Dr Ayse Demirkan
Academic and research departments
Faculty of Health and Medical Sciences, School of Biosciences, Surrey Institute for People-Centred Artificial Intelligence (PAI).News
Publications
Introduction Polygenic Score (PGS) is a valuable method for assessing the estimated genetic liability to a given outcome or genetic variability contributing to a quantitative trait. While PRSs are widely used for complex traits, their application in uncovering shared genetic predisposition between phenotypes, i.e. when genetic variants influence more than one phenotype, remains limited. Methods We developed an R package, comorbidPGS, which facilitates a systematic evaluation of shared genetic effects among (cor)related phenotypes using PGSs. The comorbidPGS package takes as input a set of Single Nucleotide Polymorphisms (SNPs) along with their established effects on the original phenotype (Po), referred to as Po-PGS. It generates a comprehensive summary of effect(s) of Po-PGS on target phenotype(s) (Pt) with customisable graphical features. Results We applied comorbidPGS to investigate the shared genetic predisposition between phenotypes defining elevated blood pressure (Systolic Blood Pressure, SBP; Diastolic Blood Pressure, DBP; Pulse Pressure, PP) and several cancers (Breast Cancer, BrC; Pancreatic Cancer, PanC; Kidney Cancer, KidC; Prostate Cancer, PrC; Colorectal Cancer, CrC) using the European ancestry UK Biobank individuals and GWAS meta-analyses summary statistics from independent set of European ancestry individuals. We report a significant association between elevated DBP and the genetic risk of PrC (β (SE)=0.066 (0.017), P-value=9.64×10^(-5)), as well as between CrC PGS and both, lower SBP (β (SE)=-0.10 [0.029], P-value=3.83×10^(-4))) and lower DBP (β (SE)=-0.055 [0.017], P-value=1.05×10^(-3)). Our analysis highlights two nominally significant relationships for individuals with genetic predisposition to elevated SBP leading to higher risk of KidC (OR [95%CI]=1.04 [1.0039-1.087], P-value=2.82×10^(-2)) and PrC (OR [95%CI]=1.02 [1.003-1.041], P-value=2.22×10^(-2)). Conclusion Using comorbidPGS, we underscore mechanistic relationships between blood pressure regulation and susceptibility to three comorbid malignancies. This package offers valuable means to evaluate shared genetic susceptibility between (cor)related phenotypes through polygenic scores.
Depression has been associated with metabolic alterations, which adversely impact cardiometabolic health. Here, a comprehensive set of metabolic markers, predominantly lipids, was compared between depressed and nondepressed persons. Nine Dutch cohorts were included, comprising 10,145 control subjects and 5283 persons with depression, established with diagnostic interviews or questionnaires. A proton nuclear magnetic resonance metabolomics platform provided 230 metabolite measures: 51 lipids, fatty acids, and low-molecular-weight metabolites; 98 lipid composition and particle concentration measures of lipoprotein subclasses; and 81 lipid and fatty acids ratios. For each metabolite measure, logistic regression analyses adjusted for gender, age, smoking, fasting status, and lipid-modifying medication were performed within cohort, followed by random-effects meta-analyses. Of the 51 lipids, fatty acids, and low-molecular-weight metabolites, 21 were significantly related to depression (false discovery rate q < .05). Higher levels of apolipoprotein B, very-low-density lipoprotein cholesterol, triglycerides, diglycerides, total and monounsaturated fatty acids, fatty acid chain length, glycoprotein acetyls, tyrosine, and isoleucine and lower levels of high-density lipoprotein cholesterol, acetate, and apolipoprotein A1 were associated with increased odds of depression. Analyses of lipid composition indicators confirmed a shift toward less high-density lipoprotein and more very-low-density lipoprotein and triglyceride particles in depression. Associations appeared generally consistent across gender, age, and body mass index strata and across cohorts with depressive diagnoses versus symptoms. This large-scale meta-analysis indicates a clear distinctive profile of circulating lipid metabolites associated with depression, potentially opening new prevention or treatment avenues for depression and its associated cardiometabolic comorbidity.
Metabolic syndrome (MetS), the clustering of metabolic risk factors, is associated with cardiovascular disease risk. We sought to determine if dysregulation of the lipidome may contribute to metabolic risk factors. We measured 154 circulating lipid species in 658 participants from the Framingham Heart Study (FHS) using liquid chromatography-tandem mass spectrometry and tested for associations with obesity, dysglycemia, and dyslipidemia. Independent external validation was sought in three independent cohorts. Follow-up data from the FHS were used to test for lipid metabolites associated with longitudinal changes in metabolic risk factors. Thirty-nine lipids were associated with obesity and eight with dysglycemia in the FHS. Of 32 lipids that were available for replication for obesity and six for dyslipidemia, 28 (88%) replicated for obesity and five (83%) for dysglycemia. Four lipids were associated with longitudinal changes in body mass index and four were associated with changes in fasting blood glucose in the FHS. We identified and replicated several novel lipid biomarkers of key metabolic traits. The lipid moieties identified in this study are involved in biological pathways of metabolic risk and can be explored for prognostic and therapeutic utility.
Background Genome-wide association studies for glycemic traits have identified hundreds of loci associated with these biomarkers of glucose homeostasis. Despite this success, the challenge remains to link variant associations to genes, and underlying biological pathways. Methods To identify coding variant associations which may pinpoint effector genes at both novel and previously established genome-wide association loci, we performed meta-analyses of exome-array studies for four glycemic traits: glycated hemoglobin (HbA1c, up to 144,060 participants), fasting glucose (FG, up to 129,665 participants), fasting insulin (FI, up to 104,140) and 2hr glucose post-oral glucose challenge (2hGlu, up to 57,878). In addition, we performed network and pathway analyses. Results Single-variant and gene-based association analyses identified coding variant associations at more than 60 genes, which when combined with other datasets may be useful to nominate effector genes. Network and pathway analyses identified pathways related to insulin secretion, zinc transport and fatty acid metabolism. HbA1c associations were strongly enriched in pathways related to blood cell biology. Conclusions Our results provided novel glycemic trait associations and highlighted pathways implicated in glycemic regulation. Exome-array summary statistic results are being made available to the scientific community to enable further discoveries.
One of the goals of personalised medicine (PM) is to use the ever-growing understanding of biology to provide a higher level of precision in disease prevention and patient care. PM strategies include the use of decision-making processes based on biomarker-driven approaches. Genes, gene expression products (i.e. transcripts and proteins) and metabolites are the main biomarker families. Given this molecular diversity of biomarkers, the increase in high-throughput omics technologies offers an amazing opportunity to capture the whole picture of biological systems in a hypothesis-free and unbiased model. This chapter examines as the high-throughput era in omics is progressing and as genomics and other omics will be effective in disentangling the aetiology and progression of the diseases.
High-throughput techniques allow us to measure a wide-range of phospholipids which can provide insight into the mechanisms of hypertension. We aimed to conduct an in-depth multi-omics study of various phospholipids with systolic blood pressure (SBP) and diastolic blood pressure (DBP). The associations of blood pressure and 151 plasma phospholipids measured by electrospray ionization tandem mass spectrometry were performed by linear regression in five European cohorts (n = 2786 in discovery and n = 1185 in replication). We further explored the blood pressure-related phospholipids in Erasmus Rucphen Family (ERF) study by associating them with multiple cardiometabolic traits (linear regression) and predicting incident hypertension (Cox regression). Mendelian Randomization (MR) and phenome-wide association study (Phewas) were also explored to further investigate these association results. We identified six phosphatidylethanolamines (PE 38:3, PE 38:4, PE 38:6, PE 40:4, PE 40:5 and PE 40:6) and two phosphatidylcholines (PC 32:1 and PC 40:5) which together predicted incident hypertension with an area under the ROC curve (AUC) of 0.61. The identified eight phospholipids are strongly associated with triglycerides, obesity related traits (e.g. waist, waist-hip ratio, total fat percentage, body mass index, lipid-lowering medication, and leptin), diabetes related traits (e.g. glucose, insulin resistance and insulin) and prevalent type 2 diabetes. The genetic determinants of these phospholipids also associated with many lipoproteins, heart rate, pulse rate and blood cell counts. No significant association was identified by bi-directional MR approach. We identified eight blood pressure-related circulating phospholipids that have a predictive value for incident hypertension. Our cross-omics analyses show that phospholipid metabolites in the circulation may yield insight into blood pressure regulation and raise a number of testable hypothesis for future research.
Polycystic ovary syndrome (PCOS) is a very common endocrine condition in women in India. Gut microbiome alterations were shown to be involved in PCOS, yet it is remarkably understudied in Indian women who have a higher incidence of PCOS as compared to other ethnic populations. During the regional PCOS screening program among young women, we recruited 19 drug naive women with PCOS and 20 control women at the Sher-i-Kashmir Institute of Medical Sciences, Kashmir, North India. We profiled the gut microbiome in faecal samples by 16S rRNA sequencing and included 40/58 operational taxonomic units (OTUs) detected in at least 1/3 of the subjects with relative abundance (RA) ≥ 0.1%. We compared the RAs at a family/genus level in PCOS/non-PCOS groups and their correlation with 33 metabolic and hormonal factors, and corrected for multiple testing, while taking the variation in day of menstrual cycle at sample collection, age and BMI into account. Five genera were significantly enriched in PCOS cases: , , and previously reported for PCOS , and confirmed by different statistical models. At the family level, the relative abundance of was enriched, whereas was decreased among cases. We observed increased relative abundance of and with higher fasting blood glucose levels, and and with larger hip, waist circumference, weight, and with lower prolactin levels. We also detected a novel association between and follicle-stimulating hormone levels and between and alkaline phosphatase, independently of the BMI of the participants. Our report supports that there is a relationship between gut microbiome composition and PCOS with links to specific reproductive health metabolic and hormonal predictors in Indian women.
Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on 'around the clock' glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification. Genome-wide association analyses of blood glucose measurements under nonstandardized conditions provide insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification.
Gestational diabetes mellitus (GDM) is associated with increased risk of pregnancy complications and adverse perinatal outcomes. GDM often reoccurs and is associated with increased risk of subsequent diagnosis of type 2 diabetes (T2D). To improve our understanding of the aetiological factors and molecular processes driving the occurrence of GDM, including the extent to which these overlap with T2D pathophysiology, the GENetics of Diabetes In Pregnancy Consortium assembled genome-wide association studies of diverse ancestry in a total of 5485 women with GDM and 347 856 without GDM. Through multi-ancestry meta-analysis, we identified five loci with genome-wide significant association (P
Pancreatic ductal adenocarcinoma (PDAC) has a very poor survival. The intra-tumoural microbiome can influence pancreatic tumourigenesis and chemoresistance and, therefore, patient survival. The role played by bile microbiota in PDAC is unknown. We aimed to define bile microbiome signatures that can effectively distinguish malignant from benign tumours in patients presenting with obstructive jaundice caused by benign and malignant pancreaticobiliary disease. Prospective bile samples were obtained from 31 patients who underwent either Endoscopic Retrograde Cholangiopancreatography (ERCP) or Percutaneous Transhepatic Cholangiogram (PTC). Variable regions (V3–V4) of the 16S rRNA genes of microorganisms present in the samples were amplified by Polymerase Chain Reaction (PCR) and sequenced. The cohort consisted of 12 PDAC, 10 choledocholithiasis, seven gallstone pancreatitis and two primary sclerosing cholangitis patients. Using the 16S rRNA method, we identified a total of 135 genera from 29 individuals (12 PDAC and 17 benign). The bile microbial beta diversity significantly differed between patients with PDAC vs. benign disease (Permanova p = 0.0173). The separation of PDAC from benign samples is clearly seen through unsupervised clustering of Aitchison distance. We found three genera to be of significantly lower abundance among PDAC samples vs. benign, adjusting for false discovery rate (FDR). These were Escherichia (FDR = 0.002) and two unclassified genera, one from Proteobacteria (FDR = 0.002) and one from Enterobacteriaceae (FDR = 0.011). In the same samples, the genus Streptococcus (FDR = 0.033) was found to be of increased abundance in the PDAC group. We show that patients with obstructive jaundice caused by PDAC have an altered microbiome composition in the bile compared to those with benign disease. These bile-based microbes could be developed into potential diagnostic and prognostic biomarkers for PDAC and warrant further investigation.
Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P
A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology. In this study, we present a multi-layer framework to combine the largest multi-ancestry GWAS to date on lipid levels with both transcriptomic and epigenomic datasets to prioritize regulatory variants, effector genes, cell types, and tissues with strong functional relevance to lipid biology.
Background: The intra-tumoural microbiome can influence pancreatic tumourigenesis and chemoresistance, and therefore patient survival. The role played by bile microbiota in PDAC is unknown. We aimed to define bile microbiome signatures in patients presenting with obstructive jaundice caused by benign and malignant pancreaticobiliary disease to develop novel cancer biomarkers. Methods: Prospective bile samples were obtained from 37 patients who underwent either endoscopic retrograde cholangiopancreatography (ERCP) or percutaneous transhepatic cholangiography (PTC). Variable regions (V3–V4) of the 16S rRNA genes were amplified by PCR and next generation sequencing was performed. The cohort consisted of 12 PDAC, 6 cholangiocarcinoma, 10 choledocholithiasis, 7 gallstone pancreatitis and 2 primary sclerosing cholangitis patients. Bile samples from 8 patients were excluded from the analysis because of low read count. Results: Using the 16S rRNA method, we identified a total of 108 genera from 29 individuals (12 PDAC and 17 benign). Bile microbial diversity significantly differed between patients with PDAC vs. benign disease (p=0.0173). The separation of PDAC from benign samples is clearly seen through unsupervised clustering based on Canberra distances. We found 4 genera to be of significantly different abundance between PDAC vs. benign groups by association p-value and supported by false discovery rate (fdr). These were Escherichia, Rothia, Streptococcus and Prevotella. Conclusion: We show that patients with obstructive jaundice caused by PDAC have an altered microbiome composition in the bile, compared to those with benign disease. These bile-based microbes could be developed into potential diagnostic and prognostic biomarkers for PDAC and warrant further investigation.
Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h ), and the proportion of heritability captured by known metabolite loci (h ) for 309 lipids and 52 organic acids. Our study reveals significant differences in h among different classes of lipids and organic acids. Furthermore, phosphatidylcholines with a high degree of unsaturation have higher h estimates than phosphatidylcholines with low degrees of unsaturation. This study highlights the importance of common genetic variants for metabolite levels, and elucidates the genetic architecture of metabolite classes.
Many Alzheimer's disease (AD) genes including Apolipoprotein E (APOE) are found to be expressed in blood-derived macrophages and thus may alter blood protein levels. We measured 91 neuro-proteins in plasma from 316 participants of the Rotterdam Study (incident AD = 161) using Proximity Extension Ligation assay. We studied the association of plasma proteins with AD in the overall sample and stratified by APOE. Findings from the Rotterdam study were replicated in 186 AD patients of the BioFINDER study. We further evaluated the correlation of these protein biomarkers with total tau (t-tau), phosphorylated tau (p-tau) and amyloid-beta (Aβ) 42 levels in cerebrospinal fluid (CSF) in the Amsterdam Dementia Cohort (N = 441). Finally, we conducted a genome-wide association study (GWAS) to identify the genetic variants determining the blood levels of AD-associated proteins. Plasma levels of the proteins, CDH6 (β = 0.638, P = 3.33 × 10 ) and HAGH (β = 0.481, P = 7.20 × 10 ), were significantly elevated in APOE ε4 carrier AD patients. The findings in the Rotterdam Study were replicated in the BioFINDER study for both CDH6 (β = 1.365, P = 3.97 × 10 ) and HAGH proteins (β = 0.506, P = 9.31 × 10 ) when comparing cases and controls in APOE ε4 carriers. In the CSF, CDH6 levels were positively correlated with t-tau and p-tau in the total sample as well as in APOE ε4 stratum (P
Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
Leptin influences food intake by informing the brain about the status of body fat stores. Rare mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in , , , and , and one intergenic variant near The missense variant Val94Met (rs17151919) in was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry ( = 2 × 10 , = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 x 10(-8)) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 x 10(-20)), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 x 10(-10) < P < 5 x 10(-8)) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis.
Smoking is a potentially causal behavioral risk factor for type 2 diabetes (T2D), but not all smokers develop T2D. It is unknown whether genetic factors partially explain this variation. We performed genome-environment-wide interaction studies to identify loci exhibiting potential interaction with baseline smoking status (ever vs. never) on incident T2D and fasting glucose (FG). Analyses were performed in participants of European (EA) and African ancestry (AA) separately. Discovery analyses were conducted using genotype data from the 50,000-single-nucleotide polymorphism (SNP) ITMAT-Broad-CARe (IBC) array in 5 cohorts from from the Candidate Gene Association Resource Consortium (n = 23,189). Replication was performed in up to 16 studies from the Cohorts for Heart Aging Research in Genomic Epidemiology Consortium (n = 74,584). In meta-analysis of discovery and replication estimates, 5 SNPs met at least one criterion for potential interaction with smoking on incident T2D at p< 1x10(-7) (adjusted for multiple hypothesis-testing with the IBC array). Two SNPs had significant joint effects in the overall model and significant main effects only in one smoking stratum: rs140637 (FBN1) in AA individuals had a significant main effect only among smokers, and rs1444261 (closest gene C2orf63) in EA individuals had a significant main effect only among nonsmokers. Three additional SNPs were identified as having potential interaction by exhibiting a significant main effects only in smokers: rs1801232 (CUBN) in AA individuals, rs12243326 (TCF7L2) in EA individuals, and rs4132670 (TCF7L2) in EA individuals. No SNP met significance for potential interaction with smoking on baseline FG. The identification of these loci provides evidence for genetic interactions with smoking exposure that may explain some of the heterogeneity in the association between smoking and T2D.
Progress in high-throughput metabolic profiling provides unprecedented opportunities to obtain insights into the effects of drugs on human metabolism. The Biobanking BioMolecular Research Infrastructure of the Netherlands has constructed an atlas of drug-metabolite associations for 87 commonly prescribed drugs and 150 clinically relevant plasma-based metabolites assessed by proton nuclear magnetic resonance. The atlas includes a meta-analysis of ten cohorts (18,873 persons) and uncovers 1,071 drug-metabolite associations after evaluation of confounders including co-treatment. We show that the effect estimates of statins on metabolites from the cross-sectional study are comparable to those from intervention and genetic observational studies. Further data integration links proton pump inhibitors to circulating metabolites, liver function, hepatic steatosis and the gut microbiome. Our atlas provides a tool for targeted experimental pharmaceutical research and clinical trials to improve drug efficacy, safety and repurposing. We provide a web-based resource for visualization of the atlas (http://bbmri.researchlumc.nl/atlas/).
Aims/hypothesis Characterisation of genetic variation that influences the response to glucose-lowering medications is instrumental to precision medicine for treatment of type 2 diabetes. The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH) examined the acute response to metformin and glipizide in order to identify new pharmacogenetic associations for the response to common glucose-lowering medications in individuals at risk of type 2 diabetes.Methods One thousand participants at risk for type 2 diabetes from diverse ancestries underwent sequential glipizide and metformin challenges. A genome-wide association study was performed using the Illumina Multi-Ethnic Genotyping Array. Imputation was performed with the TOPMed reference panel. Multiple linear regression using an additive model tested for association between genetic variants and primary endpoints of drug response. In a more focused analysis, we evaluated the influence of 804 unique type 2 diabetes- and glycaemic trait-associated variants on SUGAR-MGH outcomes and performed colocalisation analyses to identify shared genetic signals.Results Five genome-wide significant variants were associated with metformin or glipizide response. The strongest association was between an African ancestry-specific variant (minor allele frequency [MAF(Afr)]=0.0283) at rs149403252 and lower fasting glucose at Visit 2 following metformin (p=1.9x10(-9)); carriers were found to have a 0.94 mmol/l larger decrease in fasting glucose. rs111770298, another African ancestry-specific variant (MAF(Afr)=0.0536), was associated with a reduced response to metformin (p=2.4x10(-8)), where carriers had a 0.29 mmol/l increase in fasting glucose compared with non-carriers, who experienced a 0.15 mmol/l decrease. This finding was validated in the Diabetes Prevention Program, where rs111770298 was associated with a worse glycaemic response to metformin: heterozygous carriers had an increase in HbA(1c) of 0.08% and non-carriers had an HbA(1c) increase of 0.01% after 1 year of treatment (p=3.3x10(-3)). We also identified associations between type 2 diabetes-associated variants and glycaemic response, including the type 2 diabetes-protective C allele of rs703972 near ZMIZ1 and increased levels of active glucagon-like peptide 1 (GLP-1) (p=1.6x10(-5)), supporting the role of alterations in incretin levels in type 2 diabetes pathophysiology.Conclusions/interpretation We present a well-phenotyped, densely genotyped, multi-ancestry resource to study gene-drug interactions, uncover novel variation associated with response to common glucose-lowering medications and provide insight into mechanisms of action of type 2 diabetes-related variation.
Parkinson's disease (PD) may start in the gut and spread to the brain. To investigate the role of gut microbiome, we conducted a large-scale study, at high taxonomic resolution, using uniform standardized methods from start to end. We enrolled 490 PD and 234 control individuals, conducted deep shotgun sequencing of fecal DNA, followed by metagenome-wide association studies requiring significance by two methods (ANCOM-BC and MaAsLin2) to declare disease association, network analysis to identify polymicrobial clusters, and functional profiling. Here we show that over 30% of species, genes and pathways tested have altered abundances in PD, depicting a widespread dysbiosis. PD-associated species form polymicrobial clusters that grow or shrink together, and some compete. PD microbiome is disease permissive, evidenced by overabundance of pathogens and immunogenic components, dysregulated neuroactive signaling, preponderance of molecules that induce alpha-synuclein pathology, and over-production of toxicants; with the reduction in anti-inflammatory and neuroprotective factors limiting the capacity to recover. We validate, in human PD, findings that were observed in experimental models; reconcile and resolve human PD microbiome literature; and provide a broad foundation with a wealth of concrete testable hypotheses to discern the role of the gut microbiome in PD.