Gopinath Kalaiarasan

Dr Gopinath Kalaiarasan

Research Fellow (iSCAPE project)
+44 (0)1483 686648
01 AA 01

My publications


Prashant Kumar, Juan C. Zavala-Reyes, Mamatha Tomson, Gopinath Kalaiarasan (2022)Understanding the effects of roadside hedges on the horizontal and vertical distributions of air pollutants in street canyons, In: Environment International158106883 Elsevier

Built-up environments limit air pollution dispersion in street canyons and lead to complex trade-offs between green infrastructure (GI) usage and its potential to reduce near-road exposure. This study evaluated the effects of an evergreen hedge on the distribution of particulate matter (PM1, PM2.5, PM10), black carbon (BC) and particle number concentrations (PNCs) in a street canyon in West London. Instrumentation was deployed around the hedge at 13 fixed locations to assess the impact of the hedge on vertical and horizontal concentration distributions. Changes in concentrations behind the hedge were measured with reference to the corresponding sampling point in front of the hedge for all sets of measurements. Results showed a significant reduction in vertical concentrations between 1 and 1.7 m height, with maximum reductions of –16% (PM1 and PM10) and –17% (PM2.5) at ∼1 m height. Horizontal concentrations revealed two zones between the building façade and the hedge, with opposite trends: (i) close to hedge (within 0.2 m), where a reduction of PM1 and PM2.5 was observed, possibly due to dilution, deposition and the barrier effect; and (ii) 0.2–3 m from the hedge, showing an increase of 13–37% (PM1) and 7–21% (PM2.5), possibly due to the blockage effect of the building, restricting dispersion. BC showed a significant reduction at breathing height (1.5 m) of between –7 and –50%, followed by –15% for PNCs in the 0.02–1 µm size range. The ELPI + analyser showed a peak of ∼30 nm. The presence of the hedge led to a ∼39 ± 32% decrease in total PNCs (0.006–10 µm), suggesting a greater removal in different modes, such as a 83 ± 12% reduction in nucleation mode (0.006–0.030 µm), 74 ± 15% in ultrafine (≤0.1 µm), and 34 ± 30% in accumulation mode (0.03–0.3 µm). These findings indicate graded filtering of particles by GI in a near-road street canyon environment. This insight will guide the improved design of GI barriers and the validation of microscale dispersion models.

Arvind Tiwari, Prashant Kumar, Gopinath Kalaiarasan, Thor-Bjørn Ottosen (2021)The impacts of existing and hypothetical green infrastructure scenarios on urban heat island formation, In: Environmental Pollution274115898

Urban Heat Island (UHI) is posing a significant challenge due to growing urbanisations across the world. Green infrastructure (GI) is popularly used for mitigating the impact of UHI, but knowledge on their optimal use is yet evolving. The UHI effect for large cities have received substantial attention previously. However, the corresponding effect is mostly unknown for towns, where appreciable parts of the population live, in Europe and elsewhere. Therefore, we analysed the possible impact of three vegetation types on UHI under numerous scenarios: baseline/current GI cover (BGI); hypothetical scenario without GI cover (HGI-No); three alternative hypothetical scenarios considering maximum green roofs (HGR-Max), grasslands (HG-Max) and trees (HT-Max) using a dispersion model ADMS-Temperature and Humidity model (ADMS-TH), taking a UK town (Guildford) as a case study area. Differences in an ambient temperature between three different landforms (central urban area, an urban park, and suburban residential area) were also explored. Under all scenarios, the night-time (0200 h; local time) showed a higher temperature increase, up to 1.315 °C due to the lowest atmospheric temperature. The highest average temperature perturbation (change in ambient temperature) was 0.563 °C under HGI-No scenario, followed by HG-Max (0.400 °C), BGI (0.343 °C), HGR-Max (0.326 °C) and HT-Max (0.277 °C). Furthermore, the central urban area experienced a 0.371 °C and 0.401 °C higher ambient temperature compared with its nearby suburban residential area and urban park, respectively. The results allow to conclude that temperature perturbations in urban environments are highly dependent on the type of GI, anthropogenic heat sources (buildings and vehicles) and the percentage of land covered by GI. Among all other forms of GI, trees were the best-suited GI which can play a viable role in reducing the UHI. Green roofs can act as an additional mitigation measure for the reduction of UHI at city scale if large areas are covered.

EDWARD YENDLE BARWISE, Abhijith Kooloth Valappil, ARVIND TIWARI, GOPINATH KALAIARASAN, HAMID OMIDVARBORNA, Thor-Bjørn Ottosen, SARKAWT MUHAMMAD LATEEF HAMA, SISAY ESHETU DEBELE, Sachit Mahajan, Aakash Rai, PRASHANT KUMAR Green infrastructure and air quality: impacts from research in open road environments
Thor-Bjørn Ottosen, GOPINATH KALAIARASAN, HAMID OMIDVARBORNA, Sachit Mahajan, SARKAWT MUHAMMAD LATEEF HAMA, PRASHANT KUMAR (2019)Low-cost air quality measurements in Guildford using the Living Lab station.
Prashant Kumar, Gopinath Kalaiarasan, Alexandra E Porter, Alessandra Pinna, Michał M Kłosowski, Philip Demokritou, Kian Fan Chung, Christopher Pain, D K Arvind, Rossella Arcucci, Ian M Adcock, Claire Dilliway (2021)An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments, In: The Science of the Total Environment756143553

Particulate matter (PM) is a crucial health risk factor for respiratory and cardiovascular diseases. The smaller size fractions, ≤2.5 μm (PM2.5; fine particles) and ≤0.1 μm (PM0.1; ultrafine particles), show the highest bioactivity but acquiring sufficient mass for in vitro and in vivo toxicological studies is challenging. We review the suitability of available instrumentation to collect the PM mass required for these assessments. Five different microenvironments representing the diverse exposure conditions in urban environments are considered in order to establish the typical PM concentrations present. The highest concentrations of PM2.5 and PM0.1 were found near traffic (i.e. roadsides and traffic intersections), followed by indoor environments, parks and behind roadside vegetation. We identify key factors to consider when selecting sampling instrumentation. These include PM concentration on-site (low concentrations increase sampling time), nature of sampling sites (e.g. indoors; noise and space will be an issue), equipment handling and power supply. Physicochemical characterisation requires micro- to milli-gram quantities of PM and it may increase according to the processing methods (e.g. digestion or sonication). Toxicological assessments of PM involve numerous mechanisms (e.g. inflammatory processes and oxidative stress) requiring significant amounts of PM to obtain accurate results. Optimising air sampling techniques are therefore important for the appropriate collection medium/filter which have innate physical properties and the potential to interact with samples. An evaluation of methods and instrumentation used for airborne virus collection concludes that samplers operating cyclone sampling techniques (using centrifugal forces) are effective in collecting airborne viruses. We highlight that predictive modelling can help to identify pollution hotspots in an urban environment for the efficient collection of PM mass. This review provides guidance to prepare and plan efficient sampling campaigns to collect sufficient PM mass for various purposes in a reasonable timeframe.