Yuren Xiang

Dr Yuren Xiang


Marie Curie Research Fellow

Biography

My publications

Publications

Mozhgan Yavari, Xueping Liu, Thomas Webb, K D G Imalka Jayawardena, Yuren Xiang, Stefanie Kern, Steven Hinder, Thomas J Macdonald, S Ravi P Silva, Stephen J Sweeney, Wei Zhang (2021)A synergistic Cs2CO3 ETL treatment to incorporate Cs cation into perovskite solar cells via two-step scalable fabrication, In: Journal of Materials Chemistry C Materials for optical and electronic devices9(12)pp. 4367-4377 Royal Society of Chemistry

Triple cation CsFAMA perovskite films fabricated via a one-step method have recently gained attention as an outstanding light-harvesting layer for photovoltaic devices. However, questions remain over the suitability of one-step processes for the production of large-area films, owing to difficulties in controlling the crystallinity, in particular, scaling of the frequently used anti-solvent washing step. This can be mitigated through the use of the two-step method which has recently been used to produce large-area films via techniques such as slot dye coating, spray coating or printing techniques. Nevertheless, the poor solubility of Cs containing salts in IPA solutions has posed a challenge for forming triple cation perovskite films using the two-step method. In this study, we tackle this challenge through fabricating perovskite films on a caesium carbonate (Cs2CO3) precursor layer, enabling Cs incorporation within the film. Synergistically, we find that Cs2CO3 passivates the SnO2 electron transport layer (ETL) through interactions with Sn 3d orbitals, thereby promoting a reduction in trap states. Devices prepared with Cs2CO3 treatment also exhibited an improvement in the power conversion efficiency (PCE) from 19.73% in a control device to 20.96% (AM 1.5G, 100 mW cm−2) in the champion device. The Cs2CO3 treated devices (CsFAMA) showed improved stability, with un-encapsulated devices retaining nearly 80% efficiency after 20 days in ambient air.

Xiaoyu Yang, Deying Luo, Yuren Xiang, Lichen Zhao, Miguel Anaya, Yonglong Shen, Jiang Wu, Wenqiang Yang, Yu‐Hsien Chiang, Yongguang Tu, Rui Su, Qin Hu, Hongyu Yu, Guosheng Shao, Wei Huang, Thomas P Russell, Qihuang Gong, Samuel D Stranks, Wei Zhang, Rui Zhu (2021)Buried Interfaces in Halide Perovskite Photovoltaics, In: Advanced Materials (Weinheim)33(7)2006435

Understanding the fundamental properties of buried interfaces in perovskite photovoltaics is of paramount importance to the enhancement of device efficiency and stability. Nevertheless, accessing buried interfaces poses a sizeable challenge because of their non‐exposed feature. Herein, the mystery of the buried interface in full device stacks is deciphered by combining advanced in situ spectroscopy techniques with a facile lift‐off strategy. By establishing the microstructure–property relations, the basic losses at the contact interfaces are systematically presented, and it is found that the buried interface losses induced by both the sub‐microscale extended imperfections and lead‐halide inhomogeneities are major roadblocks toward improvement of device performance. The losses can be considerably mitigated by the use of a passivation‐molecule‐assisted microstructural reconstruction, which unlocks the full potential for improving device performance. The findings open a new avenue to understanding performance losses and thus the design of new passivation strategies to remove imperfections at the top surfaces and buried interfaces of perovskite photovoltaics, resulting in substantial enhancement in device performance.

Bowei Li, Yuren Xiang, Imalka Jayawardena, Deying Luo, John Watts, Steven Hinder, Hui Li, Victoria Ferguson, Haitian Luo, Rui Zhu, Ravi Silva, Wei Zhang (2020)Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells, In: Solar RRL Wiley-Blackwell

Interface engineering is an effective means to enhance the performance of thin‐film devices, such as perovskite solar cells (PSCs). Herein, a conjugated polyelectrolyte, poly[(9,9‐bis(3′‐((N,N‐dimethyl)‐N‐ethyl‐ammonium)‐propyl)‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene)]di‐iodide (PFN‐I), is used at the interfaces between the hole transport layer (HTL)/perovskite and perovskite/electron transport layer simultaneously, to enhance the device power conversion efficiency (PCE) and stability. The fabricated PSCs with an inverted planar heterojunction structure show improved open‐circuit voltage (Voc), short‐circuit current density (Jsc), and fill factor, resulting in PCEs up to 20.56%. The devices maintain over 80% of their initial PCEs after 800 h of exposure to a relative humidity 35–55% at room temperature. All of these improvements are attributed to the functional PFN‐I layers as they provide favorable interface contact and defect reduction.

Bowei Li, Yuren Xiang, K.D.G. Imalka Jayawardena, Deying Luo, Zhuo Wang, Xiaoyu Yang, John F. Watts, Steven Hinder, Muhammad T. Sajjad, Thomas Webb, Haitian Luo, Igor Marko, Hui Li, Stuart A.J. Thomson, Rui Zhu, Guosheng Shao, Stephen J. Sweeney, S. Ravi P. Silva, Wei Zhang (2020)Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells, In: Nano Energy105249 Elsevier

Interface-mediated recombination losses between perovskite and charge transport layers are one of the main reasons that limit the device performance, in particular for the open-circuit voltage (VOC) of perovskite solar cells (PSCs). Here, functional molecular interface engineering (FMIE) is employed to retard the interfacial recombination losses. The FMIE is a facile solution-processed means that introducing functional molecules, the fluorene-based conjugated polyelectrolyte (CPE) and organic halide salt (OHS) on both contacts of the perovskite absorber layer. Through the FMIE, the champion PSCs with an inverted planar heterojunction structure show a remarkable high VOC of 1.18 V whilst maintaining a fill factor (FF) of 0.83, both of which result in improved power conversion efficiencies (PCEs) of 21.33% (with stabilized PCEs of 21.01%). In addition to achieving one of the highest PCEs in the inverted PSCs, the results also highlight the synergistic effect of these two molecules in improving device performance. Therefore, the study provides a straightforward avenue to fabricate highly efficient inverted PSCs.

Bowei Li, Yuren Xiang, K. D. G. Imalka Jayawardena, Deying Luo, John F. Watts, Steven Hinder, Hui Li, Victoria Ferguson, Haitian Luo, Rui Zhu, S. Ravi P. Silva, Wei Zhang (2020)Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells, In: Solar RRL, Solar RRL4(5) John Wiley & Sons, Ltd

Interface engineering is an effective means to enhance the performance of thin-film devices, such as perovskite solar cells (PSCs). Herein, a conjugated polyelectrolyte, poly[(9,9-bis(3?-((N,N-dimethyl)-N-ethyl-ammonium)-propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)]di-iodide (PFN-I), is used at the interfaces between the hole transport layer (HTL)/perovskite and perovskite/electron transport layer simultaneously, to enhance the device power conversion efficiency (PCE) and stability. The fabricated PSCs with an inverted planar heterojunction structure show improved open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor, resulting in PCEs up to 20.56%. The devices maintain over 80% of their initial PCEs after 800 h of exposure to a relative humidity 35?55% at room temperature. All of these improvements are attributed to the functional PFN-I layers as they provide favorable interface contact and defect reduction.

Additional publications