Harry Walsh

Harry Walsh


Postgraduate Research Student

About

My research project

Publications

Harry Walsh, Ozge Mercanoglu Sincan, Ben Saunders, Richard Bowden (2023)Gloss Alignment using Word Embeddings, In: 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)pp. 1-5 IEEE

Capturing and annotating Sign language datasets is a time consuming and costly process. Current datasets are orders of magnitude too small to successfully train unconstrained Sign Language Translation (SLT) models. As a result, research has turned to TV broadcast content as a source of large-scale training data, consisting of both the sign language interpreter and the associated audio subtitle. However, lack of sign language annotation limits the usability of this data and has led to the development of automatic annotation techniques such as sign spotting. These spottings are aligned to the video rather than the subtitle, which often results in a misalignment between the subtitle and spotted signs. In this paper we propose a method for aligning spottings with their corresponding subtitles using large spoken language models. Using a single modality means our method is computationally inexpensive and can be utilized in conjunction with existing alignment techniques. We quantitatively demonstrate the effectiveness of our method on the Meine DGS-Annotated (MeineDGS) and BBC-Oxford British Sign Language (BOBSL) datasets, recovering up to a 33.22 BLEU-1 score in word alignment.

Harry Thomas Walsh (2023)Gloss Alignment Using Word Embeddings

Capturing and annotating Sign language datasets is a time consuming and costly process. Current datasets are orders of magnitude too small to successfully train unconstrained Sign Language Translation (SLT) models. As a result, research has turned to TV broadcast content as a source of large-scale training data, consisting of both the sign language interpreter and the associated audio subtitle. However, lack of sign language annotation limits the usability of this data and has led to the development of automatic annotation techniques such as sign spotting. These spottings are aligned to the video rather than the subtitle, which often results in a misalignment between the subtitle and spotted signs. In this paper we propose a method for aligning spottings with their corresponding subtitles using large spoken language models. Using a single modality means our method is computationally inexpensive and can be utilized in conjunction with existing alignment techniques. We quantitatively demonstrate the effectiveness of our method on the Meine DGS-Annotated (MeineDGS) and BBC-Oxford British Sign Language (BOBSL) datasets, recovering up to a 33.22 BLEU-1 score in word alignment.

Neural Sign Language Production (SLP) aims to automatically translate from spoken language sentences to sign language videos. Historically the SLP task has been broken into two steps; Firstly, translating from a spoken language sentence to a gloss sequence and secondly, producing a sign language video given a sequence of glosses. In this paper we apply Natural Language Processing techniques to the first step of the SLP pipeline. We use language models such as BERT and Word2Vec to create better sentence level embeddings, and apply several tokenization techniques, demonstrating how these improve performance on the low resource translation task of Text to Gloss. We introduce Text to HamNoSys (T2H) translation, and show the advantages of using a phonetic representation for sign language translation rather than a sign level gloss representation. Furthermore, we use HamNoSys to extract the hand shape of a sign and use this as additional supervision during training, further increasing the performance on T2H. Assembling best practise, we achieve a BLEU-4 score of 26.99 on the MineDGS dataset and 25.09 on PHOENIX14T, two new state-of-the-art baselines.