Dr Qi Zhang

Postgraduate Research Student

Academic and research departments

School of Chemistry and Chemical Engineering.


My research project


S Marson, RA Dorey, Q Zhang, RW Whatmore, A Hardy, J Mullens (2004)Direct patterning of photosensitive chemical solution deposition PZT layers, In: JOURNAL OF THE EUROPEAN CERAMIC SOCIETY24(6)pp. 1925-1928
R. Matthew Bown, M Joyce, QI ZHANG, TOMAS RAMIREZ REINA, MELIS DUYAR (2021)Identifying Commercial Opportunities for the Reverse Water Gas Shift Reaction, In: Energy Technology9(11)2100554 Wiley

The reverse water gas shift (RWGS) reaction is a promising technology for introducing carbon dioxide as feedstock to the broader chemical industry through syngas production. While this reaction has attracted significant attention recently for catalyst and process development, there is a need to quantify the net CO2 consumption of RWGS schemes, while taking into account parameters such as thermodynamics, alongside technoeconomic constraints for feasible process development. Also of particular importance is the consideration of the cost and carbon footprint of hydrogen production. Herein, research needs to enable net carbon‐consuming, economically feasible RWGS processes are identified. By considering the scenarios of hydrogen with varying carbon footprints (gray, blue, and green) as well as analyzing the sensitivity to process heating method, it is proposed that the biggest enabling development for RWGS commercial implementation as a CO2 utilization technology will be the availability of low‐cost and low‐carbon sources of hydrogen. RWGS catalyst improvements alone will not be sufficient for economic feasibility but are necessary given the prospect of dropping hydrogen prices.

FFC Duval, RA Dorey, Q Zhang, RW Whatmore (2003)Lead germanium oxide sinter-assisted PZT composite thick films, In: JOURNAL OF THE EUROPEAN CERAMIC SOCIETY23(11)PII S0955-pp. 1935-1941 ELSEVIER SCI LTD
DJ Yang, SG Wang, Q Zhang, PJ Sellin, G Chen (2004)Thermal and electrical transport in multi-walled carbon nanotubes, In: PHYSICS LETTERS A329(3)pp. 207-213 ELSEVIER SCIENCE BV
QI ZHANG, LAURA PASTOR PEREZ, J.J. Villora-Pico, M Joyce, A. Sepúlveda-Escribano, MELIS DUYAR, TOMAS RAMIREZ REINA (2022)Ni-Phosphide catalysts as versatile systems for gas-phase CO2 conversion: Impact of the support and evidences of structure-sensitivity, In: Fuel323124301 Elsevier

We report for the first time the support dependent activity and selectivity of Ni-rich nickel phosphide catalysts for CO2 hydrogenation. New catalysts for CO2 hydrogenation are needed to commercialise the reverse water–gas shift reaction (RWGS) which can feed captured carbon as feedstock for traditionally fossil fuel-based processes, as well as to develop flexible power-to-gas schemes that can synthesise chemicals on demand using surplus renewable energy and captured CO2. Here we show that Ni2P/SiO2 is a highly selective catalyst for RWGS, producing over 80% CO in the full temperature range of 350–750 °C. This indicates a high degree of suppression of the methanation reaction by phosphide formation, as Ni catalysts are known for their high methanation activity. This is shown to not simply be a site blocking effect, but to arise from the formation of a new more active site for RWGS. When supported on Al2O3 or CeAl, the dominant phase of as synthesized catalysts is Ni12P5. These Ni12P5 catalysts behave very differently compared to Ni2P/SiO2, and show activity for methanation at low temperatures with a switchover to RWGS at higher temperatures (reaching or approaching thermodynamic equilibrium behaviour). This switchable activity is interesting for applications where flexibility in distributed chemicals production from captured CO2 can be desirable. Both Ni12P5/Al2O3 and Ni12P5/CeAl show excellent stability over 100 h on stream, where they switch between methanation and RWGS reactions at 50–70% conversion. Catalysts are characterized before and after reactions via X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), temperature-programmed reduction and oxidation (TPR, TPO), Transmission Electron Microscopy (TEM), and BET surface area measurement. After reaction, Ni2P/SiO2 shows the emergence of a crystalline Ni12P5 phase while Ni12P5/Al2O3 and Ni12P5/CeAl both show the crystalline Ni3P phase. While stable activity of the latter catalysts is demonstrated via extended testing, this Ni enrichment in all phosphide catalysts shows the dynamic nature of the catalysts during operation. Moreover, it demonstrates that both the support and the phosphide phase play a key role in determining selectivity towards CO or CH4.

Ana Belén Dongil, Qi Zhang, Laura Pastor-Pérez, Tomás Ramírez-Reina, Antonio Guerrero-Ruiz, Inmaculada Rodríguez-Ramos (2020)Effect of Cu and Cs in the β-Mo2C System for CO2 Hydrogenation to Methanol, In: Catalysts10(10)pp. 1213-1213 MDPI AG

Mitigation of anthropogenic CO2 emissions possess a major global challenge for modern societies. Herein, catalytic solutions are meant to play a key role. Among the different catalysts for CO2 conversion, Cu supported molybdenum carbide is receiving increasing attention. Hence, in the present communication, we show the activity, selectivity and stability of fresh-prepared β-Mo2C catalysts and compare the results with those of Cu/Mo2C, Cs/Mo2C and Cu/Cs/Mo2C in CO2 hydrogenation reactions. The results show that all the catalysts were active, and the main reaction product was methanol. Copper, cesium and molybdenum interaction is observed, and cesium promoted the formation of metallic Mo on the fresh catalyst. The incorporation of copper is positive and improves the activity and selectivity to methanol. Additionally, the addition of cesium favored the formation of Mo0 phase, which for the catalysts Cs/Mo2C seemed to be detrimental for the conversion and selectivity. Moreover, the catalysts promoted by copper and/or cesium underwent redox surface transformations during the reaction, these were more obvious for cesium doped catalysts, which diminished their catalytic performance.

Qi Zhang, L. Pastor-Perez, S. Gu, Tomas Ramirez Reina (2020)Transition Metal Carbides (TMCs) catalysts for gas phase CO2 upgrading reactions: a comprehensive overview, In: Catalysts MDPI

Increasing demand for CO2 utilization reactions and the stable character of CO2 have motivated the interest in developing highly active, selective and stable catalysts. Precious metal catalysts have been studied extensively due to their high activities, but their implementation for industrial applications is hindered due to their elevated cost. Among the materials which have comparatively low prices, transition metal carbides (TMCs) are deemed to display catalytic properties similar to Pt-group metals (Ru, Rh, Pd, Ir, Pt) in several reactions such as hydrogenation and dehydrogenation processes. In addition, they are excellent substrates to disperse metallic particles. Hence, the unique properties of TMCs make them ideal substitutes for precious metals resulting in promising catalysts for CO2 utilization reactions. This work aims to provide a comprehensive overview of recent advances on TMCs catalysts towards gas phase CO2 utilization processes, such as CO2 methanation, reverse water gas shift (rWGS) and dry reforming of methane (DRM). We have carefully analyzed synthesis procedures, performances and limitations of different TMCs catalysts. Insights on material characteristics such as crystal structure and surface chemistry and their connection with the catalytic activity are also critically reviewed.

Srikanta Sannigrahi, Prashant Kumar, Anna Molter, Qi Zhang, Bidroha Basu, Arunima Sarkar Basu, Francesco Pilla (2021)Examining the status of improved air quality in world cities due to COVID-19 led temporary reduction in anthropogenic emissions, In: Environmental research196110927 Elsevier Inc

Clean air is a fundamental necessity for human health and well-being. Anthropogenic emissions that are harmful to human health have been reduced substantially under COVID-19 lockdown. Satellite remote sensing for air pollution assessments can be highly effective in public health research because of the possibility of estimating air pollution levels over large scales. In this study, we utilized both satellite and surface measurements to estimate air pollution levels in 20 cities across the world. Google Earth Engine (GEE) and Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI) application were used for both spatial and time-series assessment of tropospheric Nitrogen Dioxide (NO2) and Carbon Monoxide (CO) statuses during the study period (1 February to May 11, 2019 and the corresponding period in 2020). We also measured Population-Weighted Average Concentration (PWAC) of particulate matter (PM2.5 and PM10) and NO2 using gridded population data and in-situ air pollution estimates. We estimated the economic benefit of reduced anthropogenic emissions using two valuation approaches: (1) the median externality value coefficient approach, applied for satellite data, and (2) the public health burden approach, applied for in-situ data. Satellite data have shown that ~28 tons (sum of 20 cities) of NO2 and ~184 tons (sum of 20 cities) of CO have been reduced during the study period. PM2.5, PM10, and NO2 are reduced by ~37 (μg/m3), 62 (μg/m3), and 145 (μg/m3), respectively. A total of ~1310, ~401, and ~430 premature cause-specific deaths were estimated to be avoided with the reduction of NO2, PM2.5, and PM10. The total economic benefits (Billion US$) (sum of 20 cities) of the avoided mortality are measured as ~10, ~3.1, and ~3.3 for NO2, PM2.5, and PM10, respectively. In many cases, ground monitored data was found inadequate for detailed spatial assessment. This problem can be better addressed by incorporating satellite data into the evaluation if proper quality assurance is achieved, and the data processing burden can be alleviated or even removed. Both satellite and ground-based estimates suggest the positive effect of the limited human interference on the natural environments. Further research in this direction is needed to explore this synergistic association more explicitly.

RW Whatmore, Q Zhang, CP Shaw, RA Dorey, JR Alcock (2007)Pyroelectric ceramics and thin films for applications in uncooled infra-red sensor arrays, In: PHYSICA SCRIPTAT129pp. 6-11
Qi Zhang, Laura Pastor Perez, Wei Jin, Sai Gu, Tomas Ramirez Reina (2019)Understanding the promoter effect of Cu and Cs over highly effective -Mo2C catalysts for the reverse water-gas shift reaction, In: Applied Catalysis B: Environmental244pp. 889-898 Elsevier

Mo2C is an effective catalyst for chemical CO2 upgrading via reverse water-gas shift (RWGS). In this work, we demonstrate that the activity and selectivity of this system can be boosted by the addition of promoters such as Cu and Cs. The addition of Cu incorporates extra active sites such as Cu+ and Cu0 which are essential for the reaction. Cs is an underexplored dopant whose marked electropositive character generates electronic perturbations on the catalyst’s surface leading to enhanced catalytic performance. Also, the Cs-doped catalyst seems to be in-situ activated due to a re-carburization phenomenon which results in fairly stable catalysts for continuous operations. Overall, this work showcases a strategy to design highly efficient catalysts based on promoted β-Mo2C for CO2 recycling via RWGS.

SG Wang, PJ Sellin, A Lohstroh, Q Zhang (2005)Performance improvement of polycrystalline diamond ultraviolet photodetectors by room-temperature plasma treatment, In: APPLIED PHYSICS LETTERS86(9)ARTN 0pp. ?-? AMER INST PHYSICS