About

Areas of specialism

Piezoelectric /Triboelectric Nanogenerators; Hybrdi Nanogenerators; Energy Harvesting; Self-Poered Sensors and Systems

My qualifications

Ph.D. in Mechatronics Engineering
Jeju National University, South korea
Master of Technology
Anna University, India

Previous roles

01 March 2020 - 07 July 2021
Post-docotral Associate (NRF Young Investigator Award)
Jeju National University, South korea

Affiliations and memberships

Royal Society of Chemistry
MRSC

Publications

Vincenzo Pecunia, S Ravi P Silva, Jamie Dean Phillips, Elisa Artegiani, Alessandro Romeo, Hongjae Shim, Jongsung Park, Jin-Hyeok Kim, Jae Sung Yun, Gregory Charles Welch, Bryon W Larson, Myles Creran, Audrey Laventure, Kezia Sasitharan, Natalie Flores-Diaz, Marina Freitag, Jie Xu, Thomas M Brown, Benxuan Li, Yiwen Wang, Zhe Li, Bo Hou, Behrang H Hamadani, Emmanuel Defay, Veronika Kovacova, Sebastjan Glinsek, Sohini Kar-Narayan, Yang Bai, Da Bin Kim, Yong Soo Cho, Agnė Žukauskaitė, Stephan Barth, Feng Ru Fan, Wenzhuo Wu, Pedro Costa, Javier del Campo, Senentxu Lanceros-Mendez, Hamideh Khanbareh, Zhong Lin Wang, Xiong Pu, Caofeng Pan, Renyun Zhang, Jing Xu, Xun Zhao, Yihao Zhou, Guorui Chen, Trinny Tat, Il Woo Ock, Jun Chen, Sontyana Adonijah Graham, Jae Su Yu, Ling-Zhi Huang, Dan-Dan Li, Ming-Guo Ma, JiKui Luo, Feng Jiang, Pool See Lee, Bhaskar Dudem, Venkateswaran Vivekananthan, Hongyao Xie, Mercouri G Kanatzidis, Xiao-Lei Shi, Zhi-Gang Chen, Alexander Riss, Michael Parzer, Fabian Garmroudi, Ernst Bauer, Duncan Zavanelli, Madison K Brod, Muath Al Malki, G. Jeffrey Snyder, Kirill Kovnir, Susan M Kauzlarich, Ctirad Uher, Jinle Lan, Yuan-Hua Lin, Luis Fonseca, Alex Morata, Marisol Martin-Gonzalez, Giovanni Pennelli, David Berthebaud, Takao Mori, Robert J Quinn, Jan-Willem G Bos, Christophe Candolfi, Patrick Gougeon, Philippe Gall, Bertrand Lenoir, Deepak Venkateshvaran, Bernd Kaestner, Yunshan Zhao, Gang Zhang, Yoshiyuki Nonoguchi, Bob C Schroeder, Emiliano Bilotti, Akanksha K Menon, Jeffrey J Urban, Oliver Fenwick, Ceyla Asker, A. Alec Talin, Thomas D Anthopoulos, Tommaso Losi, Fabrizio Viola, Mario Caironi, Dimitra G Georgiadou, Li Ding, Lian-Mao Peng, Zhenxing Wang, Muh-Dey Wei, Renato Negra, Max C Lemme, Mahmoud Wagih, Steve Beeby, Taofeeq Ibn-Mohammed, K.B Mustapha, A.P Joshi (2023)Roadmap on energy harvesting materials IOP Publishing

Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g., combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g., smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and electromagnetic power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyzes the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.

BHASKAR DUDEM, RANDUNU DEVAGE ISHARA GIHAN DHARMASENA, Raheel Riaz, VIVEKANANTHAN VENKATESWARAN, K.G.U. Wijayantha, Paolo Lugli, Luisa Petti, S RAVI PRADIP SILVA (2022)Wearable Triboelectric Nanogenerator from Waste Materials for Autonomous Information Transmission via Morse Code, In: ACS applied materials & interfaces14(4)pp. 5328-5337 American Chemical Society

Electronic waste produced by plastic, toxic, and semiconducting components of existing electronic devices is dramatically increasing environmental pollution. To overcome these issues the use of eco-friendly materials for designing such devices are attaining great concern. This current work presents a recycled materials-based triboelectric nanogenerator (TENG) made of plastic waste and carbon-coated paper wipes (C@PWs), in which the PWs also collected from a waste bin. The resultant C@PWs-based TENG is then used for powering low-power electronic devices, and later, to generate a Morse code from a wearable for autonomous communication. Other end-users in a customized LabVIEW programme decode the Morse code signals and read the transmitted message. With further redesigning, a 9-segment keyboard is developed using nine-TENGs, connected to an Arduino controller to display the 9-segment actuation on a computer screen. Based on the above analysis, our C@PW-TENG device is expected to have an impact on future self-powered sensors and IoT systems.

Swati Panda, Sugato Hajra, Hang Gyeom Kim, Haejin Jeong, P. G. R. Achary, Seonki Hong, Bhaskar Dudem, S. Ravi P. Silva, Venkateswaran Vivekananthan, Hoe Joon Kim (2023)Carbohydrate–protein interaction-based detection of pathogenic bacteria using a biodegradable self-powered biosensor, In: Journal of materials chemistry. B, Materials for biology and medicine

Battery-free and biodegradable sensors can detect biological elements in remote areas. The triboelectric nanogenerator (TENG) can potentially eliminate the need for a battery by simply converting the abundant vibrations from nature or human motion into electricity. A biodegradable sensor system integrated with TENG to detect commonly found disease-causing bacteria ( E. coli ) in the environment is showcased herein. In this system, d -mannose functionalized 3D printed polylactic acid (PLA) with the brush-painted silver electrode was used to detect E. coli by a simple carbohydrate–protein interaction mechanism. The adsorption capacity of d -mannose is generally altered by varying the concentration of E. coli resulting in changes in resistance. Thus, the presented biosensor can detect bacterial concentrations by monitoring the output current. The PLA TENG generates an output of 70 V, 800 nA, and 22 nC, respectively. In addition, tap water and unpasteurized milk samples are tested for detecting bacteria, and the output is measured at 6 μA and 5 μA, respectively. Further, the biosensor was tested for biodegradability in soil compost by maintaining constant temperature and humidity. This study not only proposes an efficient and fast method for screening E. coli but also gives important insights into the ability to degrade and long-term reliability of TENG-based sensor platforms.

Venkateswaran Vivekananthan, Arunkumar Chandrasekhar, Bhaskar Dudem, Gaurav Khandelwal, S Ravi P Silva, Sang-Jae Kim (2023)Contact-electrification enabled water-resistant triboelectric nanogenerators as demonstrator educational appliances, In: JPhys Energy IOP Publishing Ltd

Abstract Triboelectric nanogenerators (TENG) work on the principle of tribo and contact electrification, which is a common effect observed in daily life. TENGs are moving closer to commercialization, particularly for small scale energy harvesting and self-powered sensing. The toys and games industry has attracted a huge audience recently with the introduction of digital toys. In this paper we embedded TENGs to power up a toy and operate during its specific application. We have modified two potential electronic demonstrator applications using TENG for lobster toy (LT-TENG) and stress ball (SB-TENG) device. The LT-TENG device generates a maximum electrical response of 60 V/ 2 µA, with a power of 55 µW and power density of 0.065 µW/m2 at a load resistance value of 10 MΩ. Similarly, the SB-TENG device made of aluminum and PDMS as the triboelectric layers generates a maximum electrical output response of 800 V and 4 µA peak to peak current with an instantaneous power of 6 mW and a power density of 3.5 mW/m2 respectively at a load resistance of 10 MΩ. In addition, the layers of the TENGs are packed with polyethylene to maintain the performance of the nanogenerator under harsh environmental conditions, especially with humid environments. The water resistance studies proved that the packed SB-TENG is impervious to water. The LT-TENG device is accompanied by four LEDs, and the device lights up upon actuating the handle. The stress ball is connected with the measuring instrument to record the quantity of force at which the stress ball is pressed. The adopted approach paves the way to convert these traditional toys into battery-free electronic designs and its commercialization.

Additional publications