Dr Robert Izzard
Academic and research departments
Astrophysics Research Group, School of Mathematics and Physics, Experimental Nuclear Physics Group.About
Biography
I am senior lecturer in the astrophysics group at the University of Surrey, where I am also an associate member of the experimental nuclear-physics group. I was previously an STFC Rutherford fellow in Surrey and at the Institute of Astronomy, part of the University of Cambridge. I was also a teaching by-fellow at Churchill College. Prior to this I was a W2 Professor at the University of Bonn, a Marie-Curie fellow at l'Université libre de Bruxelles, an NWO fellow at the University of Utrecht and I did my PhD at the IOA in Cambridge, graduating in 2004.
My research focuses on
- The evolution of single, binary and multiple stars, including the binary_c code.
- The origin of the chemical elements.
- Disc and planet formation in binary stars.
- Stellar nucleosynthesis and chemically peculiar stars.
- Astrostatistics of single and multiple stellar systems.
- Globular clusters and their multiple stellar generations.
- Chemical evolution of the Galaxy.
- The progenitors of Gamma-Ray Bursts.
- Computational astrophysics and the development of scientific software.
- Science education and realisation with advanced visualization tools.
- Communicating and teaching astrophysics to school students.
My teaching experience includes
- Teaching by-fellow at Churchill College, Cambridge
- Ia mathematics for natural science (first year undergraduate) supervisions
- Lectures on binary stars, non-linear physics, electromagnetism, scalar and vector fields, advanced nuclear astrophysics and explosive stellar phenomena.
- Scientific writing classes
- Weekly technical astrophysics seminar
- Student astronomy seminar series
- Interactive stellar evolution computing laboratory
- IMPRS blackboard lectures on Interactive Stellar Evolution
- Supervisor of undergraduate students, University of Cambridge: Ia mathematics for natural sciences, Part Ib mathematics Electromagnetism, Part II mathematics principles of quantum mechanics and statistical physics and cosmology.
Areas of specialism
University roles and responsibilities
- Senior Lecturer
- Web zombie
- Lecturer in Non-linear Physics PHYM038
- Lecturer in Electromagnetism, Scalar and Vector fields PHY2064
- Lecturer in Advanced Nuclear Astrophysics PHY3059
- Lecturer in Explosive Stellar Phenomena PHYM052
- Lecturer in Scientific Writing, part of PHY3062 (starts September 2024)
- MPhys visiting tutor
- Final-year project marker PHY3002
My qualifications
Previous roles
ResearchResearch interests
An incomplete list of research interests
- The evolution of single, binary and multiple stars.
- The origin of the chemical elements.
- Disc and planet formation in binary stars.
- Stellar nucleosynthesis and chemically peculiar stars.
- Astrostatistics of single and multiple stellar systems, including Bayesian statistics and machine learning.
- Globular clusters and their multiple stellar generations.
- Chemical evolution of the Galaxy.
- The progenitors of Gamma-Ray Bursts.
- Computational astrophysics and numerical software.
- Science education and realisation with advanced visualization tools.
Research projects
The core of our research is the binary_c rapid stellar evolution code and its many application to many different parts of astrophysics. The binary_c software framework models the evolution of single, binary and multiple stars, including stellar evolution and nucleosynthesis. It is designed for stellar population calculations, so is lightweight and versatile, and its support software contains tools for development and data analysis, such as binary_c-python led by David Hendriks, libcdict and librinterpolate.
Multi-star INTerpolationWe are updating binary_c with the Multiple-star INTerpolation library, MINT, with Natalie Rees, David Hendriks and Giovanni Mirouh. This interpolates pre-computed grids of stellar evolution models, using data regularization and novel machine learning techniques to make this as fast and efficient as possible, including detailed nucleosynthesis in all stars. Our first paper using MINT investigates tidal interactions in main-sequence stars which are vital to all subsequent evolutionary stages.
binary stars in galactic hydrodynamicsThe chemical ejecta from single and binary stars, computed using binary_c, are being used in Rob Yates’ galactic chemical evolution models made with L-galaxies. Our first paper, published in MNRAS, explores the impact of binary stars on chemistry in our galaxy. We will be implementing our yields in Chiaki Kobayashi’s 3D Galactic hydrodynamics models, supported by an STFC postdoctoral grant.
Stellar populations with Gaia, APOGEE, etc.To couple our stellar-evolution models with stellar surveys like Gaia and APOGEE, we are constructing Galactic stellar populations of single, binary and multiple stars. PhD student Andrew Garner is using binary_c’s new ensemble-data software to generate data sets suitable for statistical comparison with big surveys.
Dwarf galaxiesBinary_c is being used to model the velocities of realistic populations of binary stars in ultra-faint dwarf galaxies. Amery Gration is using these data to estimate the bias in mass estimates of such galaxies caused by interacting binary systems.
Nucleosynthesis in red-giant starsNucleosynthesis in binary red giant stars is being investigated using binary_c by Zara Osborn, PhD student at Monash University who is supervised by Amanda Karakas and co-supervised by Robert Izzard. We have already improved the models in binary_c to show that aluminium-26 yields are 25% greater in binary-star systems, as published in MNRAS.
Asteroseismology in binary starsRobert Izzard is part of the Asterochronometry ERC project led by Andrea Miglio, helping PhD student Massimiliano Matteuzzi construct stellar-population models to pin down the progenitors of peculiarly-massive stars that have merged during common-envelope interactions using Bayesian statistical techniques.
Transients from binary starsWhen stars merge they often emit great bursts of light known as transients. We are working with Nadia Blagorodnova at the University of Barcelona to implement models of transients in stellar populations to determine statistics for comparison with surveys. Supported by her ERC grant.
Thermonuclear novaeNovae occur when thin layers of hydrogen explode when accreted from a companion star in a binary system. With ex-Surrey PhD student Arman Aryaeipour and nuclear physicist Gavin Lotay we have been implementing 3D hydrodynamical mixing into 1D MESA models of these exploding stars to determine their ejecta yields.
The first starsTogether with Nina Sartorio we are investigating X-ray binaries in the very early Universe and their impact on 21cm-line emission and how this relates to the Population III initial-mass function of stars.
Stars for SchoolsStars for Schools is a research project designed to combine physics, mathematics and computing for students aged 14-18 in school years 10-13. The intriguing world of stellar evolution is explored using advanced software Window to the Stars and coding on the Raspberry Pi to uncover the fundamental mysteries of the cosmos. Within this comprehensive programme, students take part in research projects aimed at revealing different aspects of the vast celestial world. The Stars for Schools programme is supported by an STFC Spark grant and numerous Royal Society grants.
Research interests
An incomplete list of research interests
- The evolution of single, binary and multiple stars.
- The origin of the chemical elements.
- Disc and planet formation in binary stars.
- Stellar nucleosynthesis and chemically peculiar stars.
- Astrostatistics of single and multiple stellar systems, including Bayesian statistics and machine learning.
- Globular clusters and their multiple stellar generations.
- Chemical evolution of the Galaxy.
- The progenitors of Gamma-Ray Bursts.
- Computational astrophysics and numerical software.
- Science education and realisation with advanced visualization tools.
Research projects
The core of our research is the binary_c rapid stellar evolution code and its many application to many different parts of astrophysics. The binary_c software framework models the evolution of single, binary and multiple stars, including stellar evolution and nucleosynthesis. It is designed for stellar population calculations, so is lightweight and versatile, and its support software contains tools for development and data analysis, such as binary_c-python led by David Hendriks, libcdict and librinterpolate.
We are updating binary_c with the Multiple-star INTerpolation library, MINT, with Natalie Rees, David Hendriks and Giovanni Mirouh. This interpolates pre-computed grids of stellar evolution models, using data regularization and novel machine learning techniques to make this as fast and efficient as possible, including detailed nucleosynthesis in all stars. Our first paper using MINT investigates tidal interactions in main-sequence stars which are vital to all subsequent evolutionary stages.
The chemical ejecta from single and binary stars, computed using binary_c, are being used in Rob Yates’ galactic chemical evolution models made with L-galaxies. Our first paper, published in MNRAS, explores the impact of binary stars on chemistry in our galaxy. We will be implementing our yields in Chiaki Kobayashi’s 3D Galactic hydrodynamics models, supported by an STFC postdoctoral grant.
To couple our stellar-evolution models with stellar surveys like Gaia and APOGEE, we are constructing Galactic stellar populations of single, binary and multiple stars. PhD student Andrew Garner is using binary_c’s new ensemble-data software to generate data sets suitable for statistical comparison with big surveys.
Binary_c is being used to model the velocities of realistic populations of binary stars in ultra-faint dwarf galaxies. Amery Gration is using these data to estimate the bias in mass estimates of such galaxies caused by interacting binary systems.
Nucleosynthesis in binary red giant stars is being investigated using binary_c by Zara Osborn, PhD student at Monash University who is supervised by Amanda Karakas and co-supervised by Robert Izzard. We have already improved the models in binary_c to show that aluminium-26 yields are 25% greater in binary-star systems, as published in MNRAS.
Robert Izzard is part of the Asterochronometry ERC project led by Andrea Miglio, helping PhD student Massimiliano Matteuzzi construct stellar-population models to pin down the progenitors of peculiarly-massive stars that have merged during common-envelope interactions using Bayesian statistical techniques.
When stars merge they often emit great bursts of light known as transients. We are working with Nadia Blagorodnova at the University of Barcelona to implement models of transients in stellar populations to determine statistics for comparison with surveys. Supported by her ERC grant.
Novae occur when thin layers of hydrogen explode when accreted from a companion star in a binary system. With ex-Surrey PhD student Arman Aryaeipour and nuclear physicist Gavin Lotay we have been implementing 3D hydrodynamical mixing into 1D MESA models of these exploding stars to determine their ejecta yields.
Together with Nina Sartorio we are investigating X-ray binaries in the very early Universe and their impact on 21cm-line emission and how this relates to the Population III initial-mass function of stars.
Stars for Schools is a research project designed to combine physics, mathematics and computing for students aged 14-18 in school years 10-13. The intriguing world of stellar evolution is explored using advanced software Window to the Stars and coding on the Raspberry Pi to uncover the fundamental mysteries of the cosmos. Within this comprehensive programme, students take part in research projects aimed at revealing different aspects of the vast celestial world. The Stars for Schools programme is supported by an STFC Spark grant and numerous Royal Society grants.
Supervision
Postgraduate research supervision
I have supervised masters and PhD students in Surrey, Cambridge and Bonn, and am happy to help applications for PhD studentships on research topics related to binary stars and their impact on the Universe.
PhD students:
- Andrew Garner (Surrey)
- Natalie Rees (Surrey)
- Zara Osborn (Monash, co-supervising)
- David Hendriks (Surrey, graduated 2024)
- Arman Aryaeipour (Surrey, graduated 2024)
- Tom Comerford (Cambridge, 2017-21)
- Fabian Schneider (Bonn 2010-14)
- Dominique Meyer (Bonn 2011-15)
Also currently or previously supervising Surrey students in the MSc (physics), MSc (data science), B. Sc. (physics) and MPhys courses.
Teaching
Currently teaching
- Non-linear physics (PHYM038)
- Advanced nuclear astrophysics (PHY3059)
- Explosive stellar phenomena (PHYM052)
- Electromagnetism, scalar and vector fields (PHY2064)
- Stars for Schools programme (Video)
- Research year dissertation (PHY3062, starting September 2024)
- Final-year projects (PHY3002)
Previous teaching in Cambridge (2002-4, 2015-17)
- Teaching by-fellow Churchill College, Cambridge (2015-17)
Previous teaching at the University of Bonn (2010-15)
- Scientific writing (6951) - how to write and communicate in astronomy and science generally
- Stars and stellar evolution (astro811)
- Seminar on technical and computational aspects of astronomy (6964)
- Seminar on stellar evolution and hydrodynamics (6953)
- Binary stars (astro8501/6944)
Other teaching
- Life and Death: From Stars to Compact Objects 2022
- IMPRS Heidelberg summer school 2021 "Binary Populations"
- STFC summer school 2020/21 lectures on Stellar Pathways and Writing and research management
- Dunsink Solarfest 2016
- IMPRS Heidelberg summer school 2014
Teaching qualifications and awards
- Lynne Millward Academic of the Year Award "FEPS Highly commended" (2021)
- Graduate Certificate Learning and Teaching (2018)
Publications
Context. The explosive burning that drives nova eruptions results in unique nucleosynthesis that heavily over-produces certain isotopes relative to the solar abundance. However, novae are often ignored when considering the chemical evolution of our Galaxy due to their low ejecta masses. Galactic chemical evolution studies including novae are rare and have previously relied upon simplified treatments for the behaviour of nova populations. Aims. In this work, we use previously computed synthetic nova populations and the galactic chemical evolution code OMEGA+ to assess the impact that novae have on the evolution of stable elemental and isotopic abundances. Methods. We combine populations of novae computed using the binary population synthesis code binary_c with the galactic chemical evolution code OMEGA+ and detailed, white dwarf mass-dependent nova yields to model the nucleosynthetic contributions of novae to the evolution of the Milky Way. We consider three different nova yield profiles, each corresponding to a different set of nova yield calculations. Results. We examine which nova sites contribute most to which isotopes. Despite novae from low-mass white dwarfs (WDs) dominating nova ejecta contributions, we find that novae occurring on massive WDs are still able to contribute significantly to many isotopes, particularly those with high mass numbers. We find that novae can produce up to 35% of the Galactic 13C and 15N mass by the time the model Galaxy reaches [Fe/H] = 0, and earlier in the evolution of the Galaxy (between [Fe/H] = −2 and −1) novae may have been the dominant source of 15N. Predictions for [13C/Fe], [15N/Fe], 12C/13C, and 14N/15N abundances ratios vary by up to 0.2 dex at [Fe/H] = 0 and by up to 0.7 dex in [15N/Fe] and 14N/15N between [Fe/H] = −2 and −1 (corresponding approximately to Galactic ages of 170 Myr and 1 Gyr in our model). The Galactic evolution of other stable isotopes (excluding Li) is not noticeably affected by including novae. For most isotopes, agreement is generally good between the three different yield profiles we consider. Isotopes where agreement is relatively poor include: 3He (especially at high MWD), 7Li, 18O, 18F, and the > 1.3 M⊙ regime of 29Si, 33S, 34S, 35Cl, and 36Ar.
ABSTRACT The Thermally Pulsing- (Super) Asymptotic Giant Branch is a late stage in the evolution of low- and intermediate-mass stars. These stars undergo strong wind mass-loss and diverse nucleosynthesis. Third dredge-up events, that occur following thermal pulses, are responsible for enriching the surfaces of Asymptotic Giant Branch stars, hence an understanding of this process is crucial for constraining galactic chemical evolution. Using a custom numerical scheme, we investigate the temporal and spatial resolution required to resolve the third dredge-up in the 1D stellar evolution code mesa. With mesa’s default controls, the third dredge-up efficiency is underestimated by as much as $\approx 76~{{\ \rm per\ cent}}$. In stars that undergo hot third dredge-up (M ≳ 6 M⊙), the third dredge-up efficiency is overestimated by $\approx 55~{{\ \rm per\ cent}}$. The Thermally Pulsing- (Super) Asymptotic Giant Branch (TP-(S)AGB) evolution is computed for models with initial masses 1 ≤ Mi/M⊙ ≤ 8 at Solar metallicity (Z = 0.014). The minimum initial mass for carbon stars falls in the range 1.5–1.75 M⊙, compatible with observations. The use of mesa for TP-(S)AGB evolution is validated by comparison to the widely used monash models which show good agreement in the maximum third dredge-up efficiency at initial masses Mi > 2 M⊙. We also compare the third dredge-up efficiency in models produced using two independent stellar evolution codes, fruity and aton, which were computed with various differences in input physics including mass-loss, and which exhibit weaker third dredge-up episodes.
International audience; Abstract In the last decade, the Kepler and CoRoT space-photometry missions have demonstrated the potential of asteroseismology as a novel, versatile and powerful tool to perform exquisite tests of stellar physics, and to enable precise and accurate characterisations of stellar properties, with impact on both exoplanetary and Galactic astrophysics. Based on our improved understanding of the strengths and limitations of such a tool, we argue for a new small/medium space mission dedicated to gathering high-precision, high-cadence, long photometric series in dense stellar fields. Such a mission will lead to breakthroughs in stellar astrophysics, especially in the metal poor regime, will elucidate the evolution and formation of open and globular clusters, and aid our understanding of the assembly history and chemodynamics of the Milky Way’s bulge and a few nearby dwarf galaxies.
Journal of Open Source Software, 8(92), 4756 (2023) A common requirement in science is to store and share large sets of simulation data in an efficient, nested, flexible and human-readable way. Such datasets contain number counts and distributions, i.e. histograms and maps, of arbitrary dimension and variable type, e.g. floating-point number, integer or character string. Modern high-level programming languages like Perl and Python have associated arrays, knowns as dictionaries or hashes, respectively, to fulfil this storage need. Low-level languages used more commonly for fast computational simulations, such as C and Fortran, lack this functionality. We present libcdict, a C dictionary library, to solve this problem. Libcdict provides C and Fortran application programming interfaces (APIs) to native dictionaries, called cdicts, and functions for cdicts to load and save these as JSON and hence for easy interpretation in other software and languages like Perl, Python and R.
MNRAS, Volume 521, Issue 1, May 2023, Pages 35-50 We develop a rapid algorithm for the evolution of stable, circular, circumbinary discs suitable for parameter estimation and population synthesis modelling. Our model includes disc mass and angular momentum changes, accretion on to the binary stars, and binary orbital eccentricity pumping. We fit our model to the post-asymptotic giant branch (post-AGB) circumbinary disc around IRAS 08544-4431, finding reasonable agreement despite the simplicity of our model. Our best-fitting disc has a mass of about $0.01\, \mathrm{M}_{\odot }$ and angular momentum $2.7\times 10^{52}\, \mathrm{g}\, \mathrm{cm}^{2}\, \mathrm{s}^{-1}\simeq 9 \,\mathrm{M}_{\odot }\, \mathrm{km}\, \mathrm{s}^{-1}\, \mathrm{au}$, corresponding to 0.0079 and 0.16 of the common-envelope mass and angular momentum, respectively. The best-fitting disc viscosity is $\alpha _\mathrm{disc} = 5 \times 10^{-3}$ and our tidal torque algorithm can be constrained such that the inner edge of the disc $R_{\mathrm{in}}\sim 2a$. The inner binary eccentricity reaches about 0.13 in our best-fitting model of IRAS 08544-4431, short of the observed 0.22. The circumbinary disc evaporates quickly when the post-AGB star reaches a temperature of $\sim \! 6\times 10^4\, \mathrm{K}$, suggesting that planetismals must form in the disc in about $10^{4}\, \mathrm{yr}$ if secondary planet formation is to occur, while accretion from the disc on to the stars at about 10 times the inner-edge viscous rate can double the disc lifetime.
We present results from our ongoing follow-up observations of double white dwarf binaries detected in the ESO SN Ia Progenitor SurveY (SPY). We discuss our observing strategy and data analysis and present the orbital solutions of five close double white dwarf binaries: HE0320-1917, HE1511-0448, WD0326-273, WD1013-010 and WD1210+140. Their periods range from 0.44 to 3.22 days. In none of these systems we find any spectral lines originating from the companion. This rules out main sequence companions and indicates that the companion white dwarfs are significantly older and cooler than the bright component. Infrared photometry suggests the presence of a cool, helium-rich white dwarf companion in the binary WD 0326-273. We briefly discuss the consequences of our findings for our understanding of the formation and evolution of double white dwarfs.
The combination of asteroseismologically measured masses with abundances from detailed analyses of stellar atmospheres challenges our fundamental knowledge of stars and our ability to model them. Ancient red-giant stars in the Galactic thick disc are proving to be most troublesome in this regard. They are older than 5Gyr, a lifetime corresponding to an initial stellar mass of about 1.2M(circle dot). So why do the masses of a sizeable fraction of thick-disc stars exceed 1.3M(circle dot), with some as massive as 2.3M(circle dot)? We answer this question by considering duplicity in the thick-disc stellar population using a binary population-nucleosynthesis model. We examine how mass transfer and merging affect the stellar mass distribution and surface abundances of carbon and nitrogen. We show that a few per cent of thick-disc stars can interact in binary star systems and become more massive than 1.3M(circle dot). Of these stars, most are single because they are merged binaries. Some stars more massive than 1.3M(circle dot) form in binaries by wind mass transfer. We compare our results to a sample of the APOKASC data set and find reasonable agreement except in the number of these thick-disc stars more massive than 1.3M(circle dot). This problem is resolved by the use of a logarithmically flat orbital-period distribution and a large binary fraction.
One of the complexities in modelling integrated spectra of stellar populations is the effect of interacting binary stars besides Type Ia supernovae (SNeIa). These include common envelope systems, cataclysmic variables, novae, and are usually ignored in models predicting the chemistry and spectral absorption line strengths in galaxies. In this paper, predictions of chemical yields from populations of single and binary stars are incorporated into a galactic chemical evolution model to explore the significance of the effects of these other binary yields. Effects on spectral line strengths from different progenitor channels of SNeIa are also explored. Small systematic effects are found when the yields from binaries, other than SNeIa, are included, for a given star formation history. These effects are, at present, within the observational uncertainties on the line strengths. More serious differences can arise in considering different types of SNIa models, their rates and contributions.
Energy generation by nuclear fusion is the fundamental process that prevents stars from collapsing under their own gravity. Fusion in the core of a star converts hydrogen to heavier elements from helium to uranium. The signature of this nucleosynthesis is often visible in a single star only for a very short time, for example while the star is a red giant or, in massive stars, when it explodes. Contrarily, in a binary system nuclear-processed matter can captured by a secondary star which remains chemically polluted long after its more massive companion star has evolved and died. By probing old, low-mass stars we gain vital insight into the complex nucleosynthesis that occurred when our Galaxy was much younger than it is today. Stellar evolution itself is also affected by the presence of a companion star. Thermonuclear novae and type Ia supernovae result from mass transfer in binary stars, but big questions still surround the nature of their progenitors. Stars may even merge and one of the challenges for the future of stellar astrophysics is to quantitatively understand what happens in such extreme systems. Binary stars offer unique insights into stellar, galactic and extragalactic astrophysics through their plethora of exciting phenomena. Understanding the chemical evolution of binary stars is thus of high priority in modern astrophysics.
We have calculated a large set of detailed binary models and used them to test the observed stellar population ratios that compare the relative populations of blue supergiants, red supergiants and Wolf-Rayet stars at different metallicities. We have also used our models to estimate the relative rate of type Ib/c to type II supernovae. We find, with an interacting binary fraction of about two thirds, that we obtain better agreement between our models and observations than with single stars. We discuss the use of models in determining the nature of supernova progenitors and show the surprising result that many type Ib/c supernova progenitors are less luminous and less massive in our models than the observed population of Wolf-Rayet stars.
Many binary star systems are not wide enough to contain the progenitor stars from which they were made. One explanation for this is that when one star becomes a red giant a common envelope forms around both stars in the binary system. The core of the giant and its companion star continue to orbit one another inside the envelope. Frictional energy deposited into the common envelope may lead to its ejection and, if so, a close binary system is formed from the core of the former giant star and its relatively untouched companion. When the primary is an asymptotic giant branch star the core becomes a hot carbon-oxygen white dwarf which may ionise the ejected envelope and illuminate a planetary nebula. Many other types of binary systems form through common envelope evolution such as low-mass X-ray binaries and cataclysmic variables. In the case of a failed envelope ejection when the cores merge, rapidly-rotating solitary giants similar to FK Comae stars form. In this short review we focus on attempts to constrain parameters of common envelope evolution models and also describe the latest efforts to model this elusive phase of binary stellar evolution.
We highlight the role of the light elements (Li, Be, B) in the evolution of massive single and binary stars, which is largely restricted to a diagnostic value, and foremost so for the element boron. However, we show that the boron surface abundance in massive early type stars contains key information about their foregoing evolution which is not obtainable otherwise. In particular, it allows to constrain internal mixing processes and potential previous mass transfer event for binary stars (even if the companion has disappeared). It may also help solving the mystery of the slowly rotating nitrogen-rich massive main sequence stars.
The R stars are carbon-rich K-type giants. For more than a century their origin has remained a mystery. The warmest of them, the early-R stars, have luminosities similar to core helium burning stars yet canonical stellar evolution theory suggests they should not be carbon rich. The early-R stars are chemically peculiar, being enhanced in 12C, 13C and 14N but not in s-process elements, and are all single stars. Binary mergers have been suggested as the evolutionary channel which leads to the early-R stars: we test this scenario with a state-of-the-art binary population synthesis.
We present Window To The Stars, a graphical user interface to the popular TWIN single/binary stellar evolution code, for novices, students and professional astrophysicists. It removes the drudgery associated with the traditional approach to running the code, while maintaining the power, output quality and flexibility a modern stellar evolutionist requires. It is currently being used for cutting edge research and interactive teaching.
We present a Bayesian method that simultaneously takes all available observables for a given star, their uncertainties and prior knowledge like the initial mass function into account to determine probability distributions of the stellar parameters based on grids of stellar evolutionary models. This allows to homogeneously analyse stars, to determine stellar parameters including robust uncertainties and to identify stars that cannot be reproduced by current stellar models. Our code is available through an easy-to-use web-interface.
Many of the carbon-enhanced metal-poor (CEMP) stars that we observe in the Galactic halo are found in binary systems and show enhanced abundances of elements produced by the slow neutron-capture process (s-elements). The origin of the peculiar chemical abundances of these CEMP-s stars is believed to be accretion in the past of enriched material from a primary star in the asymptotic giant branch (AGB) phase of its evolution. We investigate the mechanism of mass transfer and the process of nucleosynthesis in low-metallicity AGB stars by modelling the binary systems in which the observed CEMP-s stars were formed. For this purpose we compare a sample of 67 CEMP-s stars with a grid of binary stars generated by our binary evolution and nucleosynthesis model. We classify our sample CEMP-s stars in three groups based on the observed abundance of europium. In CEMP-s/r stars the europium-to-iron ratio is more than ten times higher than in the Sun, whereas it is lower than this threshold in CEMP-s/nr stars. No measurement of europium is currently available for CEMP-s/ur stars. On average our models reproduce the abundances observed in CEMP-s/nr stars well, whereas in CEMP-s/r stars and CEMP-s/ur stars the abundances of the light-s elements (strontium, yttrium, zirconium) are systematically overpredicted by our models, and in CEMP-s/r stars the abundances of the heavy-s elements (barium, lanthanum) are underestimated. In all stars our modelled abundances of sodium overestimate the observations. This discrepancy is reduced only in models that underestimate the abundances of most of the s-elements. Furthermore, the abundance of lead is underpredicted in most of our model stars, independent of the metallicity. These results point to the limitations of our AGB nucleosynthesis model, particularly in the predictions of the element-to-element ratios. In our models CEMP-s stars are typically formed in wide systems with periods above 10 000 days, while most of the observed CEMP-s stars are found in relatively close orbits with periods below 5000 days. This evidence suggests that either the sample of CEMP-s binary stars with known orbital parameters is biased towards short periods or that our wind mass-transfer model requires more efficient accretion in close orbits.
We show the preliminary results of our search for the progenitor systems of type la supernovae (SNe La). We model binary populations our aim being to compare these models with the observations of detailed element abundances of the hot Intra-Cluster Medium.
We present the results of binary population simulations of carbon-enhanced metal-poor (CEMP) stars. We show that nitrogen and fluorine are useful tracers of the origin of CEMP stars, and conclude that the observed paucity of very nitrogen-rich stars puts strong constraints on possible modifications of the initial mass function at low metallicity. The large number fraction of CEMP stars may instead require much more efficient dredge-up from low-metallicity asymptotic giant branch stars.
Abundance anomalies observed in globular cluster stars indicate pollution with material processed by hydrogen burning. Two main sources have been suggested: asymptotic giant branch (AGB) stars and massive stars rotating near the break-up limit (spin stars). We propose massive binaries as an alternative source of processed material. We compute the evolution of a 20 M(circle dot) star in a close binary considering the effects of non conservative mass and angular momentum transfer and of rotation and tidal interaction to demonstrate the principle. We find that this system sheds about 10 M(circle dot) of material, nearly the entire envelope of the primary star. The ejecta are enriched in He, N, Na, and Al and depleted in C and O, similar to the abundance patterns observed in gobular cluster stars. However, Mg is not significantly depleted in the ejecta of this model. In contrast to the fast, radiatively driven winds of massive stars, this material is typically ejected with low velocity. We expect that it remains inside the potential well of a globular cluster and becomes available for the formation or pollution of a second generation of stars. We estimate that the amount of processed low-velocity material ejected by massive binaries is greater than the contribution of AGB stars and spin stars combined, assuming that the majority of massive stars in a proto-globular cluster interact with a companion and return their envelope to the interstellar medium. If we take the possible contribution of intermediate mass stars in binaries into account and assume that the ejecta are diluted with an equal amount of unprocessed material, we find that this scenario can potentially provide enough material to form a second generation of low-mass stars, which is as numerous as the first generation of low-mass stars, without the need to make commonly adopted assumptions, such as preferential loss of the first generation of stars, external pollution of the cluster, or an anomalous initial mass function.
Context.Thermally pulsating asymptotic giant branch (AGB) stars are the main producers of slow neutron capture (s-) process elements, but there are still large uncertainties associated with the formation of the main neutron source, 13C, and with the physics of these stars in general. Observations of s-process element enhancements in stars can be used as constraints on theoretical models. Aims.For the first time we have applied stellar population synthesis to the problem of s-process nucleosynthesis in AGB stars, in order to derive constraints on free parameters describing the physics behind the third dredge-up and the properties of the neutron source. Methods.We utilize a rapid evolution and nucleosynthesis code to synthesize different populations of s-enhanced stars, and compare them to their observational counterparts to find out which values of the free parameters in the code produce synthetic populations that fit the observed populations best. These free parameters are the amount of third dredge-up, the minimum core mass for third dredge-up, the effectiveness of 13C as a source of neutrons, and the size in mass of the 13C pocket. Results.We find that galactic disk objects are reproduced by a spread of a factor of two in the effectiveness of the 13C neutron source. Lower metallicity objects can be reproduced only by lowering the average value of the effectiveness of the 13C neutron source needed for the galactic disk objects by at least a factor of 3. Using observations of s-process elements in post-AGB stars as constraints we find that dredge-up has to start at a lower core mass than predicted by current theoretical models, that it has to be substantial $(\lambda\ga 0.2$) in stars with mass M $\la$ 1.5 $M_{\odot}$, and that the mass of the 13C pocket must be about 1/40 that of the intershell region.
We investigate the effect of duplicity on stellar yields of carbon, nitrogen, and oxygen. Populations of single and binary stars are modelled and the yields calculated for the whole population. The effects of explosive nucleosynthesis in novae and supernovae are included but by artificially removing these effects from our populations we determine the influence of a binary companion on asymptotic giant branch yields of the CNO elements.
The VLT-FLAMES Tarantula Survey is an ESO Large Program from which we have obtained multi-epoch optical spectroscopy of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud. This unprecedented dataset is being used to address outstanding questions in how massive stars evolve from the early main sequence to their deaths as core collapse supernovae. Here we focus on the rotation properties of the population of presumably single O stars and use binary population synthesis predictions to show that the rapid rotators among this population likely are post-interaction binaries. The same type of population synthesis can be used to study the mass function of massive young clusters. We argue – on the basis of predictions for the Arches and Quintuplet clusters – that a sizable fraction of the very massive WNh stars in 30 Doradus may also have such a binary interaction history. We single out the WNh star discovered in the VFTS, VFTS 682, and discuss its properties.
Rapidly rotating stars are readily produced in binary systems. An accreting star in a binary system can be spun up by mass accretion and quickly approach the break-up limit. Mergers between two stars in a binary are expected to result in massive, fast rotating stars. These rapid rotators may appear as Be or Oe stars or at low metallicity they may be progenitors of long gamma-ray bursts. Given the high frequency of massive stars in close binaries it seems likely that a large fraction of rapidly rotating stars result from binary interaction. It is not straightforward to distinguish a a fast rotator that was born as a rapidly rotating single star from a fast rotator that resulted from some kind of binary interaction. Rapidly rotating stars resulting from binary interaction will often appear to be single because the companion tends to be a low mass, low luminosity star in a wide orbit. Alternatively, they became single stars after a merger or disruption of the binary system during the supernova explosion of the primary. The absence of evidence for a companion does not guarantee that the system did not experience binary interaction in the past. If binary interaction is one of the main causes of high stellar rotation rates, the binary fraction is expected to be smaller among fast rotators. How this prediction depend on uncertainties in the physics of the binary interactions requires further investigation.
The R stars are a rare class of K-type giant carbon stars. Canonical stellar evolutionary theory cannot explain their existence, yet they have been observed for more than a century. The early-R stars, the warmest in the R class, are enhanced in C-12, C-13 and N-14 relative to the Sun, but not in s-processes elements or oxygen, and are all single stars. We test the idea that binary mergers lead to the formation of the early-R stars by a comparison of binary population synthesis model results with observations.
Aims. A super-solar fluorine abundance was observed in the carbon-enhanced metal-poor (CEMP) star HE 1305+0132 ([F/Fe] = +2.90, [Fe/H] = -2.5). We propose that this observation can be explained using a binary model that involve mass transfer from an asymptotic giant branch (AGB) star companion and, based on this model, we predict F abundances in CEMP stars in general. We discuss wether F can be used to discriminate between the formation histories of most CEMP stars: via binary mass transfer or from the ejecta of fast-rotating massive stars. Methods. We compute AGB yields using different stellar evolution and nucleosynthesis codes to evaluate stellar model uncertainties. We use a simple dilution model to determine the factor by which the AGB yields should be diluted to match the abundances observed in HE 1305+0132. We further employ a binary population synthesis tool to estimate the probability of F-rich CEMP stars. Results. The abundances observed in HE 1305+0132 can be explained if this star accreted 3-11% of the mass lost by its former AGB companion. The primary AGB star should have dredged-up at least 0.2 M-circle dot of material from its He-rich region into the convective envelope via third dredge-up, which corresponds to AGB models of Z similar or equal to 0.0001 and mass similar or equal to 2 M-circle dot. Many AGB model uncertainties, such as the treatment of convective borders and mass loss, require further investigation. We find that in the binary scenario most CEMP stars should also be FEMP stars, that is, have [F/Fe] > + 1, while fast-rotating massive stars do not appear to produce fluorine. We conclude that fluorine is a signature of low-mass AGB pollution in CEMP stars, together with elements associated with the slow neutron-capture process.
CEMP-s stars are very metal-poor stars with enhanced abundances of carbon and s-process elements. They form a significant proportion of the very metal-poor stars in the Galactic halo and are mostly observed in binary systems. This suggests that the observed chemical anomalies are due to mass accretion in the past from an asymptotic giant branch (AGB) star. Because CEMP-s stars have hardly evolved since their formation, the study of their observed abundances provides a way to probe our models of AGB nucleosynthesis at low metallicity. To this end we included in our binary evolution model the results of the latest models of AGB nucleosynthesis and we simulated a grid of 100 000 binary stars at metallicity Z = 0.0001 in a wide range of initial masses and separations. We compared our modelled stars with a sample of 60 CEMP-s stars from the SAGA database of metal-poor stars. For each observed CEMP-s star of the sample we found the modelled star that reproduces best the observed abundances. The result of this comparison is that we are able to reproduce simultaneously the observed abundance of the elements affected by AGB nucleosynthesis (e.g. C, Mg, s-elements) for about 60% of the stars in the sample.
bonnfires, a new generation of population synthesis code, can calculate nuclear reaction, various mixing processes and binary interaction in a timely fashion. We use this new population synthesis code to study the interplay between binary mass transfer and rotation. We aim to compare theoretical models with observations, in particular the surface nitrogen abundance and rotational velocity. Preliminary results show binary interactions may explain the formation of nitrogen-rich slow rotators and nitrogen-poor fast rotators, but more work needs to be done to estimate whether the observed frequencies of those stars can be matched.
The barium overabundances observed at the surface of barium stars originate from accretion long ago from the wind of a companion AGB star. However, this scenario cannot explain their high eccentricities and short orbital periods that have remained a mystery for decades. We investigate how kicks imparted to the white-dwarf at its birth or the presence of a circumbinary disk can solve this problem.
We compare our latest single and binary stellar model results from the Cambridge STARS code to several sets of observations. We examine four stellar population ratios: the number of blue to red supergiants, the number of Wolf-Rayet stars to O supergiants, the number of red supergiants to Wolf-Rayet stars and the relative number of Wolf-Rayet subtypes, WC to WN stars. These four ratios provide a quantitative measure of nuclear burning lifetimes and the importance of mass loss during various stages of the stars' lifetimes. In addition, we compare our models to the relative rate of Type Ib/c to Type II supernovae to measure the amount of mass lost over the entire lives of all stars. We find reasonable agreement between the observationally inferred values and our predicted values by mixing single and binary star populations. However, there is evidence that extra mass loss is required to improve the agreement further, to reduce the number of red supergiants and increase the number of Wolf-Rayet stars.
One in 5 PN are ejected from common envelope binary interactions but Kepler results are already showing this proportion to be larger. Their properties, such as abundances can be starkly different from those of the general population, so they should be considered separately when using PN as chemical or population probes. Unfortunately post-common envelope PN cannot be discerned using only their morphologies, but this will change once we couple our new common envelope simulations with PN formation models.
The early-R stars are carbon-rich K-type giants. They are enhanced in 12C, 13C and 14N, have approximately solar oxygen, magnesium isotopes, s-process and iron abundances, have the luminosity of core-helium burning stars, are not rapid rotators, are members of the Galactic thick disk and, most peculiarly of all, are all single stars. Conventional single-star evolutionary models cannot explain such stars, but mergers in binary systems have been proposed to explain their origin. We have synthesized binary star populations to calculate the number of merged stars with helium cores which could be early-R stars. We find many possible evolutionary channels. The most common of which is the merger of a helium white dwarf with a hydrogen-burning red giant branch star during a common envelope phase followed by a helium flash in a rotating core which mixes carbon to the surface. All the channels together give ten times more early-R stars than we require to match recent Hipparcos observations – we discuss which channels are likely to be the true early-R stars and which are not. For the first time we have constructed a viable model of the early-R stars with which we can test some of our ideas regarding common envelope evolution in giants, stellar mergers, rotation, the helium flash and the origin of the early-R stars.
One possible scenario for the formation of carbon-enhanced metal-poor stars is the accretion of carbon-rich material from a binary companion which may no longer be visible. It is generally assumed that the accreted material remains on the surface of the star and does not mix with the interior until first dredge-up. However, thermohaline mixing should mix the accreted material with the original stellar material as it has a higher mean molecular weight. We investigate the effect that this has on the surface abundances by modelling a binary system of metallicity Z = 10-4 with a 2 M[sun] primary star and a 0.74 M[sun] secondary star in an initial orbit of 4000 days. The accretion of material from the wind of the primary leads to the formation of a carbon-rich secondary. We find that the accreted material mixes fairly rapidly throughout 90% of the star, with important consequences for the surface composition. Models with thermohaline mixing predict very different surface abundances after first dredge-up compared to canonical models of stellar evolution.
We use binary population synthesis to study the main proposed channels leading to Type Ia supernovae, the single degenerate channel (SD) and double degenerate channel (DD). For this purpose, we discuss the progenitor evolution and the influence of the common envelope efficiency, αce, on the rate of the different channels. Our study demonstrates the large αce-dependence of both channels, especially for the SD channel.
We present the results of binary population simulations of carbon- and nitrogen-enhanced metal-poor (CEMP and NEMP) stars. We show that the observed paucity of very nitrogen-rich stars puts strong constraints on possible modi. cations of the initial mass function at low metallicity.
Abundance anomalies observed in globular cluster stars indicate pollution with material processed by hydrogen burning. Two main sources have been suggested: asymptotic giant branch (AGB) stars and massive stars rotating near the break-up limit (spin stars). We discuss the idea that massive binaries may provide an interesting alternative source of processed material. We discuss observational evidence for mass shedding from interacting binaries. In contrast to the fast, radiatively driven winds of massive stars, this material is typically ejected with low velocity. We expect that it remains inside the potential well of a globular cluster and becomes available for the formation or pollution of a second generation of stars. We estimate that the amount of processed low-velocity material that can be ejected by massive binaries is larger than the contribution of the two previously suggested sources combined.
The VLT-FLAMES Tarantula Survey (VFTS) is an ESO Large Programme that has obtained multi-epoch optical spectroscopy of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). Here we introduce our scientific motivations and give an overview of the survey targets, including optical and near-infrared photometry and comprehensive details of the data reduction. One of the principal objectives was to detect massive binary systems via variations in their radial velocities, thus shaping the multi-epoch observing strategy. Spectral classifications are given for the massive emission-line stars observed by the survey, including the discovery of a new Wolf-Rayet star (VFTS 682, classified as WN5h), 2' to the northeast of R136. To illustrate the diversity of objects encompassed by the survey, we investigate the spectral properties of sixteen targets identified by Gruendl & Chu from Spitzer photometry as candidate young stellar objects or stars with notable mid-infrared excesses. Detailed spectral classification and quantitative analysis of the O- and B-type stars in the VFTS sample, paying particular attention to the effects of rotational mixing and binarity, will be presented in a series of future articles to address fundamental questions in both stellar and cluster evolution.
The carbon-enhanced metal-poor (CEMP) stars constitute approximately one fifth of the metal-poor ($[{\rm Fe}/{\rm H}] \la -2$) population but their origin is not well understood. The most widely accepted formation scenario, at least for the majority of CEMP stars which are also enriched in s-process elements, invokes mass-transfer of carbon-rich material from a thermally-pulsing asymptotic giant branch (TPAGB) primary star to a less massive main-sequence companion which is seen today. Recent studies explore the possibility that an initial mass function biased toward intermediate-mass stars is required to reproduce the observed CEMP fraction in stars with metallicity $[{\rm Fe}/{\rm H}]
Farr and Mandel reanalyze our data, finding initial mass function slopes for high-mass stars in 30 Doradus that agree with our results. However, their reanalysis appears to underpredict the observed number of massive stars. Their technique results in more precise slopes than in our work, strengthening our conclusion that there is an excess of massive stars (>30 solar masses) in 30 Doradus.
Context. The collapsar model requires rapidly rotating Wolf-Rayet stars as progenitors of long gamma-ray bursts. However, Galactic Wolf-Rayet stars rapidly lose angular momentum due to their intense stellar winds. Aims. We investigate whether the tidal interaction of a Wolf-Rayet star with a compact object in a binary system can spin up the Wolf-Rayet star enough to produce a collapsar. Methods. We compute the evolution of close Wolf-Rayet binaries, including tidal angular momentum exchange, differential rotation of the Wolf-Rayet star, internal magnetic fields, stellar wind mass loss, and mass transfer. The Wolf-Rayet companion is approximated as a point mass. We then employ a population synthesis code to infer the occurrence rates of the various relevant binary evolution channels. Results. We find that the simple scenario-i.e., the Wolf-Rayet star being tidally spun up and producing a collapsar-does not occur at solar metallicity and may only occur with low probability at low metallicity. It is limited by the widening of the binary orbit induced by the strong Wolf-Rayet wind or by the radius evolution of the Wolf-Rayet star that most often leads to a binary merger. The tidal effects enhance the merger rate of Wolf-Rayet stars with black holes such that it becomes comparable to the occurrence rate of long gamma-ray bursts.
The candidate Thorne–Żytkow object (TŻO), HV2112, is becoming a well-studied if enigmatic object. A key point of its candidacy as a TŻO is whether or not it resides in the Small Magellanic Cloud (SMC). HV2112 has detections in a series of photometric catalogues which have resulted in contradictory estimates of its proper motion and, therefore, its membership within the SMC. This letter seeks to resolve the issue of the SMC membership of HV2112 through a reanalysis of extant photometric data. We also demonstrate the difficulties and downfalls inherent in considering a range of catalogue proper motions. We conclude that the proper motion, and associated ancillary radial velocity, positional and photometric properties, are fully consistent with HV2112 being within the SMC and thus it remains a candidate TŻO.
We present late-time Hubble Space Telescope ultraviolet (UV) and optical observations of the site of SN 2011dh in the galaxy M51, ∼1164 days post-explosion. At the supernova (SN) location, we observe a point source that is visible at all wavelengths, which is significantly fainter than the spectral energy distribution (SED) of the yellow supergiant progenitor observed prior to explosion. The previously reported photometry of the progenitor is, therefore, completely unaffected by any sources that may persist at the SN location after explosion. In comparison with the previously reported late-time photometric evolution of SN 2011dh, we find that the light curve has plateaued at all wavelengths. The SED of the late-time source is clearly inconsistent with an SED of stellar origin. Although the SED is bright at UV wavelengths, there is no strong evidence that the late-time luminosity originates solely from a stellar source corresponding to the binary companion, although a partial contribution to the observed UV flux from a companion star cannot be ruled out.
In the single-degenerate scenario of Type Ia supernovae (SNe Ia), the interaction between high-speed ejected material and the donor star in a binary system is expected to lead to mass being stripped from the donor. A series of multi-dimensional hydrodynamical simulations of ejecta-donor interaction have been performed in previous studies most of which adopt either a simplified analytical model or the W7 model to represent a normal SN Ia explosion. Whether different explosion mechanisms can significantly affect the results of ejecta-donor interaction is still unclear. In this work, we simulate hydrodynamical ejecta interactions with a main-sequence (MS) donor star in two dimensions for two near-Chandrasekhar-mass explosion models of SNe Ia, the W7 and N100 models. We find that about 0.30 and 0.37 M of hydrogen-rich material are stripped from a 2.5 M donor star in a 2 day orbit by the SN Ia explosion in simulations with the W7 deflagration and N100 delayed-detonation explosion model, respectively. The donor star receives a kick of about 74 and 86 km s −1 , respectively, in each case. The modal velocity, about 500 km s −1 , of stripped hydrogen-rich material in the N100 model is faster than the W7 model, with modal velocity of about 350 km s −1 , by a factor 1.4. Based on our results, we conclude that the choice of near-Chandrasekhar-mass explosion model for normal SNe Ia seems to not significantly alter the ejecta-donor interaction for a given main-sequence donor model, at least in 2D.
Many core-collapse supernova progenitors are presumed to be in binary systems. If a star explodes in a binary system, the early supernova light curve can be brightened by the collision of the supernova ejecta with the companion star. The early brightening can be observed when the observer is in the direction of the hole created by the collision. Based on a population synthesis model, we estimate the fractions of core-collapse supernovae in which the light-curve brightening by the collision can be observed. We find that 0.19 per cent of core-collapse supernova light curves can be observed with the collisional brightening. Type Ibc supernova light curves are more likely to be brightened by the collision (0.53 per cent) because of the high fraction of the progenitors being in binary systems and their proximity to the companion stars. Type II and IIb supernova light curves are less affected (∼10−3 and ∼10−2 per cent, respectively). Although the early, slow light-curve declines of some Type IIb and Ibc supernovae are argued to be caused by the collision with the companion star (e.g. SN 2008D), the small expected fraction, as well as the unrealistically small separation required, disfavour the argument. The future transient survey by the Large Synoptic Survey Telescope is expected to detect ∼10 Type Ibc supernovae with the early collisional brightening per year, and they will be able to provide information on supernova progenitors in binary systems.
The VLT-FLAMES Tarantula Survey (VFTS) has secured mid-resolution spectra of over 300 O-type stars in the 30 Doradus region of the Large Magellanic Cloud. A homogeneous analysis of such a large sample requires automated techniques, an approach that will also be needed for the upcoming analysis of the Gaia surveys of the Northern and Southern Hemisphere supplementing the Gaia measurements. We point out the importance of Gaia for the study of O stars, summarize the O star science case of VFTS and present a test of the automated modeling technique using synthetically generated data. This method employs a genetic algorithm based optimization technique in combination with fastwind model atmospheres. The method is found to be robust and able to recover the main photospheric parameters accurately. Precise wind parameters can be obtained as well, however, as expected, for dwarf stars the rate of acceleration of the ow is poorly constrained.
The 30 Doradus star-forming region in the Large Magellanic Cloud is a nearby analog of large star-formation events in the distant universe. We determined the recent formation history and the initial mass function (IMF) of massive stars in 30 Doradus on the basis of spectroscopic observations of 247 stars more massive than 15 solar masses (Embedded Image). The main episode of massive star formation began about 8 million years (My) ago, and the star-formation rate seems to have declined in the last 1 My. The IMF is densely sampled up to 200 Embedded Image and contains 32 ± 12% more stars above 30 Embedded Image than predicted by a standard Salpeter IMF. In the mass range of 15 to 200 Embedded Image, the IMF power-law exponent is Embedded Image, shallower than the Salpeter value of 2.35.
The Tarantula survey is an ESO Large Programme which has obtained multi-epochs spectroscopy of over 800 massive stars in the 30 Dor region in the Large Magelanic Cloud. Here we briefly describe the main drivers of the survey and the observational material derived.
White dwarfs stars are known to be polluted by their active planetary systems, but little attention has been paid to the accretion of wind from low-mass companions. The capture of stellar or substellar wind by white dwarfs is one of few methods available to astronomers which can assess mass-loss rates from unevolved stars and brown dwarfs, and the only known method to extract their chemical compositions. In this work, four white dwarfs with closely orbiting, L-type brown dwarf companions are studied to place limits on the accretion of a substellar wind, with one case of a detection, and at an extremely non-solar abundance m(Na)/m(Ca) > 900. The mass-loss rates and upper limits are tied to accretion in the white dwarfs, based on limiting cases for how the wind is captured, and compared with known cases of wind pollution from close M dwarf companions, which manifest in solar proportions between all elements detected. For wind captured in a Bondi-Hoyle flow, mass-loss limits (M) overdot less than or similar to 5 x10(-17) M-circle dot yr(-1) are established for three L dwarfs, while for M dwarfs polluting their hosts, winds in the range 10(-13)-10(-16) M-circle dot yr(-1) are found. The latter compares well with the (M) overdot similar to 10(-13)-10(-15) M-circle dot yr(-1) estimates obtained for nearby, isolated M dwarfs using Lyato probe their astropsheres. These results demonstrate that white dwarfs are highly sensitive stellar and substellar wind detectors, where further work on the actual captured wind flow is needed.
Powerful telescopes equipped with multi-fibre or integral field spectrographs combined with detailed models of stellar atmospheres and automated fitting techniques allow for the analysis of large number of stars. These datasets contain a wealth of information that require new analysis techniques to bridge the gap between observations and stellar evolution models. To that end, we develop BONNSAI (BONN Stellar Astrophysics Interface), a Bayesian statistical method, that is capable of comparing all available observables simultaneously to stellar models while taking observed uncertainties and prior knowledge such as initial mass functions and distributions of stellar rotational velocities into account. BONNSAI can be used to (1) determine probability distributions of fundamental stellar parameters such as initial masses and stellar ages from complex datasets; (2) predict stellar parameters that were not yet observationally determined; and (3) test stellar models to further advance our understanding of stellar evolution. An important aspect of BONNSAI is that it singles out stars that cannot be reproduced by stellar models through χ2 hypothesis tests and posterior predictive checks. BONNSAI can be used with any set of stellar models and currently supports massive main-sequence single star models of Milky Way and Large and Small Magellanic Cloud composition. We apply our new method to mock stars to demonstrate its functionality and capabilities. In a first application, we use BONNSAI to test the stellar models of Brott et al. (2011, A&A, 530, A115) by comparing the stellar ages inferred for the primary and secondary stars of eclipsing Milky Way binaries of which the components range in mass between 4.5 and 28 M⊙. Ages are determined from dynamical masses and radii that are known to better than 3%. We show that the stellar models must include rotation because stellar radii can be increased by several percent via centrifugal forces. We find that the average age difference between the primary and secondary stars of the binaries is 0.9 ± 2.3 Myr (95% CI), i.e. that the stellar models reproduce the Milky Way binaries well. The predicted effective temperatures are in agreement for observed effective temperatures for stars cooler than 25 000 K. In hotter stars, i.e. stars earlier than B1–2V and more massive than about 10 M⊙, we find that the observed effective temperatures are on average hotter by 1.1 ± 0.3 kK (95% CI) and the bolometric luminosities are consequently larger by 0.06 ± 0.02 dex (95% CI) than predicted by the stellar models.
Current observations of binary black-hole ({BBH}) merger events show support for a feature in the primary BH-mass distribution at $\sim\,35\,\mathrm{M}_{\odot}$, previously interpreted as a signature of pulsational pair-instability (PPISN) supernovae. Such supernovae are expected to map a wide range of pre-supernova carbon-oxygen (CO) core masses to a narrow range of BH masses, producing a peak in the BH mass distribution. However, recent numerical simulations place the mass location of this peak above $50\,\mathrm{M}_{\odot}$. Motivated by uncertainties in the progenitor's evolution and explosion mechanism, we explore how modifying the distribution of BH masses resulting from PPISN affects the populations of gravitational-wave (GW) and electromagnetic (EM) transients. To this end, we simulate populations of isolated {BBH} systems and combine them with cosmic star-formation rates. Our results are the first cosmological BBH-merger predictions made using the \textsc{binary\_c} rapid population synthesis framework. We find that our fiducial model does not match the observed GW peak. We can only explain the $35\,\mathrm{M}_{\odot}$ peak with PPISNe by shifting the expected CO core-mass range for PPISN downwards by $\sim{}15\,\mathrm{M}_{\odot}$. Apart from being in tension with state-of-the art stellar models, we also find that this is likely in tension with the observed rate of hydrogen-less super-luminous supernovae. Conversely, shifting the mass range upward, based on recent stellar models, leads to a predicted third peak in the BH mass function at $\sim{}64\,\mathrm{M}_{\odot}$. Thus we conclude that the $\sim{}35\,\mathrm{M}_{\odot}$ feature is unlikely to be related to PPISNe.
X-ray binaries (XRBs) are thought to regulate cosmic thermal and ionisation histories during the Epoch of Reionisation and Cosmic Dawn ($z\sim 5-30$). Theoretical predictions of the X-ray emission from XRBs are important for modeling such early cosmic evolution. Nevertheless, the contribution from Be-XRBs, powered by accretion of compact objects from decretion disks around rapidly rotating O/B stars, has not been investigated systematically. Be-XRBs are the largest class of high-mass XRBs (HMXBs) identified in local observations and are expected to play even more important roles in metal-poor environments at high redshifts. In light of this, we build a physically motivated model for Be-XRBs based on recent hydrodynamic simulations and observations of decretion disks. Our model is able to reproduce the observed population of Be-XRBs in the Small Magellanic Cloud with appropriate initial conditions and binary stellar evolution parameters. We derive the X-ray output from Be-XRBs as a function of metallicity in the (absolute) metallicity range $Z\in [10^{-4},0.03]$. We find that Be-XRBs can contribute a significant fraction ($\sim 60\%$) of the total X-ray budget from HMXBs observed in nearby galaxies for $Z\sim 0.0003-0.02$. A similar fraction of observed ultra-luminous ($\gtrsim 10^{39}\ \rm erg\ s^{-1}$) X-ray sources can also be explained by Be-XRBs. Moreover, the predicted metallicty dependence in our fiducial model is consistent with observations, showing a factor of $\sim 8$ increase in X-ray luminosity per unit star formation rate from $Z=0.02$ to $Z=0.0003$.
We present detailed implementations of (a) binary stellar evolution (using binary_c) and (b) dust production and destruction into the cosmological semi-analytic galaxy evolution simulation, L-Galaxies. This new version of L-Galaxies is compared to a version assuming only single stars and to global and spatially-resolved observational data across a range of redshifts ($z$). We find that binaries have a negligible impact on the stellar masses, gas masses, and star formation rates of galaxies only if the total mass ejected by massive stars is unchanged. This is because massive stars determine the strength of supernova (SN) feedback, which in turn regulates galaxy growth. Binary effects, such as common envelope ejection and novae, affect carbon and nitrogen enrichment in galaxies, however heavier alpha elements are more affected by the choice of SN and wind yields. Unlike many other simulations, the new L-Galaxies reproduces observed dust-to-metal (DTM) and dust-to-gas (DTG) ratios at $z\sim{}0-4$. This is mainly due to shorter dust accretion timescales in dust-rich environments. However, dust masses are under-predicted at $z>4$, highlighting the need for enhanced dust production at early times in simulations, possibly accompanied by increased star formation. On sub-galactic scales, there is very good agreement between L-Galaxies and observed dust and metal radial profiles at $z=0$. A drop in DTM ratio is also found in diffuse, low-metallicity regions, contradicting the assumption of a universal value. We hope that this work serves as a useful template for binary stellar evolution implementations in other cosmological simulations in future.
Abstract Current observations of binary black-hole (BBH) merger events show support for a feature in the primary BH-mass distribution at ∼ 35 M⊙, previously interpreted as a signature of pulsational pair-instability (PPISN) supernovae. Such supernovae are expected to map a wide range of pre-supernova carbon-oxygen (CO) core masses to a narrow range of BH masses, producing a peak in the BH mass distribution. However, recent numerical simulations place the mass location of this peak above 50 M⊙. Motivated by uncertainties in the progenitor’s evolution and explosion mechanism, we explore how modifying the distribution of BH masses resulting from PPISN affects the populations of gravitational-wave (GW) and electromagnetic (EM) transients. To this end, we simulate populations of isolated BBH systems and combine them with cosmic star-formation rates. Our results are the first cosmological BBH-merger predictions made using the binary_c rapid population synthesis framework. We find that our fiducial model does not match the observed GW peak. We can only explain the 35 M⊙ peak with PPISNe by shifting the expected CO core-mass range for PPISN downwards by ∼15 M⊙. Apart from being in tension with state-of-the art stellar models, we also find that this is likely in tension with the observed rate of hydrogen-less super-luminous supernovae. Conversely, shifting the mass range upward, based on recent stellar models, leads to a predicted third peak in the BH mass function at ∼64 M⊙. Thus we conclude that the ∼35 M⊙ feature is unlikely to be related to PPISN.
The stellar population in the Galactic halo is characterised by a large fraction of carbon-enhanced metal-poor (CEMP) stars. Most CEMP stars have enhanced abundances of s-process elements (CEMP-s stars), and some of these are also enriched in r-process elements (CEMP-s/r stars). In one formation scenario proposed for CEMP stars, the observed carbon excess is explained by invoking wind mass transfer in the past from a more massive thermally-pulsing asymptotic giant branch (AGB) primary star in a binary system.In this work we generate synthetic populations of binary stars at metallicity Z = 0.0001 ([Fe/H] ≈ − 2.3), with the aim of reproducing the observed fraction of CEMP stars in the halo. In addition, we aim to constrain our model of the wind mass-transfer process, in particular the wind-accretion efficiency and angular-momentum loss, and investigate under which conditions our model populations reproduce observed distributions of element abundances.We compare the CEMP fractions determined from our synthetic populations and the abundance distributions of many elements with observations. Several physical parameters of the binary stellar population of the halo are uncertain, in particular the initial mass function, the mass-ratio distribution, the orbital-period distribution, and the binary fraction. We vary the assumptions in our model about these parameters, as well as the wind mass-transfer process, and study the consequent variations of our synthetic CEMP population.The CEMP fractions calculated in our synthetic populations vary between 7% and 17%, a range consistent with the CEMP fractions among very metal-poor stars recently derived from the SDSS/SEGUE data sample. The resulting fractions are more than a factor of three higher than those determined with default assumptions in previous population-synthesis studies, which typically underestimated the observed CEMP fraction. We find that most CEMP stars in our simulations are formed in binary systems with periods longer than 10 000 days. Few CEMP stars have measured orbital periods, but all that do have periods up to a few thousand days. Our results are consistent only if this small subpopulation represents the short-period tail of the underlying period distribution. The results of our comparison between the modelled and observed abundance distributions are significantly different for CEMP-s/r stars and for CEMP-s stars without strong enrichment in r-process elements. For the latter, our simulations qualitatively reproduce the observed distributions of carbon, sodium, and heavy elements such as strontium, barium, europium, and lead. Contrarily, for CEMP-s/r stars our model cannot reproduce the large abundances of neutron-rich elements such as barium, europium, and lead. This result is consistent with previous studies, and suggests that CEMP-s/r stars experienced a different nucleosynthesis history to CEMP-s stars.
We perform an extensive numerical study of the evolution of massive binary systems to predict the peculiar velocities that stars obtain when their companion collapses and disrupts the system. Our aim is to (i) identify which predictions are robust against model uncertainties and assess their implications, (ii) investigate which physical processes leave a clear imprint and may therefore be constrained observationally, and (iii) provide a suite of publicly available model predictions to allow for the use of kinematic constraints from the Gaia mission. We find that 22(-8)(+26)% of all massive binary systems merge prior to the first core-collapse in the system. Of the remainder, 86(-9)(+11)% become unbound because of the core-collapse. Remarkably, this rarely produces runaway stars (observationally defined as stars with velocities above 30 km s(-1)). These are outnumbered by more than an order of magnitude by slower unbound companions, or "walkaway stars". This is a robust outcome of our simulations and is due to the reversal of the mass ratio prior to the explosion and widening of the orbit, as we show analytically and numerically. For stars more massive than 15 M-circle dot, we estimate that 10(-8)(+5)% are walkaways and only 0.5(-0.4)(+1.0)% are runaways, nearly all of which have accreted mass from their companion. Our findings are consistent with earlier studies; however, the low runaway fraction we find is in tension with observed fractions of about 10%. Thus, astrometric data on presently single massive stars can potentially constrain the physics of massive binary evolution. Finally, we show that the high end of the mass distributions of runaway stars is very sensitive to the assumed black hole natal kicks, and we propose this as a potentially stringent test for the explosion mechanism. We also discuss companions remaining bound that can evolve into X-ray and gravitational wave sources.
We present a new model describing the evolution of triple stars that undergo common envelope evolution, using a combination of analytical and numerical techniques. The early stages of evolution are driven by dynamical friction with the envelope, which causes the outer triple orbit to shrink faster than the inner binary. In most cases, this leads to a chaotic dynamical interaction between the three stars, culminating in the ejection of one of the stars from the triple. This ejection and resulting recoil on the remnant binary are sufficient to eject all three stars from the envelope, which expands and dissipates after the stars have escaped. These results have implications for the properties of post-common envelope triples: they may only exist in cases where the envelope was ejected before the onset of dynamical instability, the likelihood of which depends on the initial binary separation and the envelope structure. In cases where the triple becomes dynamically unstable, the triple does not survive and the envelope dissipates without forming a planetary nebula.
Mass-transfer interactions in binary stars can lead to accretion disk formation, mass loss from the system and spin-up of the accretor. To determine the trajectory of the mass-transfer stream, and whether it directly impacts the accretor, or forms an accretion disk, requires numerical simulations. The mass-transfer stream is approximately ballistic, and analytic approximations based on such trajectories are used in many binary population synthesis codes as well as in detailed stellar evolution codes. We use binary population synthesis to explore the conditions under which mass transfer takes place. We then solve the reduced three-body equations to compute the trajectory of a particle in the stream for systems with varying system mass ratio, donor synchronicity and initial stream velocity. Our results show that on average both more mass and more time is spent during mass transfer from a sub-synchronous donor than from a synchronous donor. Moreover, we find that at low initial stream velocity the asynchronous rotation of the donor leads to self-accretion over a large range of mass ratios, especially for super-synchronous donors. The stream (self-)intersects in a narrow region of parameter space where it transitions between accreting onto the donor or the accretor. Increasing the initial stream velocity leads to larger areas of the parameter space where the stream accretes onto the accretor, but also more (self-)intersection. The radii of closest approach generally increase, but the range of specific angular momenta that these trajectories carry at the radius of closest approach gets broader. Our results are made publicly available.
Aluminium-26 is a radioactive isotope which can be synthesized within asymptotic giant branch (AGB) stars, primarily through hot bottom burning. Studies exploring 26Al production within AGB stars typically focus on single-stars; however, observations show that low- and intermediate-mass stars commonly exist in binaries. We use the binary population synthesis code binary_c to explore the impact of binary evolution on 26Al yields at solar metallicity both within individual AGB stars and a low/intermediate-mass stellar population. We find the key stellar structural condition achieving most 26Al overproduction is for stars to enter the thermally-pulsing AGB (TP-AGB) phase with small cores relative to their total masses, allowing those stars to spend abnormally long times on the TP-AGB compared to single-stars of identical mass. Our population with a binary fraction of 0.75 has an 26Al weighted population yield increase of 25% compared to our population of only single-stars. Stellar-models calculated from the Mt Stromlo/Monash Stellar Structure Program, which we use to test our results from binary_c and closely examine the interior structure of the overproducing stars, support our binary_c results only when the stellar envelope gains mass after core-He depletion. Stars which gain mass before core-He depletion still overproduce 26Al, but to a lesser extent. This introduces some physical uncertainty into our conclusions as 55% of our 26Al overproducing stars gain envelope mass through stellar wind accretion onto pre-AGB objects. Our work highlights the need to consider binary influence on the production of 26Al.
The new generation of VLTI instruments (GRAVITY, MATISSE) aims to produce routinely interferometric images to uncover the morphological complexity of different objects at high angular resolution. Image reconstruction is, however, not a fully automated process. Here we focus on a specific science case, namely the complex circumbinary environments of a subset of evolved binaries, for which interferometric imaging provides the spatial resolution required to resolve the immediate circumbinary environment. Indeed, many binaries where the main star is in the post-asymptotic giant branch (post-AGB) phase are surrounded by circumbinary disks. Those disks were first inferred from the infrared excess produced by dust. Snapshot interferometric observations in the infrared confirmed disk-like morphology and revealed high spatial complexity of the emission that the use of geometrical models could not recover without being strongly biased. Arguably, the most convincing proof of the disk-like shape of the circumbinary environment came from the first interferometric image of such a system (IRAS08544-4431) using the PIONIER instrument at the VLTI. This image was obtained using the SPARCO image reconstruction approach that enables to subtract a model of a component of the image and reconstruct an image of its environment only. In the case of IRAS08544-4431, the model involved a binary and the image of the remaining signal revealed several unexpected features. Then, a second image revealed a different but also complex circumstellar morphology around HD101584 that was well studied by ALMA. To exploit the VLTI imaging capability to understand these targets, we started a large programme at the VLTI to image post-AGB binary systems using both PIONIER and GRAVITY instruments.
Most carbon-enhanced metal-poor (CEMP) stars are thought to result from past mass transfer of He-burning material from an asymptotic giant branch (AGB) star to a low-mass companion star, which we now observe as a CEMP star. Because AGB stars of intermediate mass efficiently cycle carbon into nitrogen in their envelopes, the same evolution scenario predicts the existence of a population of nitrogen-enhanced metal-poor (NEMP) stars, with [N/Fe] > 1 and [N/C] > 0.5. Such NEMP stars are rare, although their occurrence depends on metallicity: they appear to be more common at [Fe/H] < − 2.8 by about a factor of 10 compared to less metal-poor stars. We analyse the observed sample of metal-poor stars with measurements of both carbon and nitrogen to derive firm constraints on the occurrence of NEMP stars as a function of metallicity. We compare these constraints to binary population synthesis calculations in which we vary the initial distributions of mass, mass ratio and binary orbital periods. We show that the observed paucity of NEMP stars at [Fe/H] > − 2.8 does not allow for large modifications in the initial mass function, as have been suggested in the literature to account for the high frequency of CEMP stars. The situation at lower metallicity is less clear, and we do not currently have stellar models to perform this comparison for [Fe/H] < −2.8. However, unless intermediate-mass AGB stars behave very differently at such low metallicity, the observed NEMP frequency at [Fe/H] < −2.8 appears incompatible with the top-heavy forms of the initial mass function suggested in the literature.
The first population of X-ray binaries (XRBs) is expected to affect the thermal and ionization states of the gas in the early Universe. Although these X-ray sources are predicted to have important implications for high-redshift observable signals, such as the hydrogen 21-cm signal from cosmic dawn and the cosmic X-ray background, their properties are poorly explored, leaving theoretical models largely uninformed. In this paper we model a population of X-ray binaries arising from zero metallicity stars. We explore how their properties depend on the adopted initial mass function (IMF) of primordial stars, finding a strong effect on their number and X-ray production efficiency. We also present scaling relations between XRBs and their X-ray emission with the local star formation rate, which can be used in sub-grid models in numerical simulations to improve the X-ray feedback prescriptions. Specifically, we find that the uniformity and strength of the X-ray feedback in the intergalactic medium is strongly dependant on the IMF. Bottom-heavy IMFs result in a smoother distribution of XRBs, but have a luminosity orders of magnitude lower than more top-heavy IMFs. Top-heavy IMFs lead to more spatially uneven, albeit strong, X-ray emission. An intermediate IMF has a strong X-ray feedback while sustaining an even emission across the intergalactic medium. These differences in X-ray feedback could be probed in the future with measurements of the cosmic dawn 21-cm line of neutral hydrogen, which offers us a new way of constraining population III IMF.
White dwarfs stars are known to be polluted by their active planetary systems, but little attention has been paid to the accretion of wind from low-mass companions. The capture of stellar or substellar wind by white dwarfs is one of few methods available to astronomers which can assess mass-loss rates from unevolved stars and brown dwarfs, and the only known method to extract their chemical compositions. In this work, four white dwarfs with closely orbiting, L-type brown dwarf companions are studied to place limits on the accretion of a substellar wind, with one case of a detection, and at an extremely non-solar abundance m(Na)/m(Ca) > 900. The mass-loss rates and upper limits are tied to accretion in the white dwarfs, based on limiting cases for how the wind is captured, and compared with known cases of wind pollution from close M dwarf companions, which manifest in solar proportions between all elements detected. For wind captured in a Bondi-Hoyle flow, mass-loss limits (M) overdot less than or similar to 5 x10(-17) M-circle dot yr(-1) are established for three L dwarfs, while for M dwarfs polluting their hosts, winds in the range 10(-13)-10(-16) M-circle dot yr(-1) are found. The latter compares well with the (M) overdot similar to 10(-13)-10(-15) M-circle dot yr(-1) estimates obtained for nearby, isolated M dwarfs using Lyato probe their astropsheres. These results demonstrate that white dwarfs are highly sensitive stellar and substellar wind detectors, where further work on the actual captured wind flow is needed.
Classical Cepheids are key probes of both stellar astrophysics and cosmology as standard candles and pulsating variable stars. It is important to understand Cepheids in unprecedented detail in preparation for upcoming Gaia, James Webb Space Telescope (JWST) and extremely-large telescope observations. Cepheid eclipsing binary stars are ideal tools for achieving this goal, however there are currently only three known systems. One of those systems, OGLE-LMC-CEP1812, raises new questions about the evolution of classical Cepheids because of an apparent age discrepancy between the Cepheid and its red giant companion. We show that the Cepheid component is actually the product of a stellar merger of two main sequence stars that has since evolved across the Hertzsprung gap of the HR diagram. This post-merger product appears younger than the companion, hence the apparent age discrepancy is resolved. We discuss this idea and consequences for understanding Cepheid evolution.
At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.
Abstract X-ray binaries (XRBs) are thought to regulate cosmic thermal and ionization histories during the Epoch of Reionization and Cosmic Dawn (z ∼ 5 − 30). Theoretical predictions of the X-ray emission from XRBs are important for modelling such early cosmic evolution. Nevertheless, the contribution from Be-XRBs, powered by accretion of compact objects from decretion disks around rapidly rotating O/B stars, has not been investigated systematically. Be-XRBs are the largest class of high-mass XRBs (HMXBs) identified in local observations and are expected to play even more important roles in metal-poor environments at high redshifts. In light of this, we build a physically motivated model for Be-XRBs based on recent hydrodynamic simulations and observations of decretion disks. Our model is able to reproduce the observed population of Be-XRBs in the Small Magellanic Cloud with appropriate initial conditions and binary stellar evolution parameters. We derive the X-ray output from Be-XRBs as a function of metallicity in the (absolute) metallicity range Z ∈ [10−4, 0.03] with a large suite of binary population synthesis (BPS) simulations. The simulated Be-XRBs can explain a non-negligible fraction ($\gtrsim 30{{\%}}$) of the total X-ray output from HMXBs observed in nearby galaxies for Z ∼ 0.0003 − 0.02. The X-ray luminosity per unit star formation rate from Be-XRBs in our fiducial model increases by a factor of ∼8 from Z = 0.02 to Z = 0.0003, which is similar to the trend seen in observations of all types of HMXBs. We conclude that Be-XRBs are potentially important X-ray sources that deserve greater attention in BPS of XRBs.
We explore the possibility that the observed population of Galactic hypervelocity stars (HVSs) originate as runaway stars from the Large Magellanic Cloud (LMC). Pairing a binary evolution code with an N-body simulation of the interaction of the LMC with the Milky Way, we predict the spatial distribution and kinematics of an LMC runaway population. We find that runaway stars from the LMC can contribute Galactic HVSs at a rate of 3 × 10−6 yr−1. This is composed of stars at different points of stellar evolution, ranging from the main sequence to those at the tip of the asymptotic giant branch. We find that the known B-type HVSs have kinematics that are consistent with an LMC origin. There is an additional population of hypervelocity white dwarfs whose progenitors were massive runaway stars. Runaways that are even more massive will themselves go supernova, producing a remnant whose velocity will be modulated by a supernova kick. This latter scenario has some exotic consequences, such as pulsars and supernovae far from star-forming regions, and a small rate of microlensing from compact sources around the halo of the LMC.
Properties of the first generation of stars [referred to as the Population III (Pop III) stars], such as their initial mass function (IMF), are poorly constrained by observations and have yet to converge between simulations. The cosmological 21-cm signal of neutral hydrogen is predicted to be sensitive to Lyman-band photons produced by these stars, thus providing a unique way to probe the first stellar population. In this paper, we investigate the impacts of the Pop III IMF on the cosmic-dawn 21-cm signal via the Wouthuysen-Field effect, Lyman-Werner feedback, Ly alpha heating, and cosmic microwave background heating. We calculate the emission spectra of star-forming haloes for different IMFs by integrating over individual metal-free stellar spectra, computed from a set of stellar evolution histories and stellar atmospheres, and taking into account variability of the spectra with stellar age. Through this study, we therefore relax two common assumptions: that the zero-age main-sequence emission rate of a Pop III star is representative of its lifetime mean emission rate, and that Pop III emission can be treated as instantaneous. Exploring bottom-heavy, top-heavy, and intermediate IMFs, we show that variations in the 21-cm signal are driven by stars lighter than 20 M-circle dot. For the explored models, we find maximum relative differences of 59 per cent in the cosmic-dawn global 21-cm signal, and 131 per cent between power spectra. Although this impact is modest, precise modelling of the first stars and their evolution is necessary for accurate prediction and interpretation of the 21-cm signal.
We studied the spatial correlations between the Hα emission and different types of massive stars in two local galaxies, the Large Magellanic Cloud (LMC) and Messier 33. We compared these to correlations derived for core-collapse supernovae (CCSNe) in the literature to connect CCSNe of different types with the initial masses of their progenitors and to test the validity of progenitor mass estimates which use the pixel statistics method. We obtained samples of evolved massive stars in both galaxies from catalogues with good spatial coverage and/or completeness, and combined them with coordinates of main-sequence stars in the LMC from the SIMBAD database. We calculated the spatial correlation of stars of different classes and spectral types with Hα emission. We also investigated the effects of distance, noise and positional errors on the pixel statistics method. A higher correlation with Hα emission is found to correspond to a shorter stellar lifespan, and we conclude that the method can be used as an indicator of the ages, and therefore initial masses, of SN progenitors. We find that the spatial distributions of type II-P SNe and red supergiants of appropriate initial mass (≳9 M⊙) are consistent with each other. We also find the distributions of type Ic SNe and WN stars with initial masses ≳20 M⊙ consistent, while supergiants with initial masses around 15 M⊙ are a better match for type IIb and II-L SNe. The type Ib distribution corresponds to the same stellar types as type II-P, which suggests an origin in interacting binaries. On the other hand, we find that luminous blue variable stars show a much stronger correlation with Hα emission than do type IIn SNe.
For stars with unresolved companions, motions of the centre of light and that of mass decouple, causing a single-source astrometric model to perform poorly. We show that such stars can be easily detected with the reduced chi(2) statistic, or renormalized unit weight error (RUWE), provided as part of Gaia DR2. We convert RUWE into the amplitude of the image centroid wobble, which, if scaled by the source distance, is proportional to the physical separation between companions (for periods up to several years). We test this idea on a sample of known spectroscopic binaries and demonstrate that the amplitude of the centroid perturbation scales with the binary period and the mass ratio as expected. We apply this technique to the Gaia DR2 data and show how the binary fraction evolves across the Hertzsprung-Russell diagram. The observed incidence of unresolved companions is high for massive young stars and drops steadily with stellar mass, reaching its lowest levels for white dwarfs. We highlight the elevated binary fraction for the nearby blue stragglers and blue horizontal branch stars. We also illustrate how unresolved hierarchical triples inflate the relative velocity signal in wide binaries. Finally, we point out a hint of evidence for the existence of additional companions to the hosts of extrasolar hot Jupiters.
Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyze the evolution of stellar mass functions of coeval main-sequence stars, including all relevant aspects of single and binary star evolution. We show that the slope of the upper part of the mass function in a stellar cluster can be quite different from the slope of the initial mass function. Wind-mass loss from massive stars leads to an accumulation of stars which is visible as a peak at the high-mass end of mass functions, thereby flattening the mass function slope. Mass accretion and mergers in close binary systems create a tail of rejuvenated binary products. These blue straggler stars extend the single star mass function by up to a factor of 2 in mass and can appear up to 10 times younger than their parent stellar cluster. Cluster ages derived from their most massive stars that are close to the turn-off may thus be significantly biased. To overcome such difficulties, we propose the use of the binary tail of stellar mass functions as an unambiguous clock to derive the cluster age because the location of the onset of the binary tail identifies the cluster turn-off mass. It is indicated by a pronounced jump in the mass function of old stellar populations and by the wind-mass loss peak in young stellar populations. We further characterize the binary induced blue straggler population in star clusters in terms of their frequency, binary fraction, and apparent age.
Context. The progenitors of many core-collapse supernovae (CCSNe) are expected to be in binary systems. After the SN explosion in a binary, the companion star may suffer from mass stripping and be shock heated as a result of the impact of the SN ejecta. If the binary system is disrupted by the SN explosion, the companion star is ejected as a runaway star, and in some cases as a hypervelocity star. Aims. By performing a series of three-dimensional (3D) hydrodynamical simulations of the collision of SN ejecta with the companion star, we investigate how CCSN explosions affect their binary companion. Methods. We use the BEC stellar evolution code to construct the detailed companion structure at the moment of SN explosion. The impact of the SN blast wave on the companion star is followed by means of 3D smoothed particle hydrodynamics (SPH) simulations using the STELLAR GADGET code. Results. For main-sequence (MS) companion stars, we find that the amount of removed stellar mass, the resulting impact velocity, and the chemical contamination of the companion that results from the impact of the SN ejecta strongly increases with decreasing binary separation and increasing explosion energy. Their relationship can be approximately fitted by power laws, which is consistent with the results obtained from impact simulations of Type Ia SNe. However, we find that the impact velocity is sensitive to the momentum profile of the outer SN ejecta and, in fact, may decrease with increasing ejecta mass, depending on the modeling of the ejecta. Because most companion stars to Type Ib/c CCSNe are in their MS phase at the moment of the explosion, combined with the strongly decaying impact effects with increasing binary separation, we argue that the majority of these SNe lead to inefficient mass stripping and shock heating of the companion star following the impact of the ejecta. Conclusions. Our simulations show that the impact effects of Type Ib/c SN ejecta on the structure of MS companion stars, and thus their long-term post-explosion evolution, is in general not dramatic. We find that at most 10% of their mass is lost and their resulting impact velocities are less than 100 km s-1.
The 25 Al(p, γ) reaction has long been highlighted as a possible means to bypass the production of 26 Al cosmic γ rays in classical nova explosions. However, uncertainties in the properties of key resonant states in 26 Si have hindered our ability to accurately model the influence of this reaction in such environments. We report on a detailed γ-ray spectroscopy study of 26 Si and present evidence for the existence of a new, likely ℓ = 1, resonance in the 25 Al + p system at Er = 153.9(15) keV. This state is now expected to provide the dominant contribution to the 25 Al(p, γ) stellar reaction rate over the temperature range, T ∼ 0.1 − 0.2 GK. Despite a significant increase in the rate at low temperatures, we find that the final ejected abundance of 26 Al from classical novae remains largely unaffected even if the reaction rate is artificially increased by a factor of 10. Based on new, Galactic chemical evolution calculations, we estimate that the maximum contribution of novae to the observed Galactic abundance of 26 Al is ∼0.2 M⊙. Finally, we briefly highlight the important role that Super-AGB stars may play in the production of 26 Al.
It is thought that Type Ia supernovae (SNe Ia) are explosions of carbon-oxygen white dwarfs (CO WDs). Two main evolutionary channels are proposed for the WD to reach the critical density required for a thermonuclear explosion: the single degenerate (SD) scenario, in which a CO WD accretes from a non-degenerate companion, and the double degenerate (DD) scenario, in which two CO WDs merge. However, it remains difficult to reproduce the observed SN Ia rate with these two scenarios. With a binary population synthesis code we study the main evolutionary channels that lead to SNe Ia and we calculate the SN Ia rates and the associated delay-time distributions. We find that the DD channel is the dominant formation channel for the longest delay times. The SD channel with helium-rich donors is the dominant channel at the shortest delay times. Our standard model rate is a factor of five lower than the observed rate in galaxy clusters. We investigate the influence of ill-constrained aspects of single- and binary-star evolution and uncertain initial binary distributions on the rate of Type Ia SNe. These distributions, as well as uncertainties in both helium star evolution and common envelope evolution, have the greatest influence on our calculated rates. Inefficient common envelope evolution increases the relative number of SD explosions such that for αce = 0.2 they dominate the SN Ia rate. Our highest rate is a factor of three less than the galaxy-cluster SN Ia rate, but compatible with the rate determined in a field-galaxy dominated sample. If we assume unlimited accretion onto WDs, to maximize the number of SD explosions, our rate is compatible with the observed galaxy-cluster rate.
Classical Cepheids, like binary stars, are laboratories for stellar evolution and Cepheids in binary systems are especially powerful ones. About one-third of Galactic Cepheids are known to have companions and Cepheids in eclipsing binary systems have recently been discovered in the Large Magellanic Cloud (LMC). However, there are no known Galactic binary Cepheids with orbital periods less than one year. We compute population synthesis models of binary Cepheids to compare to the observed period and eccentricity distributions of Galactic Cepheids as well as to the number of observed eclipsing binary Cepheids in the LMC. We find that our population synthesis models are consistent with observed binary properties of Cepheids. Furthermore, we show that binary interaction on the red giant branch prevents some red giant stars from becoming classical Cepheids. Such interactions suggest that the binary fraction of Cepheids should be significantly less than that of their main-sequence progenitors, and that almost all binary Cepheids have orbital periods longer than one year. If the Galactic Cepheid spectroscopic binary fraction is about 35%, then the spectroscopic binary fraction of their intermediate mass main sequence progenitors is about 40−45%.
The distribution of stars in the Hertzsprung-Russell diagram narrates their evolutionary history and directly assesses their properties. Placing stars in this diagram however requires the knowledge of their distances and interstellar extinctions, which are often poorly known for Galactic stars. The spectroscopic Hertzsprung-Russell diagram (sHRD) tells similar evolutionary tales, but is independent of distance and extinction measurements. Based on spectroscopically derived effective temperatures and gravities of almost 600 stars, we derive for the first time the observational distribution of Galactic massive stars in the sHRD. While biases and statistical limitations in the data prevent detailed quantitative conclusions at this time, we see several clear qualitative trends. By comparing the observational sHRD with different state-of-the-art stellar evolutionary predictions, we conclude that convective core overshooting may be mass-dependent and, at high mass (≳15 M⊙), stronger than previously thought. Furthermore, we find evidence for an empirical upper limit in the sHRD for stars with Teff between 10 000 and 32 000 K and, a strikingly large number of objects below this line. This over-density may be due to inflation expanding envelopes in massive main-sequence stars near the Eddington limit.
Most massive stars, the progenitors of core-collapse supernovae, are in close binary systems and may interact with their companion through mass transfer or merging. We undertake a population synthesis study to compute the delay-time distribution of core-collapse supernovae, that is, the supernova rate versus time following a starburst, taking into account binary interactions. We test the systematic robustness of our results by running various simulations to account for the uncertainties in our standard assumptions. We find that a significant fraction, 15+9-8%, of core-collapse supernovae are “late”, that is, they occur 50–200 Myr after birth, when all massive single stars have already exploded. These late events originate predominantly from binary systems with at least one, or, in most cases, with both stars initially being of intermediate mass (4–8 M⊙). The main evolutionary channels that contribute often involve either the merging of the initially more massive primary star with its companion or the engulfment of the remaining core of the primary by the expanding secondary that has accreted mass at an earlier evolutionary stage. Also, the total number of core-collapse supernovae increases by 14+15-14% because of binarity for the same initial stellar mass. The high rate implies that we should have already observed such late core-collapse supernovae, but have not recognized them as such. We argue that φ Persei is a likely progenitor and that eccentric neutron star – white dwarf systems are likely descendants. Late events can help explain the discrepancy in the delay-time distributions derived from supernova remnants in the Magellanic Clouds and extragalactic type Ia events, lowering the contribution of prompt Ia events. We discuss ways to test these predictions and speculate on the implications for supernova feedback in simulations of galaxy evolution.
Aims. We search for runaway former companions of the progenitors of nearby Galactic core-collapse supernova remnants (SNRs) in the Tycho-Gaia astrometric solution (TGAS). Methods. We look for candidates among a sample of ten SNRs with distances ≲2kpc, taking astrometry and G magnitude from TGAS and B,V magnitudes from the AAVSO Photometric All-Sky Survey (APASS). A simple method of tracking back stars and finding the closest point to the SNR centre is shown to have several failings when ranking candidates. In particular, it neglects our expectation that massive stars preferentially have massive companions. We evolve a grid of binary stars to exploit these covariances in the distribution of runaway star properties in colour – magnitude – ejection velocity space. We construct an analytic model which predicts the properties of a runaway star, in which the model parameters are the location in the grid of progenitor binaries and the properties of the SNR. Using nested sampling we calculate the Bayesian evidence for each candidate to be the runaway and simultaneously constrain the properties of that runaway and of the SNR itself. Results. We identify four likely runaway companions of the Cygnus Loop (G074.0−08.5), HB 21 (G089.0+ 04.7), S147 (G180.0+ 01.7) and the Monoceros Loop (G205.5+ 00.5). HD 37424 has previously been suggested as the companion of S147, however the other three stars are new candidates. The favoured companion of HB 21 is the Be star BD+50 3188 whose emission-line features could be explained by pre-supernova mass transfer from the primary. There is a small probability that the 2M⊙ candidate runaway TYC 2688-1556-1 associated with the Cygnus Loop is a hypervelocity star. If the Monoceros Loop is related to the on-going star formation in the Mon OB2 association, the progenitor of the Monoceros Loop is required to be more massive than 40M⊙ which is in tension with the posterior for our candidate runaway star HD 261393.
Novae are some of the most commonly detected optical transients and have the potential to provide valuable information about binary evolution. Binary population synthesis codes have emerged as the most effective tool for modelling populations of binary systems, but such codes have traditionally employed greatly simplified nova physics, precluding detailed study. In this work, we implement a model treating H and He novae as individual events into the binary population synthesis code binary_c. This treatment of novae represents a significant improvement on the ‘averaging’ treatment currently employed in modern population synthesis codes. We discuss the evolutionary pathways leading to these phenomena and present nova event rates and distributions of several important physical parameters. Most novae are produced on massive white dwarfs, with approximately 70 and 55 per cent of nova events occurring on O/Ne white dwarfs for H and He novae, respectively. Only 15 per cent of H-nova systems undergo a common-envelope phase, but these systems are responsible for the majority of H nova events. All He-accreting He-nova systems are considered post-common-envelope systems, and almost all will merge with their donor star in a gravitational-wave-driven inspiral. We estimate the current annual rate of novae in M31 (Andromeda) to be approximately 41 ± 4 for H novae, underpredicting the current observational estimate of $65^{+15}_{-16}$, and 0.14 ± 0.015 for He novae. When varying common-envelope parameters, the H nova rate varies between 20 and 80 events per year.
Binary stars evolve into chemically peculiar objects and are a major driver of the galactic enrichment of heavy elements. During their evolution they undergo interactions, including tides, that circularize orbits and synchronize stellar spins, impacting both individual systems and stellar populations. Using Zahn's tidal theory and mesa main-sequence model grids, we derive the governing parameters & lambda;(lm) and E-2, and implement them in the new mint library of the stellar population code binary_c. Our mint equilibrium tides are two to five times more efficient than the ubiquitous bse prescriptions, while the radiative-tide efficiency drops sharply with increasing age. We also implement precise initial distributions based on bias-corrected observations. We assess the impact of tides and initial orbital-parameter distributions on circularization and synchronization in eight open clusters, comparing synthetic populations and observations through a bootstrapping method. We find that changing the tidal prescription yields no statistically significant improvement as both calculations typically lie within 0.5 & sigma;. The initial distribution, especially the primordial concentration of systems at log(10)(P/d) & AP; 0.8, e & AP; 0.05 dominates the statistics even when artificially increasing tidal strength. This confirms the inefficiency of tides on the main sequence and shows that constraining tidal-efficiency parameters using the e - log(10)(P/d) distribution alone is difficult or impossible. Orbital synchronization carries a more striking age-dependent signature of tidal interactions. In M35 we find twice as many synchronized rotators in our mint calculation as with bse. This measure of tidal efficiency is verifiable with combined measurements of orbital parameters and stellar spins.
Abstract We present detailed implementations of (a) binary stellar evolution (using binary_c) and (b) dust production and destruction into the cosmological semi-analytic galaxy evolution simulation, L-Galaxies. This new version of L-Galaxies is compared to a version assuming only single stars and to global and spatially-resolved observational data across a range of redshifts (z). We find that binaries have a negligible impact on the stellar masses, gas masses, and star formation rates of galaxies if the total mass ejected by massive stars is unchanged. This is because massive stars determine the strength of supernova (SN) feedback, which in turn regulates galaxy growth. Binary effects, such as common envelope ejection and novae, affect carbon and nitrogen enrichment in galaxies, however heavier alpha elements are more affected by the choice of SN and wind yields. Unlike many other simulations, the new L-Galaxies reproduces observed dust-to-metal (DTM) and dust-to-gas (DTG) ratios at z ∼ 0 − 4. This is mainly due to shorter dust accretion timescales in dust-rich environments. However, dust masses are under-predicted at z ≳ 4, highlighting the need for enhanced dust production at early times in simulations, possibly accompanied by increased star formation. On sub-galactic scales, there is very good agreement between L-Galaxies and observed dust and metal radial profiles at z = 0. A drop in DTM ratio is also found in diffuse, low-metallicity regions, contradicting the assumption of a universal value. We hope that this work serves as a useful template for binary stellar evolution implementations in other cosmological simulations in future.
We use the rapid binary stellar evolution code BINARY_C to estimate the rate of merging neutron stars with numerous combinations of envelope ejection efficiency and natal kick dispersion. We find a peak in the local rate of merging neutron stars around alpha approximate to 0.3-0.4, depending on the metallicity, where alpha is the efficiency of utilizing orbital energy to unbind the envelope. The peak height decreases with increasing electron-capture supernova kick dispersion sigma(ECSN). We explain the peak as a competition between the total number of systems that survive the common-envelope phase increasing with alpha and their separation, which increases with alpha as well. Increasing alpha reduces the fraction of systems that merge within a time shorter than the age of the Universe and results in different mass distributions for merging and non-merging double neutron stars. This offers a possible explanation for the discrepancy between the Galactic double neutron star mass distribution and the observed massive merging neutron star event GW190425. Within the alpha-sigma(ECSN) parameter space that we investigate, the rate of merging neutron stars spans several orders of magnitude up to more than 1 x10(3) Gpc(-3) yr(-1) and can be higher than the observed upper limit or lower than the observed lower limit inferred thus far from merging neutron stars detected by gravitational waves. Our results stress the importance of common-envelope physics for the quantitative prediction and interpretation of merging binary neutron star events in this new age of gravitational wave astronomy.
We present the software package binary_c-python which provides a convenient and easy-to-use interface to the binary_c framework, allowing the user to rapidly evolve individual systems and populations of stars. binary_c-python is available on Pip and on GitLab. binary_c-python contains many useful features to control and process the output of binary_c, like by providing binary_c-python with logging statements that are dynamically compiled and loaded into binary_c. Moreover, we have recently added standardised output of events like Roche-lobe overflow or double compact-object formation to binary_c, and automatic parsing and managing of that output in binary_c-python. binary_c-python uses multiprocessing to utilise all the cores on a particular machine, and can run populations with HPC cluster workload managers like HTCondor and Slurm, allowing the user to run simulations on large computing clusters. We provide documentation that is automatically generated based on docstrings and a suite of Jupyter notebooks. These notebooks consist of technical tutorials on how to use binary_c-python and use-case scenarios aimed at doing science. Much of binary_c-python is covered by unit tests to ensure reliability and correctness, and the test coverage is continually increased as the package is improved.
Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities.
Many young, massive stars are found in close binaries. Using population synthesis simulations we predict the likelihood of a companion star being present when these massive stars end their lives as core-collapse supernovae (SNe). We focus on stripped-envelope SNe, whose progenitors have lost their outer hydrogen and possibly helium layers before explosion. We use these results to interpret new Hubble Space Telescope observations of the site of the broad-lined Type Ic SN 2002ap, 14 years post-explosion. For a subsolar metallicity consistent with SN 2002ap, we expect a main-sequence (MS) companion present in about two thirds of all stripped-envelope SNe and a compact companion (likely a stripped helium star or a white dwarf/neutron star/black hole) in about 5% of cases. About a quarter of progenitors are single at explosion (originating from initially single stars, mergers, or disrupted systems). All of the latter scenarios require a massive progenitor, inconsistent with earlier studies of SN 2002ap. Our new, deeper upper limits exclude the presence of an MS companion star >8–10 , ruling out about 40% of all stripped-envelope SN channels. The most likely scenario for SN 2002ap includes nonconservative binary interaction of a primary star initially . Although unlikely (
Context. The progenitors of many Type II supernovae have been observationally identified but the search for Type Ibc supernova (SN Ibc) progenitors has thus far been unsuccessful, despite the expectation that they are luminous Wolf-Rayet (WR) stars. Aims. We investigate how the evolution of massive helium stars affects their visual appearances, and discuss the implications for the detectability of SN Ibc progenitors. Methods. Evolutionary models of massive helium stars are analysed and their properties compared to Galactic WR stars. Results. Massive WR stars that rapidly lose their helium envelopes through stellar-wind mass-loss end their lives when their effective temperatures – related to their hydrostatic surfaces – exceed about 150 kK. At their pre-supernova stage, their surface properties resemble those of hot Galactic WR stars of WO sub-type. These are visually faint with narrow-band visual magnitudes Mv = −1.5 ··· −2.5, despite their high bolometric luminosities (log L/L⊙ = 5.6···5.7), compared to the bulk of Galactic WR stars (Mv < −4). In contrast, relatively low-mass helium stars that retain a thick helium envelope appear fairly bright in optical bands, depending on the final masses and the history of the envelope expansion during the late evolutionary stages. Conclusions. We conclude that SNe Ibc observations have so far not provided strong constraints on progenitor bolometric luminosities and masses, even with the deepest searches. We also argue that Ic progenitors are more challenging to identify than Ib progenitors in any optical images.
We use the rapid binary stellar evolution code BINARY_C to estimate the rate of merging neutron stars with numerous combinations of envelope ejection efficiency and natal kick dispersion. We find a peak in the local rate of merging neutron stars around alpha approximate to 0.3-0.4, depending on the metallicity, where alpha is the efficiency of utilizing orbital energy to unbind the envelope. The peak height decreases with increasing electron-capture supernova kick dispersion sigma(ECSN). We explain the peak as a competition between the total number of systems that survive the common-envelope phase increasing with alpha and their separation, which increases with alpha as well. Increasing alpha reduces the fraction of systems that merge within a time shorter than the age of the Universe and results in different mass distributions for merging and non-merging double neutron stars. This offers a possible explanation for the discrepancy between the Galactic double neutron star mass distribution and the observed massive merging neutron star event GW190425. Within the alpha-sigma(ECSN) parameter space that we investigate, the rate of merging neutron stars spans several orders of magnitude up to more than 1 x10(3) Gpc(-3) yr(-1) and can be higher than the observed upper limit or lower than the observed lower limit inferred thus far from merging neutron stars detected by gravitational waves. Our results stress the importance of common-envelope physics for the quantitative prediction and interpretation of merging binary neutron star events in this new age of gravitational wave astronomy.
We use our new population synthesis code BONNFIRES to test how surface abundances predicted by rotating stellar models depend on the numerical treatment of rotational mixing, such as spatial resolution, temporal resolution, and computation of mean molecular weight gradients. In stellar evolution codes the process of transporting chemical species and angular momentum is usually approximated as a diffusion process. We find that even with identical numerical prescriptions for calculating the rotational mixing coefficients in the diffusion equation, different timesteps lead to a deviation of the coefficients and hence surface abundances. We find the surface abundances vary by 10–100% between the model sequences with short timestep of 0.001 Myr to model sequences with long timesteps of 0.1–1 Myr. Model sequences with stronger surface nitrogen enrichment also have longer main-sequence lifetimes because more hydrogen is mixed to the burning cores. The deviations in main-sequence lifetimes can be as large as 20%. Mathematically speaking, no numerical scheme can give a perfect solution unless infinitesimally small timesteps are used, which is computationally not practical. However, we find that the surface abundances eventually converge within 10% between modelling sequences with sufficiently small timesteps below 0.1 Myr. The efficiency of rotational mixing depends on the implemented numerical scheme and critically on the computation of the mean molecular weight gradient. A smoothing function for the mean molecular weight gradient results in stronger rotational mixing. When comparing observations with detailed theoretical models made by stellar evolutionary codes or population synthesis codes such as BONNFIRES, deviations of surface abundances because of numerical treatments have to be considered carefully. Calibrations of rotational mixing parameters therefore depend on the chosen discretization schemes. If the discretization scheme or the computational recipe for calculating the mean molecular weight gradient is altered, re-calibration of mixing parameters may be required to fit observations. If we are to properly understand the fundamental physics of rotation in stars, it is crucial that we minimize the uncertainty introduced into stellar evolution models when numerically approximating rotational mixing processes.
Mass-transfer interactions in binary stars can lead to accretion disk formation, mass loss from the system and spin-up of the accretor. To determine the trajectory of the mass-transfer stream, and whether it directly impacts the accretor, or forms an accretion disk, requires numerical simulations. The mass-transfer stream is approximately ballistic, and analytic approximations based on such trajectories are used in many binary population synthesis codes as well as in detailed stellar evolution codes. We use binary population synthesis to explore the conditions under which mass transfer takes place. We then solve the reduced three-body equations to compute the trajectory of a particle in the stream for systems with varying system mass ratio, donor synchronicity and initial stream velocity. Our results show that on average both more mass and more time is spent during mass transfer from a sub-synchronous donor than from a synchronous donor. Moreover, we find that at low initial stream velocity the asynchronous rotation of the donor leads to self-accretion over a large range of mass ratios, especially for super-synchronous donors. The stream (self-)intersects in a narrow region of parameter space where it transitions between accreting onto the donor or the accretor. Increasing the initial stream velocity leads to larger areas of the parameter space where the stream accretes onto the accretor, but also more (self-)intersection. The radii of closest approach generally increase, but the range of specific angular momenta that these trajectories carry at the radius of closest approach gets broader. Our results are made publicly available.
We address the challenge of running thermally pulsing-(super)asymptotic giant branch [TP-(S)AGB] models, with a 1D hydrostatic stellar evolution code, without suffering instabilities that terminate the evolution. We investigate two instabilities that usually occur during the luminosity peak following a thermal pulse: the hydrogen recombination instability and the Fe-peak instability. Both instabilities occur when the stellar mass is significantly reduced (M M i / 2) at the end of the TP-(S)AGB in our models with initial mass M i 2 M. The hydrogen recombination instability occurs due to the difficulty of modelling a thermally and dynamically unstable envelope in a 1D hydrostatic code, and is prevented by damping the energy released by hydrogen recombination in the outer envelope. The Fe-peak instability occurs when the radiation pressure drops at the base of the conv ectiv e env elope and is prev ented by boosting the conv ectiv e energy transport in this re gion. We pro vide custom routines to prevent these instabilities in the stellar evolution code MESA. The impact of these routines on the stellar structure is minimized so as to not affect the efficiency of third dredge-up, hot-bottom burning, or the wind mass-loss rate. We find only a modest reduction in third dredge-up efficiency at small envelope masses (M env 1. 0 M). Consequently, our M i = 5 M star, with hot-bottom burning, becomes a carbon star for the last ∼ 10 per cent of its thermally pulsing lifetime. The largest stellar radii are reached during the final thermal pulses, which may have important consequences for binary–star interactions.
Of all the light elements, the evolution of lithium (Li) in the Milky Way is perhaps the most difficult to explain. Li is difficult to synthesize and is easily destroyed, making most stellar sites unsuitable for producing Li in sufficient quantities to account for the protosolar abundance. For decades, novae have been proposed as a potential explanation for this "Galactic Li problem," and the recent detection of 7Be in the ejecta of multiple nova eruptions has breathed new life into this theory. In this work, we assess the viability of novae as dominant producers of Li in the Milky Way. We present the most comprehensive treatment of novae in a galactic chemical evolution code to date, testing theoretically and observationally derived nova Li yields by integrating metallicity-dependent nova ejecta profiles computed using the binary population synthesis code binary_c with the galactic chemical evolution code OMEGA+. We find that our galactic chemical evolution models which use observationally derived Li yields account for the protosolar Li abundance very well, while models relying on theoretical nova yields cannot reproduce the protosolar observation. A brief exploration of physical uncertainties including single-stellar yields, the metallicity resolution of our nova treatment, common-envelope physics, and nova accretion efficiencies indicates that this result is robust to physical assumptions. Scatter within the observationally derived Li yields in novae is identified as the primary source of uncertainty, motivating further observations of 7Be in nova ejecta.
Spectro-seismic measurements of red giants enabled the recent discovery of stars in the thick disk that are more massive than 1.4 M⊙. While it has been claimed that most of these stars are younger than the rest of the typical thick disk stars, we show evidence that they might be products of mass transfer in binary evolution, notably evolved blue stragglers. We took new measurements of the radial velocities in a sample of 26 stars from APOKASC, including 13 “young” stars and 13 “old” stars with similar stellar parameters but with masses below 1.2 M⊙ and found that more of the young starsappear to be in binary systems with respect to the old stars.Furthermore, we show that the young stars do not follow the expected trend of [C/H] ratios versus mass for individual stars. However, with a population synthesis of low-mass stars including binary evolution and mass transfer, we can reproduce the observed [C/N] ratios versus mass. Our study shows how asteroseismology of solar-type red giants provides us with a unique opportunity to study the evolution of field blue stragglers after they have left the main-sequence.
The 30 Doradus (30 Dor) nebula in the Large Magellanic Cloud (LMC) is the brightest HII region in the Local Group and a prototype starburst similar to those found in high redshift galaxies. It is thus a stepping stone to understand the complex formation processes of stars in starburst regions across the Universe. Here, we have studied the formation history of massive stars in 30 Dor using masses and ages derived for 452 mainly OB stars from the spectroscopic VLT-FLAMES Tarantula Survey (VFTS). We find that stars of all ages and masses are scattered throughout 30 Dor. This is remarkable because it implies that massive stars either moved large distances or formed independently over the whole field of view in relative isolation. We find that both channels contribute to the 30 Dor massive star population. Massive star formation rapidly accelerated about 8 Myr ago, first forming stars in the field before giving birth to the stellar populations in NGC 2060 and NGC 2070. The R136 star cluster in NGC 2070 formed last and, since then, about 1 Myr ago, star formation seems to be diminished with some continuing in the surroundings of R136. Massive stars within a projected distance of 8 pc of R136 are not coeval but show an age range of up to 6 Myr. Our mass distributions are well populated up to 200Mʘ. The inferred IMF is shallower than a Salpeter-like IMF and appears to be the same across 30 Dor. By comparing our sample of stars to stellar models in the Hertzsprung–Russell diagram, we find evidence for missing physics in the models above log L=Lʘ = 6 that is likely connected to enhanced wind mass loss for stars approaching the Eddington limit. Our work highlights the key information about the formation, evolution and final fates of massive stars encapsulated in the stellar content of 30 Dor, and sets a new benchmark for theories of massive star formation in giant molecular clouds.
We develop a rapid algorithm for the evolution of stable, circular, circumbinary discs suitable for parameter estimation and population synthesis modelling. Our model includes disc mass and angular momentum changes, accretion on to the binary stars, and binary orbital eccentricity pumping. We fit our model to the post-asymptotic giant branch (post-AGB) circumbinary disc around IRAS 08544-4431, finding reasonable agreement despite the simplicity of our model. Our best-fitting disc has a mass of about 0.01 M-circle dot and angular momentum 2.7 x 1052 g cm2 s-1 similar or equal to 9 M☉ km s-1 au, corresponding to 0.0079 and 0.16 of the common-envelope mass and angular momentum, respectively. The best-fitting disc viscosity is alphadisc = 5 x 10-3 and our tidal torque algorithm can be constrained such that the inner edge of the disc R-in similar to 2a. The inner binary eccentricity reaches about 0.13 in our best-fitting model of IRAS 08544-4431, short of the observed 0.22. The circumbinary disc evaporates quickly when the post-AGB star reaches a temperature of similar to 6 x 104 K, suggesting that planetismals must form in the disc in about 104 yr if secondary planet formation is to occur, while accretion from the disc on to the stars at similar to 10 times the inner-edge viscous rate can double the disc lifetime.
A common requirement in science is to store and share large sets of simulation data in an efficient, nested, flexible and human-readable way. Such datasets contain number counts and distributions, i.e. histograms and maps, of arbitrary dimension and variable type, e.g. floating-point number, integer or character string. Modern high-level programming languages like Perl and Python have associated arrays, knowns as dictionaries or hashes, respectively, to fulfil this storage need. Low-level languages used more commonly for fast computational simulations, such as C and Fortran, lack this functionality. We present a libcdict, a C dictionary library, to solve this problem. Libcdict provides C and Fortran application programming interfaces (APIs) to native dictionaries, called cdicts, and functions for cdict to load and save these as JSON and hence for easy interpretation in other software and languages like Perl, Python and R.
The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.
Astrophysicists are increasingly taking into account the effects of orbiting companions on stellar evolution. New discoveries have underlined the role of binary star interactions in a range of astrophysical events, including some that were previously interpreted as being due uniquely to single stellar evolution. We review classical binary phenomena, such as type Ia supernovae, and discuss new phenomena, such as intermediate luminosity transients, gravitational wave-producing double black holes, and the interaction between stars and their planets. Finally, we reassess well-known phenomena, such as luminous blue variables, in light of interpretations that include both single and binary stars. At the same time we contextualise the new discoveries within the framework of binary stellar evolution. The last decade has seen a revival in stellar astrophysics as the complexity of stellar observations is increasingly interpreted with an interplay of single and binary scenarios. The next decade, with the advent of massive projects such as the Square Kilometre Array, the James Webb Space Telescope, and increasingly sophisticated computational methods, will see the birth of an expanded framework of stellar evolution that will have repercussions in many other areas of astrophysics such as galactic evolution and nucleosynthesis.
Binary stars often move through an ambient medium from which they accrete material and angular momentum, as in triple-star systems, star-forming clouds, young globular clusters, and in the centres of galaxies. A binary form of Bondi–Hoyle–Lyttleton accretion results whereby the accretion rate depends on the binary properties: the stellar masses and separation, and the relative wind speed. We present the results of simulations performed with the hydrodynamic code GANDALF, to determine the mass accretion rates over a range of binary separations, inclinations, and mass ratios. When the binary separation is short, the binary system accretes like a single star, while accretion on to stars in wide binaries is barely affected by their companion. We investigate intermediate-separation systems in some detail, finding that as the binary separation is increased, accretion rates smoothly decrease from the rate equal to that of a single star to the rate expected from two isolated stars. The form of this decrease depends on the relative centre-of-mass velocity of the binary and the gas, with faster-moving binaries showing a shallower decrease. Accretion rates vary little with orbital inclination, except when the orbit is side-on and the stars pass through each others’ wakes. The specific angular momentum accretion rate also depends on the inclination but is never sufficient to prevent the binary orbit from contracting. Our results may be applied to accretion on to protostars, pollution of stars in globular and nuclear clusters, and wind mass transfer in multiple stellar systems.
In the last decade, the Kepler and CoRoT space-photometry missions have demonstrated the potential of asteroseismology as a novel, versatile and powerful tool to perform exquisite tests of stellar physics, and to enable precise and accurate characterisations of stellar properties, with impact on both exoplanetary and Galactic astrophysics. Based on our improved understanding of the strengths and limitations of such a tool, we argue for a new small/medium space mission dedicated to gathering high-precision, high-cadence, long photometric series in dense stellar fields. Such a mission will lead to breakthroughs in stellar astrophysics, especially in the metal poor regime, will elucidate the evolution and formation of open and globular clusters, and aid our understanding of the assembly history and chemodynamics of the Milky Way's bulge and a few nearby dwarf galaxies.
Properties of the first generation of stars [referred to as the Population III (Pop III) stars], such as their initial mass function (IMF), are poorly constrained by observations and have yet to converge between simulations. The cosmological 21-cm signal of neutral hydrogen is predicted to be sensitive to Lyman-band photons produced by these stars, thus providing a unique way to probe the first stellar population. In this paper, we investigate the impacts of the Pop III IMF on the cosmic-dawn 21-cm signal via the Wouthuysen-Field effect, Lyman-Werner feedback, Ly alpha heating, and cosmic microwave background heating. We calculate the emission spectra of star-forming haloes for different IMFs by integrating over individual metal-free stellar spectra, computed from a set of stellar evolution histories and stellar atmospheres, and taking into account variability of the spectra with stellar age. Through this study, we therefore relax two common assumptions: that the zero-age main-sequence emission rate of a Pop III star is representative of its lifetime mean emission rate, and that Pop III emission can be treated as instantaneous. Exploring bottom-heavy, top-heavy, and intermediate IMFs, we show that variations in the 21-cm signal are driven by stars lighter than 20 M-circle dot. For the explored models, we find maximum relative differences of 59 per cent in the cosmic-dawn global 21-cm signal, and 131 per cent between power spectra. Although this impact is modest, precise modelling of the first stars and their evolution is necessary for accurate prediction and interpretation of the 21-cm signal.
Circumbinary discs are commonly observed around post-asymptotic giant branch (post-AGB) systems and are known to play an important role in their evolution. Several studies have pointed out that a circumbinary disc interacts through resonances with the central binary and leads to angular momentum transfer from the central binary orbit to the disc. This interaction may be responsible for a substantial increase in the binary eccentricity. We investigate whether this disc eccentricity-pumping mechanism can be responsible for the high eccentricities commonly found in post-AGB binary systems.
AGB stars are responsible for producing a variety of elements, including carbon, nitrogen, and the heavy elements produced in the slow neutron-capture process (s-elements). There are many uncertainties involved in modelling the evolution and nucleosynthesis of AGB stars, and this is especially the case at low metallicity, where most of the stars with high enough masses to enter the AGB have evolved to become white dwarfs and can no longer be observed. The stellar population in the Galactic halo is of low mass (≲0.85 M⊙) and only a few observed stars have evolved beyond the first giant branch. However, we have evidence that low-metallicity AGB stars in binary systems have interacted with their low-mass secondary companions in the past. The aim of this work is to investigate AGB nucleosynthesis at low metallicity by studying the surface abundances of chemically peculiar very metal-poor stars of the halo observed in binary systems. To this end we select a sample of 15 carbon- and s-element-enhanced metal-poor (CEMP-s) halo stars that are found in binary systems with measured orbital periods. With our model of binary evolution and AGB nucleosynthesis, we determine the binary configuration that best reproduces, at the same time, the observed orbital period and surface abundances of each star of the sample. The observed periods provide tight constraints on our model of wind mass transfer in binary stars, while the comparison with the observed abundances tests our model of AGB nucleosynthesis. For most of the stars in our sample, we find that an episode of efficient wind mass transfer, combined with strong angular momentum loss, has occurred in the past. In some cases we find discrepancies between the observed and modelled abundances even if we adopt a fine-tuned set of parameters in our binary evolution model. These discrepancies are probably caused by missing physical ingredients in our models of AGB nucleosynthesis and they provide indications of how to improve our knowledge of the process of nucleosynthesis in AGB stars.
We evolve stellar models to study the common envelope (CE) interaction of an early asymptotic giant branch star of initial mass 5Mʘ with a companion star of mass ranging from 0.1 to 2Mʘ. We model the CE as a fast stripping phase in which the primary experiences rapid mass loss and loses about 80 per cent of its mass. The post-CE remnant is then allowed to thermally readjust during a Roche-lobe overflow (RLOF) phase and the final binary system and its orbital period are investigated. We find that the post-CE RLOF phase is long enough to allow nuclear burning to proceed in the helium shell. By the end of this phase, the donor is stripped of both its hydrogen and helium and ends up as carbon-oxygen white dwarf of mass about 0.8Mʘ. We study the sensitivity of our results to initial conditions of different companion masses and orbital separations at which the stripping phase begins. We find that the companion mass affects the final binary separation and that helium-shell burning causes the star to refill its Roche lobe leading to post-CE RLOF. Our results show that double mass transfer in such a binary interaction is able to strip the helium and hydrogen layers from the donor star without the need for any special conditions or fine tuning of the binary parameters.
The very bright red star HV2112 in the Small Magellanic Cloud could be a massive Thorne–Żytkow object (TŻO), a supergiant-like star with a degenerate neutron core. With a luminosity of over 105 L⊙, it could also be a super asymptotic giant branch (SAGB) star, a star with an oxygen/neon core supported by electron degeneracy and undergoing thermal pulses with third dredge up. Both TŻOs and SAGB stars are expected to be rare. Abundances of heavy elements in HV2112's atmosphere, as observed to date, do not allow us to distinguish between the two possibilities based on the latest models. Molybdenum and rubidium can be enhanced by both the irp-process in a TŻO or by the s-process in SAGB stars. Lithium can be generated by hot bottom burning at the base of the convective envelope in either. HV2112's enhanced calcium could thus be the key determinant. Neither SAGB stars nor TŻOs are known to be able to synthesize their own calcium but it may be possible to produce it in the final stages of the process that forms a TŻO, when the degenerate electron core of a giant star is tidally disrupted by a neutron star. Hence, it is more likely, on a fine balance, that HV2112 is indeed a genuine TŻO.
Measurements of rates of period change of Classical Cepheids probe stellar physics and evolution. Additionally, better understanding of Cepheid structure and evolution provides greater insight into their use as standard candles and tools for measuring the Hubble constant. Our recent study of the period change of the nearest Cepheid, Polaris, suggested that it is undergoing enhanced mass loss when compared to canonical stellar evolution model predictions. In this work, we expand the analysis to rates of period change measured for about 200 Galactic Cepheids and compare them to population synthesis models of Cepheids including convective core overshooting and enhanced mass loss. Rates of period change predicted from stellar evolution models without mass loss do not agree with observed rates, whereas including enhanced mass loss yields predicted rates in better agreement with observations. This is the first evidence that enhanced mass loss as suggested previously for Polaris and δ Cephei must be a ubiquitous property of Classical Cepheids.
[Abridged] Ensemble studies of red-giant stars with exquisite asteroseismic, spectroscopic, and astrometric constraints offer a novel opportunity to recast and address long-standing questions concerning the evolution of stars and of the Galaxy. Here, we infer masses and ages for nearly 5400 giants with available Kepler light curves and APOGEE spectra, and discuss some of the systematics that may affect the accuracy of the inferred stellar properties. First, we look at age-chemical-abundances relations. We find a dearth of young, metal-rich stars, and the existence of a significant population of old (8-9 Gyr), low-[\(\alpha\)/Fe], super-solar metallicity stars, reminiscent of the age and metallicity of the well-studied open cluster NGC6791. The age-chemo-kinematic properties of these stars indicate that efficient radial migration happens in the thin disk. We find that ages and masses of the nearly 400 \(\alpha\)-element-rich red-giant-branch (RGB) stars in our sample are compatible with those of an old (~11 Gyr), nearly coeval, chemical-thick disk population. Using a statistical model, we show that 95% of the population was born within ~1.5 Gyr. Moreover, we find a difference in the vertical velocity dispersion between low- and high-[\(\alpha\)/Fe] populations, confirming their different chemo-dynamical histories. We then exploit the almost coeval \(\alpha\)-rich population to gain insight into processes that may have altered the mass of a star along its evolution, which are key to improve the mapping of the observed stellar mass to age. We find evidence for a mean integrated RGB mass loss = 0.10 \(\pm\) 0.02 Msun and that the occurrence of massive (M \(\gtrsim\) 1.1 Msun) \(\alpha\)-rich stars is of the order of 5% on the RGB, and significantly higher in the RC, supporting the scenario in which most of these stars had undergone interaction with a companion.
he formation mechanism of the barium stars is thought to be well understood. Barium-rich material, lost in a stellar wind from a thermally-pulsing asymptotic-giant branch star in a binary system, is accreted by its companion main-sequence star. Now, many millions of years later, the primary is an unseen white dwarf and the secondary has itself evolved into a giant which displays absorption lines of barium in its spectrum and is what we call a barium star. A similar wind-accretion mechanism is also thought to form the low-metallicity CH and carbon-enhanced metal-poor stars. Qualitatively the picture seems clear but quantitatively it is decidedly murky: several key outstanding problems remain which challenge our basic understanding of binary-star physics. Barium stars with orbital periods less than about 4000days should – according to theory – be in circular orbits because of tidal dissipation, yet they are often observed to be eccentric. Only one barium-star period longer than 104days has been published although such stars are predicted to exist in large numbers. In this paper we attempt to shed light on these problems. First, we consider the impact of kicking the white dwarf at its birth, a notion which is supported by independent evidence from studies of globular clusters. Second, we increase the amount of orbital angular momentum loss during wind mass transfer, which shrinks barium-star binaries to the required period range. We conclude with a discussion of possible physical mechanisms and implications of a kick, such as the break up of wide barium-star binaries and the limits imposed on our models by observations
The first gravitational wave detections of mergers between black holes and neutron stars represent a remarkable new regime of high-energy transient astrophysics. The signals observed with LIGO-Virgo detectors come from mergers of extreme physical objects which are the end products of stellar evolution in close binary systems. To better understand their origin and merger rates, we have performed binary population syntheses at different metallicities using the new grid-based binary population synthesis code ComBinE. Starting from newborn pairs of stars, we follow their evolution including mass loss, mass transfer and accretion, common envelopes and supernova explosions. We apply the binding energies of common envelopes based on dense grids of detailed stellar structure models, make use of improved investigations of the subsequent Case BB Roche-lobe overflow and scale supernova kicks according to the stripping of the exploding stars. We demonstrate that all the double black hole mergers, GW150914, LVT151012, GW151226, GW170104, GW170608 and GW170814, as well as the double neutron star merger GW170817, are accounted for in our models in the appropriate metallicity regime. Our binary interaction parameters are calibrated to match the accurately determined properties of Galactic double neutron star systems, and we discuss their masses and types of supernova origin. Using our default values for the input physics parameters, we find a double neutron star merger rate of about 3.0 Myr-1 for Milky-Way equivalent galaxies. Our upper limit to the merger-rate density of double neutron stars is R≃400 yr-1 Gpc-3 in the local Universe (z=0).
Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that $8^{+9}_{-4}____%$ of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that $30^{+10}_{-15}____%$ of massive main-sequence stars are the products of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.
The J-type carbon (J)-stars constitute 10–15% of the observed carbon stars in both our Galaxy and the Large Magellanic Cloud (LMC). They are characterized by strong absorption bands with low 12C/13C ratios along with other chemical signatures peculiar for typical carbon stars, e.g. a lack of s-process enhancement. Most of the J-stars are dimmer than the N-type carbon stars some of which, by hot-bottom burning, make only in a narrow range of masses. We investigate a binary-star formation channel for J-stars involving re-accretion of carbon-rich nova ejecta on main-sequence companions to low-mass carbon-oxygen white-dwarfs. The subsequent evolution of the companion stars in such systems is studied with a rapid binary evolutionary code to predict chemical signatures of nova pollution in systems which merge into giant single stars. A detailed population synthesis study is performed to estimate the number of these mergers and compare their properties with observed J-stars. Our results predict that such nova polluted mergers evolve with low luminosities as well as low 12C/13C ratios like the majority of observed J-stars (e.g. in the LMC) but cannot account for the observed fraction of J-stars in existing surveys of carbon stars.
Post-asymptotic giant branch (post-AGB) stars with discs are all binaries. Many of these binaries have orbital periods between 100 and 1000 days so cannot have avoided mass transfer between the AGB star and its companion, likely through a common-envelope type interaction. We report on preliminary results of our project to model circumbinary discs around post-AGB stars using our binary population synthesis code binary_c. We combine a simple analytic thin-disc model with binary stellar evolution to estimate the impact of the disc on the binary, and vice versa, fast enough that we can model stellar population and hence explore the rather uncertain parameter space involved with disc formation. We find that, provided the discs form with sufficient mass and angular momentum, and have an inner edge that is relatively close to the binary, they can both prolong the life of their parent post-AGB star and pump the eccentricity of orbits of their inner binaries.
Post-asymptotic giant branch (post-AGB) stars with discs are all binaries. Many of these binaries have orbital periods between 100 and 1000 days so cannot have avoided mass transfer between the AGB star and its companion, likely through a common-envelope type interaction. We report on preliminary results of our project to model circumbinary discs around post-AGB stars using our binary population synthesis code binary_c. We combine a simple analytic thin-disc model with binary stellar evolution to estimate the impact of the disc on the binary, and vice versa, fast enough that we can model stellar population and hence explore the rather uncertain parameter space involved with disc formation. We find that, provided the discs form with sufficient mass and angular momentum, and have an inner edge that is relatively close to the binary, they can both prolong the life of their parent post-AGB star and pump the eccentricity of orbits of their inner binaries
Rotation is thought to be a major factor in the evolution of massive stars—especially at low metallicity—with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20+5 –10% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s–1. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.
It is likely that at least some planetary nebulae are composed of matter which was ejected from a binary star system during common-envelope (CE) evolution. For these planetary nebulae the ionizing component is the hot and luminous remnant of a giant which had its envelope ejected by a companion in the process of spiralling-in to its current short-period orbit. A large fraction of CE phases which end with ejection of the envelope are thought to be initiated by low-mass red giants, giants with inert, degenerate helium cores. We discuss the possible end-of-CE structures of such stars and their subsequent evolution to investigate for which structures planetary nebulae are formed. We assume that a planetary nebula forms if the remnant reaches an effective temperature greater than 30 kK within 104 yr of ejecting its envelope. We assume that the composition profile is unchanged during the CE phase so that possible remnant structures are parametrized by the end-of-CE core mass, envelope mass and entropy profile. We find that planetary nebulae are expected in post-CE systems with core masses greater than about 0.3 M⊙ if remnants end the CE phase in thermal equilibrium. We show that whether the remnant undergoes a pre-white dwarf plateau phase depends on the prescribed end-of-CE envelope mass. Thus, observing a young post-CE system would constrain the end-of-CE envelope mass and post-CE evolution.
We determine the properties of the binary star V106 in the old open cluster NGC 6791. We identify the system to be a blue straggler cluster member by using a combination of ground-based and Kepler photometry and multi-epoch spectroscopy. The properties of the primary component are found to be Mp∼1.67M⊙ , more massive than the cluster turn-off, with Rp∼1.91R⊙ and Teff = 7110 ± 100 K. The secondary component is highly oversized and overluminous for its low mass with Ms∼0.182M⊙ , Rs∼0.864R⊙ and Teff = 6875 ± 200 K. We identify this secondary star as a bloated (proto) extremely low-mass helium white dwarf. These properties of V106 suggest that it represents a typical Algol-paradox system and that it evolved through a mass-transfer phase which provides insight into its past evolution. We present a detailed binary stellar evolution model for the formation of V106 using the MESA code and find that the mass-transfer phase only ceased about 40 Myr ago. Due to the short orbital period (P=1.4463 d) another mass-transfer phase is unavoidable once the current primary star evolves towards the red giant phase. We argue that V106 will evolve through a common-envelope phase within the next 100 Myr and merge to become a single over-massive giant. The high mass will make it appear young for its true age, which is revealed by the cluster properties. Therefore, V106 is potentially a prototype progenitor of old field giants masquerading as young.
Carbon-enhanced metal-poor (CEMP) stars are observed as a substantial fraction of the very metal-poor stars in the Galactic halo. Most CEMP stars are also enriched in s-process elements, and these are often found in binary systems. This suggests that the carbon enrichment is due to mass transfer in the past from an asymptotic giant branch (AGB) star on to a low-mass companion. Models of binary population synthesis are not able to reproduce the observed fraction of CEMP stars without invoking non-standard nucleosynthesis or a substantial change in the initial mass function. This is interpreted as evidence of missing physical ingredients in the models. Recent hydrodynamical simulations show that efficient wind mass transfer is possible in the case of the slow and dense winds typical of AGB stars through a mechanism called wind Roche-lobe overflow (WRLOF), which lies in between the canonical Bondi-Hoyle-Lyttleton (BHL) accretion and Roche-lobe overflow. WRLOF has an effect on the accretion efficiency of mass transfer and on the angular momentum lost by the binary system. The aim of this work is to understand the overall effect of WRLOF on the population of CEMP stars. To simulate populations of low-metallicity binaries we combined a synthetic nucleosynthesis model with a binary population synthesis code. In this code we implemented the WRLOF mechanism. We used the results of hydrodynamical simulations to model the effect of WRLOF on the accretion efficiency, and we took the effect on the angular momentum loss into account by assuming a simple prescription. The combination of these two effects widens the range of systems that become CEMP stars towards longer initial orbital periods and lower mass secondary stars. As a consequence the number of CEMP stars predicted by our model increases by a factor 1.2−1.8 compared to earlier results that consider the BHL prescription. Moreover, higher enrichments of carbon are produced, and the final orbital period distribution is shifted towards shorter periods.
We provide a detailed description of a new stellar evolution code, BINSTAR, which has been developed to study interacting binaries. Based on the stellar evolution code STAREVOL, it is specifically designed to study low- and intermediate-mass binaries. We describe the state-of-the-art input physics, which includes treatments of tidal interactions, mass transfer and angular momentum exchange within the system. A generalised Henyey method is used to solve simultaneously the stellar structure equations of each component as well as the separation and eccentricity of the orbit. Test simulations for cases A and B mass transfer are presented and compared with available models. The results of the evolution of Algol systems are in remarkable agreement with the calculations of the Vrije Universiteit Brussel (VUB) group, thus validating our code. We also computed a large grid of models for various masses (2 ≤ M/M⊙ ≤ 20) and seven metallicities (Z = 0.0001, 0.001, 0.004, 0.008, 0.01, 0.02, 0.03) to provide a useful analytical parameterisation of the tidal torque constant E2, which allows the determination of the circularisation and synchronisation timescales for stars with a radiative envelope and convective core. The evolution of E2 during the main sequence shows noticeable differences compared to available models. In particular, our new calculations indicate that the circularisation timescale is constant during core hydrogen burning. We also show that E2 weakly depends on core overshooting but is substantially increased when the metallicity becomes lower.
Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ☉ limit and observations of four stars with initial masses of 165-320 M ☉ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ☉ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ☉.
The metallicity of a star affects its evolution in a variety of ways, changing stellar radii, luminosities, lifetimes, and remnant properties. In this work, we use the population synthesis code BINARY_C to study how metallicity affects novae in the context of binary stellar evolution. We compute a 16-point grid of metallicities ranging from Z = 10-4 to 0.03, presenting distributions of nova white dwarf masses, accretion rates, delay-times, and initial system properties at the two extremes of our 16-point metallicity grid. We find a clear anticorrelation between metallicity and the number of novae produced, with the number of novae at Z = 0.03 roughly half that at Z = 10-4. The white dwarf mass distribution has a strong systematic variation with metallicity, while the shape of the accretion rate distribution is relatively insensitive. We compute a current nova rate of approximately 33 novae per year for the Milky Way, a result consistent with observational estimates relying on extra-Galactic novae but an under-prediction relative to observational estimates relying on Galactic novae. However, the shape of our predicted Galactic white dwarf mass distribution differs significantly to existing observationally derived distributions, likely due to our underlying physical assumptions. In M31, we compute a current nova rate of approximately 36 novae per year, under-predicting the most recent observational estimate of 65+15−16. Finally, we conclude that when making predictions about currently observable nova rates in spiral galaxies, or stellar environments where star formation has ceased in the distant past, metallicity can likely be considered of secondary importance compared to uncertainties in binary stellar evolution.