of chlorination and chloramination on DBP formation from seven model amine precursor compounds, representative of those commonly found in natural waters, at pH 6, 7 and 8. The quantified DBPs included chloroform, dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN) and chloropicrin (trichloronitromethane). The aggregate formation (i.e. the mass sum of the formation from the individual precursors) of chloroform, DCAN and TCAN from all precursors was reduced by respectively 75?87%, 66?90% and 89?93% when considering pre-formed monochloramine compared to chlorine. The formation of both haloacetonitriles decreased with increasing pH following chlorination, but formation after chloramination was relatively insensitive to pH change. The highest formation of chloropicrin was from chloramination at pH 7. These results indicate that, while chloramination is effective at reducing the concentrations of trihalomethanes and haloacetonitriles in drinking water compared with chlorination, the opposite is true for the halonitromethanes.
Bond T (2014) The occurrence and arrival routes of North American landbirds in Britain, British Birds 107 (2) pp. 66-82 British Birds Ltd.
Accepted records of North American landbirds in Britain from 1958 to 2012 were analysed to discover seasonal, temporal and regional occurrence trends, and then to discuss possible arrival routes. Records in Britain are compared with those from the Azores and Iceland. The only species to occur in the top five most frequent American landbirds in each of these three areas was the Red-eyed Vireo. Over 80% of all British records during the review period were in autumn, the peak arrival centred on 9th-10th October. In southwest England, 95% of arrivals were in autumn; in contrast, in the Northern Isles, spring accounted for 31% of all American landbird records. A lack of vigorous transatlantic weather systems in spring suggests that a higher proportion of records at this season are ship-assisted birds, especially given the numbers of North American sparrows involved.
Bond T, Templeton MR, Mokhtar Kamal NH, Graham N, Kanda R (2015) Nitrogenous disinfection byproducts in English drinking water supply systems: Occurrence, bromine substitution and correlation analysis, Water Research 85 pp. 85-94 Elsevier
Despite the recent focus on nitrogenous disinfection byproducts in drinking water, there is limited occurrence data available for many species. This paper analyses the occurrence of seven haloacetonitriles, three haloacetamides, eight halonitromethanes and cyanogen chloride in 20 English drinking water supply systems. It is the first survey of its type to compare bromine substitution factors (BSFs) between the haloacetamides and haloacetonitriles. Concentrations of the dihalogenated haloacetonitriles and haloacetamides were well correlated. Although median concentrations of these two groups were lower in chloraminated than chlorinated surface waters, median BSFs for both in chloraminated samples were approximately double those in chlorinated samples, which is significant because of the higher reported toxicity of the brominated species. Furthermore, median BSFs were moderately higher for the dihalogenated haloacetamides than for the haloacetonitriles. This indicates that, while the dihalogenated haloacetamides were primarily generated from hydrolysis of the corresponding haloacetonitriles, secondary formation pathways also contributed. Median halonitromethane concentrations were remarkably unchanging for the different types of disinfectants and source waters: 0.1 ¼g·mgTOC?1 in all cases. Cyanogen chloride only occurred in a limited number of samples, yet when present its concentrations were higher than the other N-DBPs. Concentrations of cyanogen chloride and the sum of the halonitromethanes were not correlated with any other DBPs.
Tang R, Clark JM, Bond T, Graham N, Hughes D, Freeman C (2013) Assessment of potential climate change impacts on peatland dissolved organic carbon release and drinking water treatment from laboratory experiments, Environmental Pollution 173 pp. 270-277 Elsevier
Catchments draining peat soils provide the majority of drinking water in the UK. Over the past decades, concentrations of dissolved organic carbon (DOC) have increased in surface waters. Residual DOC can cause harmful carcinogenic disinfection by-products to form during water treatment processes. Increased frequency and severity of droughts combined with and increased temperatures expected as the climate changes, have potentials to change water quality. We used a novel approach to investigate links between climate change, DOC release and subsequent effects on drinking water treatment. We designed a climate manipulation experiment to simulate projected climate changes and monitored releases from peat soil and litter, then simulated coagulation used in water treatment. We showed that the ?drought? simulation was the dominant factor altering DOC release and affected the ability to remove DOC. Our results imply that future short-term drought events could have a greater impact than increased temperature on DOC treatability.
Ozonation before chlorination is associated with enhanced formation of chloropicrin, a halonitromethane disinfection by-product (DBP), during drinking water treatment. In order to elucidate reasons for this, five natural organic matter (NOM) surrogates were treated using both chlorination and ozonation?chlorination under controlled laboratory conditions. Selected surrogates comprised two phenolic compounds, two free amino acids and one dipeptide; these were resorcinol, 3-aminophenol, L-aspartic acid, ²-alanine and ala-ala, respectively. Quantified DBPs included chloropicrin, chloroform, dichloroacetonitrile and trichloroacetonitrile. Relative to chlorination alone, increases in the formation of chloropicrin from ozonation?chlorination varied from 138% for 3-aminophenol to 3740% for ala-ala for the four amine surrogates. This indicates that ozone is more effective than chlorine in mediating a rate-limiting oxidation step in chloropicrin formation, most plausibly involving conversion of an amine group to a nitro group. While both hydrophilic and hydrophobic surrogates acted as chloropicrin precursors, ala-ala was the most reactive precursor following ozonation?chlorination. Since peptides are far commoner in drinking water sources than free amino acids, further research into chemical oxidation of these species by ozone and chlorine is recommended. In contrast, oxidation with ozone prior to chlorination reduced chloroform formation moderately for the two phenolic compounds.
Persulfate oxidation processes, with and without activation using ultraviolet light (respectively
UV/PS and PS) have the potential to degrade anthropogenic chemicals in water. However, little is
known about the impact of PS or UV/PS pre-oxidation on downstream formation of disinfection
by-products (DBPs). In this study the three antibiotic chloramphenicols (chloramphenicol and two
of its analogues [thiamphenicol and florfenicol], referred to collectively as CAPs), which
frequently occur in wastewater-impacted source waters used by drinking water treatment plants,
were selected as model antibiotic compounds. The formation of carbonaceous and nitrogenous
disinfection by-products, including halomethanes, haloacetonitriles and halonitromethanes, during
chlorination and chloramination preceded by PS and UV/PS was investigated. No significant
concentrations of haloacetonitriles and halonitromethanes were detected during chlorination.
During chloramination chloramphenicol formed a considerable amount of dichloronitromethane
(e.g., 3.44±0.33% mol/mol at NH 2 Cl dose =1 mM) and trichloronitromethane (e.g., 0.79±0.07%
mol/mol at NH 2 Cl dose =1 mM), compared with THM and HAN formation. PS pre-oxidation
achieved a statistically significant reduction in trichloromethane formation from chlorination, and
in HAN and HNM formation from chloramination. Although UV/PS slightly increased
dichloroacetonitrile formation during chloramination, it significantly decreased
dichloronitromethane and trichloronitromethane formation during chloramination. Overall, the use
of PS and UV/PS has the potential to have contrasting impacts on DBP formation in heavily
wastewater-impacted waters, depending on the disinfection method. Hence, their application needs
to be carefully balanced against the downstream effect on DBP formation.
Ferrándiz-Mas V, Bond T, García-Alcocel E, Cheeseman CR (2014) Lightweight mortars containing expanded polystyrene and paper sludge ash, Construction and Building Materials 61 pp. 285-292 Elsevier
The objective of this research was to develop lightweight cement mortars with good thermal-insulation properties by incorporating expanded polystyrene (EPS) and paper sludge ash (PSA), both of which are problematic waste materials. The mortars formed had low thermal conductivity and low bulk density compared to control samples. Ground EPS produced lower thermal conductivity samples than powdered EPS. Resource efficient mortars containing up to 20% PSA, and 60% of EPS are considered suitable for use in rendering and plastering applications.
Bond T, Huang J, Graham JD, Templeton MR (2014) Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water ? A case study, Science of The Total Environment 470-471 pp. 469-479 Elsevier
During drinking water treatment aqueous chlorine and bromine compete to react with natural organic matter (NOM). Among the products of these reactions are potentially harmful halogenated disinfection by-products, notably four trihalomethanes (THM4) and nine haloacetic acids (HAAs). Previous research has concentrated on the role of bromide in chlorination reactions under conditions of a given NOM type and/or concentration. In this study different concentrations of dissolved organic carbon (DOC) from U.K. lowland water were reacted with varying amounts of bromide and chlorine in order to examine the interrelationship between the three reactants in the formation of THM4, dihaloacetic acids (DHAAs) and trihaloacetic acids (THAAs). Results showed that, in general, molar yields of THM4 increased with DOC, bromide and chlorine concentrations, although yields did fluctuate versus chlorine dose. In contrast both DHAA and THAA yields were mainly independent of changes in bromide and chlorine dose at low DOC (1 mg·L? 1), but increased with chlorine dose at higher DOC concentrations (4 mg·L? 1). Bromine substitution factors reached maxima of 0.80, 0.67 and 0.65 for the THM4, DHAAs and THAAs, respectively, at the highest bromide/chlorine ratio studied. These results suggest that THM4 formation kinetics depend on both oxidation and halogenation steps, whereas for DHAAs and THAAs oxidation steps are more important. Furthermore, they indicate that high bromide waters may prove more problematic for water utilities with respect to THM4 formation than for THAAs or DHAAs. While mass concentrations of all three groups increased in response to increased bromide incorporation, only the THMs also showed an increase in molar yield. Overall, the formation behaviour of DHAA and THAA was more similar than that of THM4 and THAA.
Bond T, Templeton MR (2011) Nitrosamine formation from the oxidation of secondary amines, Water Science and Technology: Water Supply 11 (3) pp. 259-265 IWA Publishing
The nitrosamines are potent carcinogens which can be formed as by-products during water treatment. Much recent research activity has been focussed upon the formation, occurrence and control of N-nitrosodimethylamine (NDMA) in particular. In this study, seven secondary amines were oxidised by chlorine, ozone, and UV-irradiation, with and without post-chloramination, to quantify the effect on the formation of seven nitrosamines, including NDMA. While the yields of nitrosamines ranged from 0.01% for N-nitroso-di-n-butylamine (NDBA) to 2.01% for N-nitrosopyrrolidine (NPYR) under conditions of excess monochloramine at pH 7, yields from other oxidants were zero. Pre-oxidation with chlorine reduced nitrosamine formation by up to 83% compared with chloramination alone. This illustrates that in situations where secondary amines are key precursors, chlorine addition before ammonia during chloramination can be expected to limit nitrosamine formation. UV irradiation at 40 mJ cm?2 had little observed impact. Ozonation enhanced NDMA and N-nitrosomethylethylamine (NMEA) formation by subsequent chloramination to 7.48% and 10.15%, respectively.
Bond T, Brouckaert CJ, Foxon KM, Buckley CA (2011) A critical review of experimental and predicted methane generation from anaerobic codigestion, Water Science & Technology 65 (1) pp. 183-189 IWA Publishing
Anaerobic digestion is increasingly being considered as a treatment option for an extensive range of waste biomass, due to the potential for energy recovery, in the form of methane production, and lower sludge volumes relative to aerobic treatment processes. Furthermore, when two substrates are codigested (i.e. digested together), added benefits are foreseeable, such as increased methane production and detoxification of toxic compounds via cometabolic degradation pathways. The objectives of this study were to compare experimental and predicted methane production from codigestion literature studies in order to objectively evaluate digester performance. Two predictive methods were used, both assuming methane yields are additive: literature values for digestion of single substrates and a stoichiometric method using model substrates to represent different substrates. Waste sources included in the analysis were primary sewage sludge, waste activated sludge, cow manure, waste paper, grease trap sludge, fat oil and grease and algal sludge. It was found that methane production could approximately be predicted using both methods, with literature methane yields from the same study being the most accurate predictor. One important finding from this study was that the assumption that methane yields are additive is a reasonable one. Furthermore, both predictive methods may be usefully employed as a screening tool to compare methane yields between different types and blends of substrates.
Roma E, Bond T, Jeffrey P (2014) Factors involved in sustained use of point-of-use water disinfection methods: a field study from Flores Island, Indonesia, Journal of Water and Health 12 (3) pp. 573-583 IWA Publishing
Many scientific studies have suggested that point-of-use water treatment can improve water quality and reduce the risk of infectious diseases. Despite the ease of use and relatively low cost of such methods, experience shows the potential benefits derived from provision of such systems depend on recipients' acceptance of the technology and its sustained use. To date, few contributions have addressed the problem of user experience in the post-implementation phase. This can diagnose challenges, which undermine system longevity and its sustained use. A qualitative evaluation of two household water treatment systems, solar disinfection (SODIS) and chlorine tablets (Aquatabs), in three villages was conducted by using a diagnostic tool focusing on technology performance and experience. Cross-sectional surveys and in-depth interviews were used to investigate perceptions of involved stakeholders (users, implementers and local government). Results prove that economic and functional factors were significant in using SODIS, whilst perceptions of economic, taste and odour components were important in Aquatabs use. Conclusions relate to closing the gap between factors that technology implementers and users perceive as key to the sustained deployment of point-of-use disinfection technologies.
Gan W, Bond T, Yang X, Westerhoff P (2015) Role of Chlorine Dioxide in N-Nitrosodimethylamine Formation from Oxidation of Model Amines, Environmental Science & Technology 49 (19) pp. 11429-11437 American Chemical Society
N-Nitrosodimethylamine (NDMA) is an emerging disinfection byproduct, and we show that use of chlorine dioxide (ClO2) has the potential to increase NDMA formation in waters containing precursors with hydrazine moieties. NDMA formation was measured after oxidation of 13 amines by monochloramine and ClO2 and pretreatment with ClO2 followed by postmonochloramination. Daminozide, a plant growth regulator, was found to yield 5.01 ± 0.96% NDMA upon reaction with ClO2, although no NDMA was recorded during chloramination. The reaction rate was estimated to be
Bond T, Huang J, Templeton MR, Graham N (2011) Occurrence and control of nitrogenous disinfection by-products in drinking water ? A review, Water Research 45 (15) pp. 4341-4354 Elsevier
The presence of nitrogenous disinfection by-products (N-DBPs), including nitrosamines, cyanogen halides, haloacetonitriles, haloacetamides and halonitromethanes, in drinking water is of concern due to their high genotoxicity and cytotoxicity compared with regulated DBPs. Occurrence of N-DBPs is likely to increase if water sources become impacted by wastewater and algae. Moreover, a shift from chlorination to chloramination, an option for water providers wanting to reduce regulated DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs), can also increase certain N-DBPs. This paper provides a critical review of the occurrence and control of N-DBPs. Data collated from surveys undertaken in the United States and Scotland were used to calculate that the sum of analysed halonitromethanes represented 3?4% of the mass of THMs on a median basis; with Pearson product moment correlation coefficients of 0.78 and 0.83 between formation of dihaloacetonitriles and that of THMs and HAAs respectively. The impact of water treatment processes on N-DBP formation is complex and variable. While coagulation and filtration are of moderate efficacy for the removal of N-DBP precursors, such as amino acids and amines, biofiltration, if used prior to disinfection, is particularly successful at removing cyanogen halide precursors. Oxidation before final disinfection can increase halonitromethane formation and decrease N-nitrosodimethylamine, and chloramination is likely to increase cyanogen halides and NDMA relative to chlorination.
Mathenjwa S, Bond T, Ndwandwe B, Xulu S, Kiambi SL, Buckley C, Roma E (2012) Development and testing of a water-efficient laundry system in informal settlements of eThekwini municipality, South Africa, Journal of Water, Sanitation and Hygiene for Development 2 (1) pp. 31-39 IWA Publishing
In the informal settlements of eThekwini municipality, South Africa, laundry activities are typically undertaken at local standpipes and washbasins of community ablution blocks (CABs), and are characterised by high levels of water consumption and greywater production. Since greywater contains a high pollution load, including sodium tripolyphosphate, it poses a significant environmental and public health risk. The overall objective of this study was to develop and test a water-efficient laundry system designed for informal settlements. Initial fieldwork at a standpipe and CAB in eThekwini municipality showed respectively 56 and 58% of users were in favour of a water-efficient laundry system based upon sharing washing water. Subsequent laboratory work assessed crosscurrent and countercurrent cascades for washing clothes. Under optimised washing conditions at a detergent dose of 5 g/kg water, specific water consumption of 5 kg water/kg clothes and three rinsing phases it was determined that the countercurrent method wasted 33% less water. Thus the countercurrent cascade has great potential for minimising greywater production in South African informal settlements. Future work should concentrate on evaluating greywater production, detergent usage and social acceptability in the field.
Sule MN, Jiang J, Templeton MR, Huth E, Brant J, Bond T (2012) Salt rejection and water flux through a tubular pervaporative polymer membrane designed for irrigation applications, Environmental Technology 34 (10) pp. 1329-1339 Taylor & Francis
The performance of a hydrophilic polyester tubular pervaporative membrane in treating high-salinity water for irrigation was investigated. The membrane was filled with contaminated water and placed in air, soil or sand media. When this occurs water diffuses through the tube, trapping salts within the tube. Sorption and permeation tests and scanning electron microscopy (SEM) were used to assess salt rejection and permeate flux through the tubular membrane when surrounded by deionized water, air, top soil or silver sand. Mean water uptake by the membrane was 0.5 L·m?2 at room temperature and the water diffusion coefficient was 3.8×10?4 cm2·s?1. The permeate flux across the membrane was 7.9×10?3 L(m?2·h?1) in sand and 5.6×10?2 in air. The rejection of sodium chloride by the tubular membrane in sand was 99.8% or above under all tested conditions. However, when the tube was filled with sodium chloride solution and placed in deionized water, salt was observed to permeate the membrane. SEM images confirmed that variable amounts of sodium chloride crystals were retained inside the membrane walls. These results support the potential application of such a tubular pervaporative membrane for irrigation applications using saline waters; however there may be reduced salt rejection under waterlogged soil conditions.
Bond T, Goslan EH, Parsons SA, Jefferson B (2011) Treatment of disinfection byproduct precursors, Environmental Technology 32 (1) pp. 1-25 Taylor & Francis
Formation of harmful disinfection by?products (DBPs), of which trihalomethanes (THMs) and haloacetic acids (HAAs) are the major groups, can be controlled by removal of natural organic matter (NOM) before disinfection. In the literature, removal of precursors is variable, even with the same treatment. The treatment of DBP precursors and NOM was examined with the intention of outlining precursor removal strategies for various water types. Freundlich adsorption parameters and hydroxyl rate constants were collated from the literature to link treatability by activated carbon and advanced oxidation processes (AOPs), respectively, to physico?chemical properties. Whereas hydroxyl rate constants did not correlate meaningfully with any property, a moderate correlation was found between Freundlich parameters and log KOW, indicating activated carbon will preferentially adsorb hydrophobic NOM. Humic components of NOM are effectively removed by coagulation, and, where they are the principal precursor source, coagulation may be sufficient to control DBPs. Where humic species remaining post?coagulation retain significant DBP formation potential (DBPFP), activated carbon is deemed a suitable process selection. Anion exchange is an effective treatment for transphilic species, known for high carboxylic acid functionality, and consequently is recommended for carboxylic acid precursors. Amino acids have been linked to HAA formation and are important constituents of algal organic matter. Amino acids are predicted to be effectively removed by biotreatment and nanofiltration. Carbohydrates have been found to reach 50% of NOM in river waters. If the carbohydrates were to pose a barrier to successful DBP control, additional treatment stages such as nanofiltration are likely to be required to reduce their occurrence.
Amezaga JM, Amtmann A, Biggs CA, Bond T, Gandy CJ, Honsbein A, Karunakaran E, Lawton L, Madsen MA, Minas K, Templeton MR (2014) Biodesalination: a case study for applications of photosynthetic bacteria in water treatment, Plant Physiology 164 (4) pp. 1661-1676 American Society of Plant Biologists
Shortage of freshwater is a serious problem in many regions worldwide, and is expected to become even more urgent over the next
decades as a result of increased demand for food production and adverse effects of climate change. Vast water resources in the
oceans can only be tapped into if sustainable, energy-efficient technologies for desalination are developed. Energization of
desalination by sunlight through photosynthetic organisms offers a potential opportunity to exploit biological processes for this
purpose. Cyanobacterial cultures in particular can generate a large biomass in brackish and seawater, thereby forming a low-salt
reservoir within the saline water. The latter could be used as an ion exchanger through manipulation of transport proteins in the cell
membrane. In this article, we use the example of biodesalination as a vehicle to review the availability of tools and methods for the
exploitation of cyanobacteria in water biotechnology. Issues discussed relate to strain selection, environmental factors, genetic
manipulation, ion transport, cell-water separation, process design, safety, and public acceptance.
Bond T, Roma E, Foxon K, Templeton MR, Buckley CA (2013) Ancient water and sanitation systems - applicability for the contemporary urban developing world, Water Science and Technology 67 (5) pp. 935-941 IWA Publishing
The idea of implementing ancient water and wastewater technologies in the developing world is a persuasive one, since ancient systems had many features which would constitute sustainable and decentralised water and sanitation (WATSAN) provision in contemporary terminology. Latest figures indicate 2.6 billion people do not use improved sanitation and 1.1 billion practise open defecation, thus there is a huge need for sustainable and cost-effective WATSAN facilities, particularly in cities of the developing world. The objective of this study was to discuss and evaluate the applicability of selected ancient WATSAN systems for the contemporary developing world. Selected WATSAN systems in ancient Mesopotamia, the Indus Valley, Egypt, Greece, Rome and the Yucatan peninsula are briefly introduced and then discussed in the context of the developing world. One relevant aspect is that public latrines and baths were not only a part of daily life in ancient Rome but also a focal point for socialising. As such they would appear to represent a model of how to promote use and acceptance of modern community toilets and ablution blocks. Although public or community toilets are not classified as improved sanitation by WHO/UNICEF, this is a debatable premise since examples such as Durban, South Africa, illustrate how community toilets continue to represent a WATSAN solution for urban areas with high population density. Meanwhile, given the need for dry sanitation technologies, toilets based on the production of enriched Terra Preta soil have potential applications in urban and rural agriculture and warrant further investigation.
Bond T, Henriet O, Goslan EH, Parsons SA, Jefferson B (2009) Disinfection Byproduct Formation and Fractionation Behavior of Natural Organic Matter Surrogates, Environmental Science & Technology 43 (15) pp. 5982-5989 American Chemical Society
While natural organic matter (NOM) surrogates are established in disinfection byproduct (DBP) research, their use in fractionation studies is rare. To understand how surrogates relate to drinking waters, a range of NOM surrogates were fractionated with XAD resins. Their trihalomethane (THM), haloacetic acid (HAA), haloacetaldehyde, haloacetonitrile, and haloketone formations after chlorination were recorded. While compounds with higher log KOW values behaved as hydrophobic acids, fractionation of the more hydrophilic compounds did not clearly correlate to the log KOW. High HAA formation from ferulic and aspartic acids and 1,1,1-trichloropropanone (1,1,1-TCP) formation from 3-oxopropanoic acid were notable. Three amino acids, asparagine, aspartic acid, and tryptophan, formed significant levels of dichloroacetonitrile (DCAN) and trichloroacetaldehyde (TCA). Formation of DBPs did not correlate to any compound physical property; however, there were several correlations between DBP groups. The most significant were between dichloroacetic acid (DCAA) and dichloroacetonitrile (DCAN), DCAN and TCA, and dichloroacetaldehyde (DCA) and trichloroacetaldehyde, indicating the possibility of similar relationships in natural waters.
Bond T, Simperler A, Graham N, Ling L, Gan W, Yang X, Templeton M (2017) Defining the molecular properties of N-nitrosodimethylamine (NDMA) precursors using computational chemistry, Environmental Science: Water Research & Technology 3 pp. 502-512 Royal Society of Chemistry
N-nitrosodimethylamine (NDMA) is a potent carcinogen and can be produced during chlorarnination of drinking water and wastewater. Computational chemistry methods were used for the first time to calculate molecular descriptors for 64 NDMA precursors containing a dimethylamine (DMA) moiety. Descriptors were partial charge, bond length and pK. of the DMA nitrogen and planarity of the DMA group. Precursors classified on the basis of chemical functionality showed distinct relationships between partial charge and NDMA formation. Quaternary amines and tertiary amines with the DMA bonded to -COR and -CSR groups had a combination of low NDMA formation and high partial charge. The most potent NDMA precursors are tertiary amines with an acidic hydrogen and electron-donating group a and to the DMA respectively. They also have comparable molecular descriptors: relatively negative partial charges, low planarity values, high bond lengths and pK, values from -8.3- I0.1. A literature search identified 233 potential NDMA precursors that have never been tested experimentally. Of these chemicals 60% are therapeutics, 13% veterinary therapeutics and I 0% natural products. Analysis combining qualitative assessment of chemical functionality and computational calculation of molecular descriptors successfully identified rivastigmine, a therapeutic, and conessine, a naturally occurring species, whose NDMA yields were determined experimentally to be 83.3±0.5% and 42.3±1.8% mol/mol, respectively. This study defines the molecular properties associated with reactive NDMA precursors and the origin and identity of those amines which contribute to NDMA formation in drinking water.
Chu W, Hu J, Bond T, Naiyun G, Bin X, Yin D (2016) Water temperature significantly impacts the formation of iodinated haloacetamides during persulfate oxidation, Water Research 98 pp. 47-55 Elsevier
The use of persulfate oxidation processes is receiving increasing interest for the removal of aquatic contaminants. However, it is unknown whether its application in the presence of iodide has the potential to directly form iodinated DBPs. This study investigated formation of six chlorinated, brominated and iodinated di-haloacetamides (DHAcAms) during persulfate oxidation in the presence of bromide and iodide. Formation of the same DHAcAms during chlorination was monitored for comparison. Persulfate oxidation of natural water formed diiodoacetamide (DIAcAm), and heat-activated persulfate, at 45 °C and 55 °C, generated bromoiodoacetamide (BIAcAm) and dibromoacetamide (DBAcAm), besides DIAcAm. At an ambient iodide concentration of 0.3 ¼M, total DHAcAms increased slightly from 0.43 to 0.57 nM as the water temperature increased from 4 °C to 35 °C, respectively (only DIAcAm detected), then significantly increased to 1.6 nM at 55 °C (DIAcAm, BIAcAm and DBAcAm detected). Equivalent total DHAcAm concentrations in the presence of 3.0 ¼M iodide were 0.5, 0.91 and 2.1 nM, respectively. Total DHAcAms formed during chlorination, predominantly dichloroacetamide (DCAcAm) and bromochloroacetamide (BCAcAm), were always significantly higher than that during persulfate oxidation. However, an integrated risk assessment showed the toxicity resulting from the DHAcAms was higher during persulfate oxidation than chlorination. An increase in water temperature from 25 °C to 55 °C significantly increased the integrated toxic risk values for both persulfate oxidation and chlorination. Use of persulfate oxidation should be weighed against the formation of high-toxicity iodinated HAcAms in waters with high ambient iodide concentrations.
Ferrándiz-Mas V, Bond T, Zhang Z, Melchiorri J, Cheeseman C (2016) Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris, Science of the Total Environment 563-4 pp. 71-80 Elsevier
Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740 °C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700 °C, with chlorophyll-a concentrations reaching up to 11.1 ± 0.4 ¼g/cm2 of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure.
The haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs), are highly cytotoxic and genotoxic, and typically occur in treated drinking waters at low ¼g/L concentrations. Since many drinking distribution and storage systems contain unlined cast iron and copper pipes, reactions of HAcAms with zero-valent iron (ZVI) and metallic copper (Cu) may play a role in determining their fate. Moreover, ZVI and/or Cu are potentially effective HAcAm treatment technologies in drinking water supply and storage systems. This study reports that ZVI alone reduces trichloroacetamide (TCAcAm) to sequentially form dichloroacetamide (DCAcAm) and then monochloroacetamide (MCAcAm), whereas Cu alone does not impact HAcAm concentrations. The addition of Cu to ZVI significantly improved the removal of HAcAms, relative to ZVI alone. TCAcAm and their reduction products (DCAcAm and MCAcAm) were all decreased to below detection limits at a molar ratio of ZVI/Cu of 1:1 after 24 h reaction (ZVI/TCAcAm = 0.18 M/5.30 ¼M). TCAcAm reduction increased with the decreasing pH from 8.0 to 5.0, but values from an integrated toxic risk assessment were minimised at pH 7.0, due to limited removal MCAcAm under weak acid conditions (pH = 5.0 and 6.0). Higher temperatures (40 °C) promoted the reductive dehalogenation of HAcAms. Bromine was preferentially removed over chlorine, thus brominated HAcAms were more easily reduced than chlorinated HAcAms by ZVI/Cu. Although tribromoacetamide was more easily reduced than TCAcAm during ZVI/Cu reduction, treatment of tribromoacetamide resulted in a higher integrated toxicity risk than TCAcAm, due to the formation of monobromoacetamide (MBAcAm).
Bond Thomas, Graham Nigel (2017) Predicting chloroform production from organic precursors, Water Research 124 pp. 167-176 Elsevier
Quantitative methods which link molecular descriptors for recognized precursors to
formation of drinking water disinfection byproducts are scarce. This study aimed to develop a
simple mathematical tool for predicting chloroform (trichloromethane) yields resulting from
aqueous chlorination of model organic precursors. Experimental chloroform yields from 211
precursors were collated from 22 literature studies from 1977 onwards. Nineteen descriptors,
some established and others developed during this study, were used as inputs in a multiple
linear regression model. The final model, calibrated using five-way leave-many-out cross28
validation, contains three descriptors. Two novel empirical descriptors, which quantify the
impact of adjacent substituents on aromatic and enolizable chlorine substitution sites, were
the most significant. The model has r2 = 0.91 and a standard error of 8.93% mol/mol.
Experimental validation, using 10 previously untested precursors, showed a mean
discrepancy of 5.3% mol/mol between experimental and predicted chloroform yields. The
model gives insight to the influence that specific functional groups, including hydroxyl,
chlorine and carboxyl, have on chloroform formation and the relative contributions made by
separate substitution sites in the same molecule. It is anticipated that the detailed approach
can be updated and extended as new experimental data emerges, to encompass additional
precursors and groups of disinfection byproducts.
Chu W, Ding S, Bond T, Gao N, Yin D, Xu B (2016) Zero valent iron produces dichloroacetamide from chloramphenicol antibiotics in the absence of chlorine and chloramines, Water Research 104 pp. 254-261 Elsevier
Dichloroacetamide (DCAcAm) is an important type of nitrogenous disinfection byproduct. This study is the first to report that DCAcAm can be formed in the absence of chlorinated disinfectants (chlorine and chloramines). This can occur through reduction of three chloramphenicol (CAP) antibiotics by zero valent iron (ZVI). The effects of key experimental parameters, including reaction time, ZVI dose, pH, temperature, water type, and the presence of humic acid (HA) on the formation of DCAcAm were ascertained. The DCAcAm yields from three CAPs all presented the trend of increasing first and then decreasing with time and also increased with increasing ZVI dosage. DCAcAm yields from the ZVI reduction route were higher than those resulting from the chlorination of some previously identified DCAcAm precursors. Acidic conditions favored the formation of DCAcAm by the ZVI route. In addition, lower temperatures increased DCAcAm yields at extended contact times (>12 h). DCAcAm formed from the three CAPs in the presence of HA was lower than in the absence of HA. The formation potential of DCAcAm from the reduction of authentic waters spiked with CAPs by ZVI showed good linear correlations with initial concentrations of the three CAPs. This allows the formation of DCAcAm from the reduction of CAPs by ZVI to be predicted. Given that many wastewater and drinking water distribution networks contain unlined cast iron pipes, reactions between CAPs and ZVI may contribute to the formation of DCAcAm in such systems.
Ding Shunke, Chu Wenhai, Bond Thomas, Wang Qi, Gao Naiyun, Xu Bin, Du Erdeng (2017) Formation and estimated toxicity of trihalomethanes, haloacetonitriles, and haloacetamides from the chlor(am)ination of acetaminophen, Journal of Hazardous Materials 341 pp. 112-119 Elsevier
The occurrence of pharmaceuticals and personal care products (PPCPs) in natural waters, which act as drinking water sources, raises concerns. Moreover, those compounds incompletely removed by treatment have the chance to form toxic disinfection byproducts (DBPs) during subsequent disinfection. In this study, acetaminophen (Apap), commonly used to treat pain and fever, was selected as a model PPCP. The formation of carbonaceous and nitrogenous DBPs, namely trihalomethanes, haloacetonitriles, and haloacetamides, during chlor(am)ination of Apap was investigated. Yields of chloroform (CF), dichloroacetonitrile (DCAN), dicholoacetamide (DCAcAm), and tricholoacetamide (TCAcAm), during chlorination were all higher than from chloramination. The yields of CF continuously increased over 48 h during both chlorination and chloramination. During chlorination, as the chlorine/Apap molar ratios increased from 1 to 20, CF yields increased from 0.33 ± 0.02% to 2.52 ± 0.15%, while the yields of DCAN, DCAcAm and TCAcAm all increased then decreased. In contrast, during chloramination, increased chloramine doses enhanced the formation of all DBPs. Acidic conditions favored nitrogenous DBP formation, regardless of chlorination or chloramination, whereas alkaline conditions enhanced CF formation. Two proposed formation mechanisms are presented. The analysed DBPs formed during chlorination were 2 orders of magnitude more genotoxic and cytotoxicity than those from chloramination.
Bond T, Tse Q, Chambon C, Fennell P, Fowler G, Templeton M (2017) The Feasibility of Char and Bio-oil Production from Pyrolysis of Pit Latrine Sludge, Environmental Science: Water Research & Technology Royal Society of Chemistry
Sustainable methods are required in developing regions to treat and recover value from pit latrine sludge. One strategy is to pyrolyse pit latrine contents and generate char and bio-oil, which can then be used as a soil enhancer and fuel, respectively. Despite the many benefits associated with the process, there is very limited relevant literature available. This study examines its feasibility. Initially, the energy balance for the pyrolysis of sewage sludge was calculated using data from 14 literature studies. The average net energy recovery from pyrolysis of dewatered and dried sewage sludge followed by use of bio-oil as fuel was calculated as 4.95 ± 0.61 MJ kg?1. For dewatered sewage sludge, an average net energy input of 2.23 ± 0.31 MJ kg?1 was required. Parallel calculations were undertaken where pit latrine sludge with 0?100% water content was the hypothetical feedstock. On average, net energy recovery from produced bio-oil was achievable when pit latrine sludge with a water content of d
Bond T, Goslan E, Parsons S, Jefferson B (2012) A critical review of trihalomethane and haloacetic acid formation from natural organic matter surrogates, Environmental Technology Reviews 1 (1) pp. 93-113 Taylor & Francis
Disinfection by-products (DBPs) in drinking water, including trihalomethanes (THMs) and haloacetic acids (HAAs), arise from reactions of natural organic matter (NOM) with chlorine and other disinfectants. The objective of this review was to investigate relationships between the molecular properties of NOM surrogates and DBP formation using data collated for 185 compounds. While formation of THMs correlated strongly with chlorine substitution, no meaningful relationships existed between compound physicochemical properties and DBP formation. Thus non-empirical predictors of DBP formation are unlikely in natural waters. Activated aromatic compounds are well known to be reactive precursors; in addition DBP formation from ²-dicarbonyl, amino acid and carbohydrate precursors can be significant. Therefore effective DBP control strategies need to encompass both hydrophobic and hydrophilic NOM components, as well as consider data from NOM surrogates in the context of knowledge from representative treatment scenarios. In future experiments, employing surrogates of NOM is likely to remain a powerful tool in the search for unknown precursors and in understanding their response to various disinfection conditions.
Bond T, Templeton M, Graham N (2012) Precursors of nitrogenous disinfection by-products in drinking water - a critical review and analysis, Journal of Hazardous Materials 235-23 pp. 1-16 Elsevier
In recent years research into the formation of nitrogenous disinfection by-products (N-DBPs) in drinking water ? including N-nitrosodimethylamine (NDMA), the haloacetonitriles (HANs), haloacetamides (HAcAms), cyanogen halides (CNX) and halonitromethanes (HNMs) ? has proliferated. This is partly due to their high reported toxicity of N-DBPs. In this review paper information about the formation yields of N-DBPs from model precursors, and about environmental precursor occurrence, has been employed to assess the amount of N-DBP formation that is attributable to known precursors. It was calculated that for HANs and HAcAms, the concentrations of known precursors ? mainly free amino acids are insufficient to account for the observed concentrations of these N-DBP groups. However, at least in some waters, a significant proportion of CNX and NDMA formation can be explained by known precursors. Identified N-DBP precursors tend to be of low molecular weight and low electrostatic charge relative to bulk natural organic matter (NOM). This makes them recalcitrant to removal by water treatment processes, notably coagulation, as confirmed by a number of bench-scale studies. However, amino acids have been found to be easier to remove during water treatment than would be suggested by the known molecular properties of the individual free amino acids.
Honsbein A, Madsen A, Amezaga J, Biggs C, Bond T, Gandy C, Karunakaran E, Lawton L, Minas K, Templeton M, Amtmann A (2014) 'Biodesalination': a synthetic biology approach for the use of photosynthetic bacteria in water treatment, New Biotechnology 31 (Supple) pp. S140-S141 Elsevier
Shortage of freshwater is a serious global problem, and expected to become even more urgent over the next decades. Many of the driest regions worldwide are close to the sea, but irrigation of fields with seawater?even if diluted?leads to the build-up of salt levels in the soil that are toxic to all common food crops (http://www.unwater.org). Current desalination technologies such as membrane-based reverse osmosis, are successfully used in large-scale desalination plants, however, they are expensive and energy inefficient [1]. Our multi-disciplinary team of biologists and engineers from 5 UK universities is working on an innovative desalination technology based on biological processes [2]. The ?Biodesalination? strategy envisions the use of photosynthetic cyanobacteria modified with light-driven ion transport proteins to function as ion exchangers that selectively remove sodium chloride from seawater. This process would harness solar energy to provide a more cost effective and energetically sustainable desalination process.
Minas K, Karunakaran E, Bond T, Gandy C, Honsbein A, Madsen M, Amezaga J, Amtmann A, Templeton M, Biggs C, Lawton L (2014) Biodesalination: an emerging technology for targeted removal of Na+and Cl?from seawater by cyanobacteria, Desalination and Water Treatment 55 (10) pp. 2647-2668 Taylor & Francis
Although desalination by membrane processes is a possible solution to the problem of freshwater supply, related cost and energy demands prohibit its use on a global scale. Hence, there is an emerging necessity for alternative, energy and cost-efficient methods for water desalination. Cyanobacteria are oxygen-producing, photosynthetic bacteria that actively grow in vast blooms both in fresh and seawater bodies. Moreover, cyanobacteria can grow with minimal nutrient requirements and under natural sunlight. Taking these observations together, a consortium of five British Universities was formed to test the principle of using cyanobacteria as ion exchangers, for the specific removal of Na+ and Cl? from seawater. This project consisted of the isolation and characterisation of candidate strains, with central focus on their potential to be osmotically and ionically adaptable. The selection panel resulted in the identification of two Euryhaline strains, one of freshwater (Synechocystis sp. Strain PCC 6803) and one of marine origin (Synechococcus sp. Strain PCC 7002) (Robert Gordon University, Aberdeen). Other work packages were as follows. Genetic manipulations potentially allowed for the expression of a light-driven, Cl?-selective pump in both strains, therefore, enhancing the bioaccumulation of specific ions within the cell (University of Glasgow). Characterisation of surface properties under different salinities (University of Sheffield), ensured that cell?liquid separation efficiency would be maximised post-treatment, as well as monitoring the secretion of mucopolysaccharides in the medium during cell growth. Work at Newcastle University is focused on the social acceptance of this scenario, together with an assessment of the potential risks through the generation and application of a Hazard Analysis and Critical Control Points plan. Finally, researchers in Imperial College (London) designed the process, from biomass production to water treatment and generation of a model photobioreactor. This multimodal approach has produced promising first results, and further optimisation is expected to result in mass scaling of this process.
ClO2 is frequently used as a pre-oxidant in water treatment plants. However, the effects of ClO2 pre-oxidation on disinfection by-product (DBP) formation, especially the highly toxic nitrogenous DBPs, during subsequent chlor (am)ination have not been studied thoroughly. There is also limited information about DBP formation from combined amino acids (AAs), which are more abundant than free AAs in source waters. Many typical DBPs (including representative N-DBPs) have a similar structure of ?CX3R? (X/=/H, Cl, Br or I). In the study, tyrosine and forms representing its reactivity in combined AAs (tyrosine tert-butyl ester and Boc-tyrosine) were selected as model precursors. The formation of various regulated and unregulated CX3R-type DBPs from ClO2 pre-oxidation and subsequent chlor (am)ination were studied at a wide-range of ClO2 and chlor (am)ine doses (ClO2/precursors and chlor (am)ine/precursors are at the range of 0?2.5 and 1?20 [Mol/Mol], respectively). Chloroform and chloral hydrate (CH) yields increased with chlorine dose, while haloacetonitrile and haloacetamide maximized at median chlorine dose (Cl2/Precursors/=/10). All DBP yields increased with chloramine dose. ClO2 pre-oxidation increased chloroform, haloacetonitrile, trichloronitromethane and CH yields during chlorination, but ClO2 increased chloroform, CH, trichloroacetamide while decreased dichloroacetonitrile and trichloronitromethane yields during chloramination. The overall toxicity of the formed DBPs was evaluated by cytotoxicity index (CTI). ClO2 pre-oxidation increased CTI from all precursors during post-chlorination while reduced it during post-chloramination. Results imply that ClO2 is probably more suitable for use in combination with chloramination disinfection, rather than chlorination, in the integrated control of CX3R-type DBPs from source waters abundant in AAs.
Bond Thomas, Ferrandiz-Mas V, Felipe-Sotelo Monica, van Sebille E (2018) The Occurrence and Degradation of Aquatic Plastic Litter Based on Polymer Physicochemical Properties: a Review, Critical Reviews in Environmental Science and Technology Taylor & Francis
The whereabouts of the overwhelming majority of plastic estimated to enter the environment is unknown. This study?s aim was to combine information about the environmental occurrence and physicochemical properties of widespread polymers to predict the fate of aquatic plastic litter. Polyethylene and polypropylene are common in the surface layer and shorelines; polyester and cellulosic fibres in sewage treatment works, estuarine and deep-sea sediments. Overall, non-buoyant polymers are underrepresented on the ocean surface. Three main explanations are proposed for the missing plastic. The first is accumulation of both buoyant and non-buoyant polymers in sewage treatment works, river and estuarine sediments and along shorelines. The second is settling of non-buoyant polymers into the deep-sea. The third is fragmentation of both buoyant and non-buoyant polymers into particles smaller than captured by existing experimental methods. Some isolation techniques may overrepresent larger, buoyant particles; methodological improvements are needed to capture the full size-range of plastic litter. When microplastics fragment they become neutrally-buoyant, thus nanoplastics are potentially widely dispersed in aquatic systems, both horizontally and vertically. Ultimately, over decades or longer, plastics are potentially solubilized and subsequently biodegraded. The rates at which these processes apply to plastic litter in different environmental compartments remain largely unknown.
Ding Shunke, Chu Wenhai, Bond Tom, Cao Zhongqi, Xu Bin, Gao Naiyun (2018) Contribution of amide-based coagulant polyacrylamide as precursors of haloacetamides and other disinfection by-products, Chemical Engineering Journal 350 pp. 356-363 Elsevier
Coagulation is a widespread method of drinking water treatment. Coagulation can mitigate the formation of disinfection by-products (DBPs) through removing their precursors. Here we report that the amide-based organic polymer coagulants polyacrylamide (PAM) and its monomer acrylamide (AM) can serve as a source of HAcAm and other DBPs including trihalomethanes (THMs) and haloacetonitriles (HANs) during chlor(am)ination. The impact of the key experimental parameters, including reaction time, Cl2 or NH2Cl dose, pH and initial bromide concentration on the formation of DBPs was investigated. Furthermore, the major reaction pathways for AM transformation and DBP formation during chlor(am)ination are proposed and include N-chlorination, addition, and substitution. Jar tests demonstrated that coagulation by alum coupled with PAM achieved greatest removal of DOC and UV254, compared with alum and PAM alone. Treatment with PAM didn?t significantly promote the formation of THMs and HANs during post-chlorination, indicating that the PAM residual hardly contributes to THM and HAN formation. However, coagulation by applying alum salt and PAM increased total HAcAm concentrations by 2.2?3.1/¼g/L at the higher PAM dose (2.0/mg/L), compared with alum alone. Therefore, the contribution of PAM to the formation of HAcAm cannot be ignored. The results highlight that the generation of secondary pollutants from the amide-based engineered organic polymer coagulants in drinking water should be considered; that is, they can adversely affect water quality because of their ability to enhance DBPs generated during downstream disinfection. Accordingly, the understanding of the stability and reactivity of PAM in the presence of disinfectants could help to better evaluate their contribution to the formation of HAcAms, THMs, and HANs, which has important implications for their environmental fate, transport, and responsible applications.
Zhang Di, Bond Tom, Krasner Stuart W., Chu Wenhai, Pan Yang, Xu Bin, Yin Daqiang (2019) Trace determination and occurrence of eight chlorophenylacetonitriles: An emerging class of aromatic nitrogenous disinfection byproducts in drinking water, Chemosphere 220 pp. 858-865 Elsevier
Two chlorophenylacetonitriles (CPANs) (2-chloro- and 3,4-dichlorophenylacetonitrile), representatives of an emerging class of aromatic nitrogenous disinfection byproducts, were recently identified in chlor(am)inated drinking water with liquid/liquid extraction and gas chromatography/mass spectrometry (GC/MS). Due to their high cytotoxicity, they are potentially significant drinking water contaminants. The detection limit for these two CPANs with the previous method was 100/ng/L?1. To search for additional CPAN isomers, a more sensitive method for the simultaneous determination of eight CPANs was developed using solid-phase extraction (SPE)-GC/MS. GC/MS parameters and SPE pre-concentration conditions, including SPE cartridge, eluent type, eluent volume, and sample pH, were optimized. Under optimized conditions, the new method had method detection limits, method quantification limits, and precision ranging from 0.15 to 0.37/ng/L?1, 0.50?0.95/ng/L?1, and 5.8%?11%, respectively. The recoveries of the eight CPANs ranged from 92% to 102%. The concentrations of the eight CPANs in nine finished drinking waters were determined to be at concentrations ranging from 0.5 to 155/ng/L?1. Seven CPANs were detectable in all samples. CPANs were detected at concentrations between 0.8 and 155/ng/L?1 in chlorinated waters, and from 0.5 to 15/ng/L?1 in chloraminated waters. Across all waters, the sum of all CPANs in chloraminated waters was 13% of that in chlorinated systems.
Gan Wenhui, Huang Sirong, Ge Yuexian, Bond Tom, Westerhoff Paul, Zhai Jiaxin, Yang Xin (2019) Chlorite formation during ClO2 oxidation of model compounds having various functional groups and humic substances, Water Research 159 pp. 348-357 Elsevier
Chlorine dioxide (ClO2) has been used as an alternative to chlorine in water purification to reduce the formation of halogenated by-products and give superior inactivation of microorganisms. However, the formation of chlorite (ClO2?) is a major consideration in the application of ClO2. In order to improve understanding in ClO2? formation kinetics and mechanisms, this study investigated the reactions of ClO2 with 30 model compounds, 10 humic substances and 2 surface waters. ClO2? yields were found to be dependent on the distribution of functional groups. ClO2 oxidation of amines, di- and tri-hydroxybenzenes at pH 7.0 had ClO2? yields >50%, while oxidation of olefins, thiols and benzoquinones had ClO2? yields
Ding Shunke, Deng Yang, Bond Tom, Fang Chao, Cao Zhongqi, Chu Wenhai (2019) Disinfection byproduct formation during drinking water treatment and distribution: A review of unintended effects of engineering agents and materials, Water Research 160 pp. 313-329 Elsevier
Unintended effects of engineering agents and materials on the formation of undesirable disinfection byproducts (DBPs) during drinking water treatment and distribution were comprehensively reviewed. Specially, coagulants, biologically active filtration biofilms, activated carbons, nanomaterials, ion-exchange resins, membrane materials in drinking water treatment and piping materials, deposits and biofilms within drinking water distribution systems were discussed, which may serve as DBP precursors, transform DBPs into more toxic species, and/or catalyze the formation of DBPs. Speciation and quantity of DBPs generated rely heavily on the material characteristics, solution chemistry conditions, and operating factors. For example, quaternary ammonium polymer coagulants can increase concentrations of N-nitrosodimethylamine (NDMA) to above the California notification level (10/ng/L). Meanwhile, the application of strong base ion-exchange resins has been associated with the formation of N-nitrosamines and trichloronitromethane up to concentrations of 400/ng/L and 9.0/¼g/L, respectively. Organic compounds leaching from membranes and plastic and rubber pipes can generate high NDMA (180?450/ng/L) and chloral hydrate (
Epidemiological studies have consistently associated the consumption of chlorinated drinking water with an enhanced risk of bladder cancer. While this suggests that some disinfection byproducts (DBPs) are bladder carcinogens, causal agents are unknown. This study aims to highlight likely candidates. To achieve this, structures ofknown and hypothesised DBPs werecompared with 76 known bladder carcinogens. The latter are dominated by nitrogenous and aromatic compounds; only 10 are halogenated. Under 10% of the chlorine applied during drinking water treatment is converted into identified halogenated byproducts; most of the chlorine is likely to be consumed during the generation of unidentified non-halogenated oxidation products. Six nitrosamines are among the nine most potent bladder carcinogens, and two of them are known to be DBPs: N-nitrosodiphenylamine and nitrosodibutylamine. However, these and other nitrosamines are formed in insufficiently low
concentrations in chlorinated drinking water to account for the observed bladder cancer risk. Furthermore, although not proven bladder carcinogens, certain amines, haloamides, halocyclopentenoic acids, furans and haloquinones are potential candidates. At present, most
identified bladder carcinogens are nitrogenous, whereas > 90% of natural organic matter is not. Therefore, non-nitrogenous DBPs are likely to contribute to the bladder cancer risk. Given the high proportion of DBPs that remains uncharacterised, it is important that future research prioritises compounds believed to be potent toxicants.