Yuren Xiang

Dr Yuren Xiang


Marie Curie Research Fellow

About

Publications

Bowei Li, K. D. G. Imalka Jayawardena, Jing Zhang, Rajapakshe Mudiyanselage Indrachapa Bandara, Xueping Liu, Jingxin Bi, Shashini M. Silva, Dongtao Liu, Cameron C. L. Underwood, Yuren Xiang, Xinyi Ma, Wei Zhang, S. Ravi P. Silva (2024)Stability of formamidinium tin triiodide-based inverted perovskite solar cells, In: Renewable & sustainable energy reviews189114002 Elsevier

Enormous progress has been made in formamidinium tin triiodide (FASnI3)-based inverted perovskite solar cells (IPSCs). However, the instability issue remains a significant obstacle in both the fabrication and evaluation of the entire device. According to the lessons learned from lead-based PSCs, stability is difficult to address compared to other performance metrics during the optimization process. Therefore, it is imperative to explore the sources of instability and the underlying pathways of device degradation, especially in PSCs incorporating sensitive Sn2+. This review begins by introducing the prevalent light absorber and device structure in lead-free Sn-based IPSCs. The rationale behind the widespread utilization of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) in Sn-based PSCs is thoroughly examined. Then, the principal degradation mechanisms and potential reactions are assessed under different stress conditions. Based on the International Summit on Organic Photovoltaic Stability protocols, recent strategies for improving device stability are systematically summarized, including the engineering of solvents, components, additives, and passivation on perovskite or PEDOT:PSS. The final section offers insights into addressing current challenges and provides perspectives about the future development of stable Sn-based IPSCs.

JING ZHANG, Xiangang Hu, HUI LI, Kangyu Ji, BOWEI LI, XUEPING LIU, YUREN XIANG, Pengxiang Hou, Chang Liu, Zhiheng Wu, Yonglong Shen, Samuel D. Stranks, S RAVI PRADIP SILVA, HUIMING CHENG, WEI ZHANG (2021)High-Performance ITO-Free Perovskite Solar Cells Enabled by Single-Walled Carbon Nanotube Films, In: Advanced Functional Materials2104396 Wiley

The unprecedented advancement in power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) has rendered them a promising game-changer in photovoltaics. However, unsatisfactory environmental stability and high manufacturing cost of window electrodes are bottlenecks impeding their commercialization. Here, a strategy is introduced to address these bottlenecks by replacing the costly indium tin oxide (ITO) window electrodes via a simple transfer technique with single-walled carbon nanotubes (SWCNTs) films, which are made of earth-abundant elements with superior chemical and environmental stability. The resultant devices exhibit PCEs of ≈19% on rigid substrates, which is the highest value reported to date for ITO-free PSCs. The facile approach for SWCNTs also enables application in flexible PSCs (f-PSCs), delivering a PCE of ≈18% with superior mechanical robustness over their ITO-based counterparts due to the excellent mechanical properties of SWCNTs. The SWCNT-based PSCs also deliver satisfactory performances on large-area (1 cm2 active area in this work). Furthermore, these SWCNT-based PSCs can retain over 80% of original PCEs after exposure to air over 700 h while ITO-based devices only sustain ≈60% of initial PCEs. This work paves a promising way to accelerate the commercialization of ITO-free PSCs with reduced material cost and prolonged lifetimes.

Mozhgan Yavari, Xueping Liu, Thomas Webb, K D G Imalka Jayawardena, Yuren Xiang, Stefanie Kern, Steven Hinder, Thomas J Macdonald, S Ravi P Silva, Stephen J Sweeney, Wei Zhang (2021)A synergistic Cs2CO3ETL treatment to incorporate Cs cation into perovskite solar cells: Via two-step scalable fabrication, In: Journal of Materials Chemistry C Materials for optical and electronic devices9(12)pp. 4367-4377 Royal Society of Chemistry

Triple cation CsFAMA perovskite films fabricated via a one-step method have recently gained attention as an outstanding light-harvesting layer for photovoltaic devices. However, questions remain over the suitability of one-step processes for the production of large-area films, owing to difficulties in controlling the crystallinity, in particular, scaling of the frequently used anti-solvent washing step. This can be mitigated through the use of the two-step method which has recently been used to produce large-area films via techniques such as slot dye coating, spray coating or printing techniques. Nevertheless, the poor solubility of Cs containing salts in IPA solutions has posed a challenge for forming triple cation perovskite films using the two-step method. In this study, we tackle this challenge through fabricating perovskite films on a caesium carbonate (Cs2CO3) precursor layer, enabling Cs incorporation within the film. Synergistically, we find that Cs2CO3 passivates the SnO2 electron transport layer (ETL) through interactions with Sn 3d orbitals, thereby promoting a reduction in trap states. Devices prepared with Cs2CO3 treatment also exhibited an improvement in the power conversion efficiency (PCE) from 19.73% in a control device to 20.96% (AM 1.5G, 100 mW cm−2) in the champion device. The Cs2CO3 treated devices (CsFAMA) showed improved stability, with un-encapsulated devices retaining nearly 80% efficiency after 20 days in ambient air.

Jing Zhang, James Mcgettrick, Kangyu Ji, Jinxin Bi, Thomas Webb, Xueping Liu, Dongtao Liu, Aobo Ren, Yuren Xiang, Bowei Li, Vlad Stolojan, Trystan Watson, Samuel D. Stranks, Wei Zhang (2023)Fast and Balanced Charge Transport Enabled by Solution-Processed Metal Oxide Layers for Efficient and Stable Inverted Perovskite Solar Cells, In: Energy & environmental materials Wiley

Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells (PSCs). However, due to some technical difficulties (e.g., intricate fabrication protocols, high-temperature heating process, incompatible solvents, etc.), it is still challenging to achieve efficient and reliable all-metal-oxide-based devices. Here, we developed efficient inverted PSCs (IPSCs) based on solution-processed nickel oxide (NiOx) and tin oxide (SnO2) nanoparticles, working as hole and electron transport materials respectively, enabling a fast and balanced charge transfer for photogenerated charge carriers. Through further understanding and optimizing the perovskite/metal oxide interfaces, we have realized an outstanding power conversion efficiency (PCE) of 23.5% (the bandgap of the perovskite is 1.62 eV), which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials. Thanks to these stable metal oxides and improved interface properties, ambient stability (retaining 95% of initial PCE after 1 month), thermal stability (retaining 80% of initial PCE after 2 weeks) and light stability (retaining 90% of initial PCE after 1000 hours aging) of resultant devices are enhanced significantly. In addition, owing to the low-temperature fabrication procedures of the entire device, we have obtained a PCE of over 21% for flexible IPSCs with enhanced operational stability.

Bowei Li, Yuren Xiang, Imalka Jayawardena, Deying Luo, John Watts, Steven Hinder, Hui Li, Victoria Ferguson, Haitian Luo, Rui Zhu, S. Ravi P. Silva, Wei Zhang (2020)Tailoring Perovskite Adjacent Interfaces by Conjugated Polyelectrolyte for Stable and Efficient Solar Cells, In: Solar RRL4(5)2000060 Wiley

Interface engineering is an effective means to enhance the performance of thin‐film devices, such as perovskite solar cells (PSCs). Herein, a conjugated polyelectrolyte, poly[(9,9‐bis(3′‐((N,N‐dimethyl)‐N‐ethyl‐ammonium)‐propyl)‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene)]di‐iodide (PFN‐I), is used at the interfaces between the hole transport layer (HTL)/perovskite and perovskite/electron transport layer simultaneously, to enhance the device power conversion efficiency (PCE) and stability. The fabricated PSCs with an inverted planar heterojunction structure show improved open‐circuit voltage (Voc), short‐circuit current density (Jsc), and fill factor, resulting in PCEs up to 20.56%. The devices maintain over 80% of their initial PCEs after 800 h of exposure to a relative humidity 35–55% at room temperature. All of these improvements are attributed to the functional PFN‐I layers as they provide favorable interface contact and defect reduction.

Bowei Li, Yuren Xiang, K.D.G. Imalka Jayawardena, Deying Luo, Zhuo Wang, Xiaoyu Yang, John F. Watts, Steven Hinder, Muhammad T. Sajjad, Thomas Webb, Haitian Luo, Igor Marko, Hui Li, Stuart A.J. Thomson, Rui Zhu, Guosheng Shao, Stephen J. Sweeney, S. Ravi P. Silva, Wei Zhang (2020)Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells, In: Nano Energy105249 Elsevier

Interface-mediated recombination losses between perovskite and charge transport layers are one of the main reasons that limit the device performance, in particular for the open-circuit voltage (VOC) of perovskite solar cells (PSCs). Here, functional molecular interface engineering (FMIE) is employed to retard the interfacial recombination losses. The FMIE is a facile solution-processed means that introducing functional molecules, the fluorene-based conjugated polyelectrolyte (CPE) and organic halide salt (OHS) on both contacts of the perovskite absorber layer. Through the FMIE, the champion PSCs with an inverted planar heterojunction structure show a remarkable high VOC of 1.18 V whilst maintaining a fill factor (FF) of 0.83, both of which result in improved power conversion efficiencies (PCEs) of 21.33% (with stabilized PCEs of 21.01%). In addition to achieving one of the highest PCEs in the inverted PSCs, the results also highlight the synergistic effect of these two molecules in improving device performance. Therefore, the study provides a straightforward avenue to fabricate highly efficient inverted PSCs.

Xiaoyu Yang, Deying Luo, Yuren Xiang, Lichen Zhao, Miguel Anaya, Yonglong Shen, Jiang Wu, Wenqiang Yang, Yu‐Hsien Chiang, Yongguang Tu, Rui Su, Qin Hu, Hongyu Yu, Guosheng Shao, Wei Huang, Thomas P Russell, Qihuang Gong, Samuel D Stranks, Wei Zhang, Rui Zhu (2021)Buried Interfaces in Halide Perovskite Photovoltaics, In: Advanced Materials (Weinheim)33(7)2006435

Understanding the fundamental properties of buried interfaces in perovskite photovoltaics is of paramount importance to the enhancement of device efficiency and stability. Nevertheless, accessing buried interfaces poses a sizeable challenge because of their non‐exposed feature. Herein, the mystery of the buried interface in full device stacks is deciphered by combining advanced in situ spectroscopy techniques with a facile lift‐off strategy. By establishing the microstructure–property relations, the basic losses at the contact interfaces are systematically presented, and it is found that the buried interface losses induced by both the sub‐microscale extended imperfections and lead‐halide inhomogeneities are major roadblocks toward improvement of device performance. The losses can be considerably mitigated by the use of a passivation‐molecule‐assisted microstructural reconstruction, which unlocks the full potential for improving device performance. The findings open a new avenue to understanding performance losses and thus the design of new passivation strategies to remove imperfections at the top surfaces and buried interfaces of perovskite photovoltaics, resulting in substantial enhancement in device performance.

Bowei Li, Jun Deng, K. D. G. Imalka Jayawardena, Xueping Liu, Yuren Xiang, Aobo Ren, Abayomi Titilope Oluwabi, Steven Hinder, Benjamin Putland, John F Watts, Hui Li, Shixuan Du, S Ravi P Silva, Wei Zhang (2023)Unraveling the Degradation Pathway of Inverted Perovskite Solar Cells Based on ISOS-D-1 Protocol, In: Small methods8(2)2300223pp. e2300223-e2300223 Wiley

Perovskite solar cells (PSCs) have shown rapid development recently, whereas nonideal stability remains the chief obstacle toward commercialization. Thus, it is of utmost importance to probe the degradation pathway for the entire device. Here, the extrinsic stability of inverted PSCs (IPSCs) is investigated by using standard shelf-life testing based on the International Summit on Organic Photovoltaic Stability protocols (ISOS-D-1). During the long-term assessment of 1700 h, the degraded power conversion efficiency is mainly caused by the fill factor (53% retention) and short-circuit current density (71% retention), while the open-circuit voltage still maintains 97% of the initial values. Further absorbance evolution and density functional theory calculations disclose that the perovskite rear-contact side, in particular for the perovskite/fullerene interface, is the predominant degradation pathway. This study contributes to understanding the aging mechanism and enhancing the durability of IPSCs for future applications.

Bowei Li, Jun Deng, Joel A. Smith, Pietro Caprioglio, Kangyu Ji, Deying Luo, James D. McGettrick, K. D. G. Imalka Jayawardena, Rachel Kilbride, AOBO REN, Stephen Sweeney, Steven John Hinder, Jinxin Bi, S Ravi Pradip Silva, Wei Zhang, THOMAS WEBB, Igor Marko, Xueping Liu, YUREN XIANG, Joshua Dean Reding, HUI LI, Shixuan Du, D. G. Lidzey, Samuel D. Stranks, Trystan M. Watson, H. J. Snaith (2022)Suppressing Interfacial Recombination with a Strong-Interaction Surface Modulator for Efficient Inverted Perovskite Solar Cells, In: Advanced energy materials Wiley

Successful manipulation of halide perovskite surfaces is typically achieved via the interactions between modulators and perovskites. Herein, it is demonstrated that a strong-interaction surface modulator is beneficial to reduce interfacial recombination losses in inverted (p-i-n) perovskite solar cells (IPSCs). Two organic ammonium salts are investigated, consisting of 4-hydroxyphenethylammonium iodide and 2-thiopheneethylammonium iodide (2-TEAI). Without thermal annealing, these two modulators can recover the photoluminescence quantum yield of the neat perovskite film in contact with fullerene electron transport layer (ETL). Compared to the hydroxyl-functionalized phenethylammonium moiety, the thienylammonium facilitates the formation of a quasi-2D structure onto the perovskite. Density functional theory and quasi-Fermi level splitting calculations reveal that the 2-TEAI has a stronger interaction with the perovskite surface, contributing to more suppressed non-radiative recombination at the perovskite/ETL interface and improved open-circuit voltage (V-OC) of the fabricated IPSCs. As a result, the V-OC increases from 1.11 to 1.20 V (based on a perovskite bandgap of 1.63 eV), yielding a power conversion efficiency (PCE) from approximate to 20% to 21.9% (stabilized PCE of 21.3%, the highest reported PCEs for IPSCs employing poly[N,N ''-bis(4-butylphenyl)-N,N ''-bis(phenyl)benzidine] as the hole transport layer, alongside the enhanced operational and shelf-life stability for unencapsulated devices.

Yuren Xiang, Yameng Cao, Wenqiang Yang, Rui Hu, Sebastian Wood, Bowei Li, Qin Hu, Fan Zhang, Jujie He, Mozhgan Yavari, Jinlai Zhao, Yunlong Zhao, Jun Song, Junle Qu, Rui Zhu, Thomas P Russell, S. Ravi P Silva, Wei Zhang (2021)Laser‐induced recoverable fluorescence quenching of perovskite films at a microscopic grain‐scale, In: Energy & environmental materials (Hoboken, N.J.) Wiley

Understanding the fundamental properties of metal halide perovskite materials is driving the development of novel optoelectronic applications. Here, we report the observation of a recoverable laser-induced fluorescence quenching phenomenon in perovskite films with a microscopic grain-scale restriction, accompanied by spectral variations. This fluorescence quenching depends on the laser intensity and the dwell time under Auger recombination dominated conditions. These features indicate that the perovskite lattice deformation may take the main responsibility for the transient, show a new aspect to understand halide perovskite photo-stability. We further modulate this phenomenon by adjusting the charge carrier recombination and extraction, revealing that efficient carrier transfer can improve the bleaching resistance of perovskite grains. Our results provide future opportunities to attain high-performance devices by tuning the perovskite lattice disorder and harvesting the energetic carriers.

Additional publications