Deborah Dunn Walters

Professor Deborah Dunn-Walters FRSB


Professor of Immunology, Lead for University Research Theme Lifelong Health
BSc (Hons I), PhD
Flexible, Zoom/Teams by appointment. Drop me an email to arrange

Biography

University roles and responsibilities

  • Section Lead Immunology
  • Lead for University Research Theme Lifelong Health

    Previous roles

    2017 - 2019
    School of Biosciences and Medicine Research Director

    Affiliations and memberships

    FRSB
    Fellow of the Royal Society of Biology
    BSI
    Member of the British Society for Immunology
    BSRA
    Member of the British Society for Research on Ageing

    Research

    Research interests

    My publications

    Publications

    Theo W Combes, Federica Orsenigo, Alexander Stewart, A S Jeewaka R Mendis, Deborah Dunn-Walters, Siamon Gordon, Fernando O Martinez (2021)CSF1R defines the Mononuclear Phagocyte System lineage in human blood in health and COVID-19, In: Immunotherapy Advances Oxford University Press

    Mononuclear Phagocytes defend tissues, present antigens and mediate recovery and healing. To date we lack a marker to unify mononuclear phagocytes in humans or that informs us about their origin. Here, we reassess Mononuclear Phagocyte ontogeny in human blood through the lineage receptor CSF1R, in the steady state and in COVID-19. We define CSF1R as the first sensitive and reproducible pan-phagocyte lineage marker, to identify and enumerate all conventional monocytes, and the myeloid dendritic cells. In the steady state CSF1R is sufficient for sorting and immuno-magnetic isolation. In pathology, changes in CSF1R are more sensitive than CD14 and CD16. In COVID-19, a significant drop in membrane CSF1R is useful for stratifying patients, beyond the power of cell categories published thus far, which fail to capture COVID-19 specific events. Importantly, CSF1R defines cells which are neither conventional monocytes nor DCs, which are missed in published analysis. CSF1R decrease can be linked ex vivo to high CSF1 levels. Blood assessment of CSF1R+ cells opens a developmental window to the Mononuclear Phagocyte System in transit from bone marrow to tissues, supports isolation and phenotypic characterisation, identifies novel cell types, and singles out CSF1R inhibition as therapeutic target in COVID-19 and other diseases.

    Deborah Dunn-Walters, C Townsend, Emma Sinclair, Alexander Stewart (2018)Immunoglobulin gene analysis as a tool for investigating human immune responses, In: Immunological Reviews284(1)pp. 132-147 Wiley

    The human immunoglobulin repertoire is a hugely diverse set of sequences that are formed by processes of gene rearrangement, heavy and light chain gene assortment, class switching and somatic hypermutation. Early B cell development produces diverse IgM and IgD B cell receptors on the B cell surface, resulting in a repertoire that can bind many foreign antigens but which has had self-reactive B cells removed. Later antigen-dependent development processes adjust the antigen affinity of the receptor by somatic hypermutation. The effector mechanism of the antibody is also adjusted, by switching the class of the antibody from IgM to one of seven other classes depending on the required function. There are many instances in human biology where positive and negative selection forces can act to shape the immunoglobulin repertoire and therefore repertoire analysis can provide useful information on infection control, vaccination efficacy, autoimmune diseases and cancer. It can also be used to identify antigen-specific sequences that may be of use in therapeutics. The juxtaposition of lymphocyte development and numerical evaluation of immune repertoires has resulted in the growth of a new sub-speciality in immunology where immunologists and computer scientists/physicists collaborate to assess immune repertoires and develop models of immune action.

    Alexander Stewart, Joseph Chi-Fung Ng, Gillian Wallis, Vasiliki Tsioligka, Franca Fraternali, Deborah K Dunn-Walters (2021)Single-Cell Transcriptomic Analyses Define Distinct Peripheral B Cell Subsets and Discrete Development Pathways, In: Frontiers in immunology12 Frontiers Media

    Separation of B cells into different subsets has been useful to understand their different functions in various immune scenarios. In some instances, the subsets defined by phenotypic FACS separation are relatively homogeneous and so establishing the functions associated with them is straightforward. Other subsets, such as the “Double negative” (DN, CD19+CD27-IgD-) population, are more complex with reports of differing functionality which could indicate a heterogeneous population. Recent advances in single-cell techniques enable an alternative route to characterize cells based on their transcriptome. To maximize immunological insight, we need to match prior data from phenotype-based studies with the finer granularity of the single-cell transcriptomic signatures. We also need to be able to define meaningful B cell subsets from single cell analyses performed on PBMCs, where the relative paucity of a B cell signature means that defining B cell subsets within the whole is challenging. Here we provide a reference single-cell dataset based on phenotypically sorted B cells and an unbiased procedure to better classify functional B cell subsets in the peripheral blood, particularly useful in establishing a baseline cellular landscape and in extracting significant changes with respect to this baseline from single-cell datasets. We find 10 different clusters of B cells and applied a novel, geometry-inspired, method to RNA velocity estimates in order to evaluate the dynamic transitions between B cell clusters. This indicated the presence of two main developmental branches of memory B cells. A T-independent branch that involves IgM memory cells and two DN subpopulations, culminating in a population thought to be associated with Age related B cells and the extrafollicular response. The other, T-dependent, branch involves a third DN cluster which appears to be a precursor of classical memory cells. In addition, we identify a novel DN4 population, which is IgE rich and closely linked to the classical/precursor memory branch suggesting an IgE specific T-dependent cell population.

    Sarah Moody, Leire Escudero-Ibarz, Ming Wang, Alexandra Clipson, Eguzkine Ochoa Ruiz, Deborah Dunn-Walters, Xuemin Xue, Naiyan Zeng, Alistair Robson, Shih-Sung Chuang, Sergio Cogliatti, Hongxiang Liu, John Goodlad, Margaret Ashton-Key, Markus Raderer, Yingwen Bi, Ming-Qing Du (2017)Significant association between TNFAIP3 inactivation and biased IGHV4-34 usage in MALT lymphoma, In: Journal of Pathology243(1)pp. 3-8 Wiley

    Both antigenic drive and genetic change play a critical role in the development of MALT lymphoma, but neither alone is sufficient for malignant transformation, and lymphoma development critically depends on their cooperation. However, which of these different events concur and how they cooperate in MALT lymphomagenesis is totally unknown. To explore this, we investigated somatic mutations of 17 genes and IGHV usage in 179 MALT lymphomas from various sites. We showed that: 1) there was a significant association between the biased usage of IGHV4-34 (binds to the carbohydrate I/i antigens) and inactivating mutation of TNFAIP3 (encoding a global negative regulator of the canonical NF-B pathway) in ocular adnexal MALT lymphoma; 2) IGHV1-69 was significantly overrepresented (54%) in MALT lymphoma of salivary gland, but not associated with mutation in any of the 17 genes investigated; and 3) MALT lymphoma lacked mutations frequently seen in other B-cell lymphomas characterised by constitutive NF-B activities, including CD79B, CARD11, MYD88, TNFRSF11A and TRAF3. Our findings show for the first time a significant association between biased usage of autoreactive IGHV and somatic mutation of NF-B regulators in MALT lymphoma, arguing for their cooperation in sustaining chronic BCR signalling and driving oncogenesis in lymphoma development.

    VG Martin, Y-CB Wu, CL Townsend, GH Lu, JS O'Hare, A Mozeika, AC Coolen, D Kipling, F Fraternali, Deborah Dunn-Walters (2016)Transitional B cells in early human B cell development - time to revisit the paradigm?, In: Frontiers in Immunology7546 Frontiers Media

    The B cell repertoire is generated in the adult bone marrow by an ordered series of gene rearrangement processes that result in massive diversity of immunoglobulin (Ig) genes, and consequently an equally large number of potential specificities for antigen. As the process is essentially random, then cells exhibiting excess reactivity with self-antigens are generated and need to be removed from the repertoire before the cells are fully mature. Some of the cells are deleted, and some will undergo receptor editing to see if changing the light chain can rescue an autoreactive antibody. As a consequence, the binding properties of the B cell receptor are changed as development progresses through pre- B>>immature>>transitional>>naïve phenotypes. Using long-read, high-throughput, sequencing we have produced a unique set of sequences from these four cell types in human bone marrow and matched peripheral blood and our results describe the effects of tolerance selection on the B cell repertoire at the Ig gene level. Most strong effects of selection are seen within the heavy chain repertoire, and can be seen both in gene usage and in CDR-H3 characteristics. Age-related changes are small and only the size of the CDR-H3 shows constant and significant change in these data. The paucity of significant changes in either kappa or lambda light chain repertoires implies that either the heavy chain has more influence over autoreactivity than light chain and/or that switching between kappa and lambda light chains, as opposed to switching within the light chain loci, may effect a more successful autoreactive rescue by receptor editing. Our results show that the transitional cell population contains cells other than those that are part of the pre-B>>immature>>transitional>>naïve development pathway, since the population often shows a repertoire that is outside the trajectory of gene loss/gain between pre-B and naïve stages.

    M Michaeli, H Tabibian-Keissar, G Schiby, G Shahaf, Y Pickman, L Hazanov, K Rosenblatt, D Dunn-Walters, I Barshack, R Mehr (2014)Immunoglobulin gene repertoire diversification and selection in the stomach – from gastritis to gastric lymphomas, In: Frontiers in Immunology5264pp. 1-14 Frontiers Media

    Chronic gastritis is characterized by gastric mucosal inflammation due to autoimmune responses or infection, frequently with Helicobacter pylori. Gastritis with H. pylori background can cause gastric mucosa-associated lymphoid tissue lymphoma (MALT-L), which sometimes further transforms into diffuse large B-cell lymphoma (DLBCL). However, gastric DLBCL can also be initiated de novo. The mechanisms underlying transformation into DLBCL are not completely understood.We analyzed immunoglobulin repertoires and clonal trees to investigate whether and how immunoglobulin gene repertoires, clonal diversification, and selection in gastritis, gastric MALT-L, and DLBCL differ from each other and from normal responses. The two gastritis types (positive or negative for H. pylori) had similarly diverse repertoires. MALT-L dominant clones (defined as the largest clones in each sample) presented higher diversification and longer mutational histories compared with all other conditions. DLBCL dominant clones displayed lower clonal diversification, suggesting the transforming events are triggered by similar responses in different patients. These results are surprising, as we expected to find similarities between the dominant clones of gastritis and MALT-L and between those of MALT-L and DLBCL.

    LD Fraser, Y Zhao, PMK Lutalo, DP D’Cruz, J Cason, JS Silva, D Dunn-Walters, S Nayar, AP Cope, J Spencer (2016)Immunoglobulin light chain allelic inclusion in systemic lupus erythematosus, In: European Journal of Immunology45(8)pp. 2409-2419 Wiley

    The principles of allelic exclusion state that each B cell expresses a single light and heavy chain pair. Here, we show that B cells with both kappa and lambda light chains (Igκ and Igλ) are enriched in some patients with the systemic autoimmune disease systemic lupus erythematosus (SLE), but not in the systemic autoimmune disease control granulomatosis with polyangiitis. Detection of dual Igκ and Igλ expression by flow cytometry could not be abolished by acid washing or by DNAse treatment to remove any bound polyclonal antibody or complexes, and was retained after two days in culture. Both surface and intracytoplasmic dual light chain expression was evident by flow cytometry and confocal microscopy. We observed reduced frequency of rearrangements of the kappa-deleting element (KDE) in SLE and an inverse correlation between the frequency of KDE rearrangement and the frequency of dual light chain expressing B cells. We propose that dual expression of Igκ and Igλ by a single B cell may occur in some patients with SLE when this may be a consequence of reduced activity of the KDE.

    Z Sabouria, P Schofield, K Horikawa, E Spierings, D Kipling, KL Randall, D Langley, B Roome, R Vazquez-Lombardi, R Rouet, J Hermes, TD Chan, R Brink, D Dunn-Walters, D Christ, CC Goodnow (2014)Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity, In: PNAS111(25)pp. E2567-E2575 National Academy of Sciences

    The best-understood mechanisms for achieving antibody self/nonself discrimination discard self-reactive antibodies before they can be tested for binding microbial antigens, potentially creating holes in the repertoire. Here we provide evidence for a complementary mechanism: retaining autoantibodies in the repertoire displayed as low levels of IgM and high IgD on anergic B cells, masking a varying proportion of autoantibody-binding sites with carbohydrates, and removing their self-reactivity by somatic hypermutation and selection in germinal centers (GCs). Analysis of human antibody sequences by deep sequencing of isotype-switched memory B cells or in IgG antibodies elicited against allogeneic RhD+ erythrocytes, vaccinia virus, rotavirus, or tetanus toxoid provides evidence for reactivation of anergic IgMlow IgD+ IGHV4-34+ B cells and removal of cold agglutinin self-reactivity by hypermutation, often accompanied by mutations that inactivated an N-linked glycosylation sequon in complementarity-determining region 2 (CDR2). In a Hy10 antibody transgenic model where anergic B cells respond to a biophysically defined lysozyme epitope displayed on both foreign and self-antigens, cell transfers revealed that anergic IgMlow IgD+ B cells form twice as many GC progeny as naïve IgMhi IgD+ counterparts. Their GC progeny were rapidly selected for CDR2 mutations that blocked 72% of antigen-binding sites with N-linked glycan, decreased affinity 100-fold, and then cleared the binding sites of blocking glycan. These results provide evidence for a mechanism to acquire self/non-self discrimination by somatic mutation away from self-reactivity, and reveal how varying the efficiency of N-glycosylation provides a mechanism to modulate antibody avidity.

    V Martin, Y-C Wu, D Kipling, D Dunn-Walters (2015)Ageing of the B-cell repertoire, In: Philosophical Transactions of the Royal Society B370(1676) The Royal Society Publishing

    Older people are more susceptible to infection, less responsive to vaccination and have a more inflammatory immune environment. Using spectratype analysis, we have previously shown that the B-cell repertoire of older people shows evidence of inappropriate clonal expansions in the absence of challenge, and that this loss of B-cell diversity correlates with poor health. Studies on response to vaccination, using both spectratyping and high-throughput sequencing of the repertoire, indicate that older responses to challenge are lacking in magnitude and/or delayed significantly. Also that some of the biologically significant differences may be in different classes of antibody. We have also previously shown that normal young B-cell repertoires can vary between different phenotypic subsets of B cells. In this paper, we present an analysis of immunoglobulin repertoire in different subclasses of antibody in five different populations of B cell, and show how the repertoire in these different groups changes with age. Although some age-related repertoire differences occur in naive cells, before exogenous antigen exposure, we see indications that there is a general dysregulation of the selective forces that shape memory B-cell populations in older people.

    Y-C Wu, D Kipling, D Dunn-Walters (2015)Assessment of B cell repertoire in humans, In: Methods in Molecular Biology1343pp. 199-218 Humana Press

    The B cell receptor (BCR) repertoire is highly diverse. Repertoire diversity is achieved centrally by somatic recombination of immunoglobulin (Ig) genes and peripherally by somatic hypermutation and Ig heavy chain class-switching. Throughout these processes, there is selection for functional gene rearrangements, selection against gene combinations resulting in self-reactive BCRs, and selection for BCRs with high affinity for exogenous antigens after challenge. Hence, investigation of BCR repertoires from different groups of B cells can provide information on stages of B cell development and shed light on the etiology of B cell pathologies. In most instances, the third complementarity determining region of the Ig heavy chain (CDR-H3) contributes the majority of amino acids to the antibody/antigen binding interface. Although CDR-H3 spectratype analysis provides information on the overall diversity of BCR repertoires, this fairly simple technique analyzes the relative quantities of CDR-H3 regions of each size, within a range of approximately 10–80 bp, without sequence detail and thus is limited in scope. High-throughput sequencing (HTS) techniques on the Roche 454 GS FLX Titanium system, however, can generate a wide coverage of Ig sequences to provide more qualitative data such as V, D, and J usage as well as detailed CDR3 sequence information. Here we present protocols in detail for CDR-H3 spectratype analysis and HTS of human BCR repertoires.

    V Martin, Y-C Wu, D Kipling, D Dunn-Walters (2015)Age-related aspects of human IgM+ B cell heterogeneity, In: Annals of the New York Academy of Sciences1362(B-1 Ce)pp. 153-163 Wiley

    The CD27+IgD+ B cell population, known as IgM memory, reduces with age. It is thought that this population is responsible for pneumococcal polysaccharide T-independent responses, and that the age-related reduction might be partially responsible for the increased susceptibility of older people to bacterial pathogens. There are other IgM+ B cell populations that do not express IgD. We compared the different IgM populations using high-throughput sequencing of the immunoglobulin (Ig) gene repertoire and multidimensional cell phenotyping and found that the different populations of IgM cells, defined by CD27 and IgD expression, have repertoire differences. Some of these differences are likely indicative of different selection pressures in an immune response, although the older individuals were found to have a changed repertoire in naive B cells, which may contribute to some of the changes seen in memory cells. In addition, even within the CD27+IgD+ IgM memory population there are multiple cell types. We show that the level of IgM expression varies substantially and hypothesize that this distinguishes between T-dependent and T-independent types of IgM memory cells. Significant age-related changes in the relative proportions of these populations may exacerbate the reduction in T-independent responders in old age.

    Julia Sáez de Guinoa, Rebeca Jimeno, Mauro Gaya, David Kipling, María José Garzón, Deborah Dunn-Walters, Carles Ubeda, Patricia Barral (2018)CD1d-mediated lipid presentation by CD11c+ cells regulates intestinal homeostasis, In: The EMBO Journal37(5)e97537pp. 1-17 EMBO Press

    Intestinal homeostasis relies on a continuous dialogue between the commensal bacteria and the immune system. Natural killer T (NKT) cells, which recognize CD1d-restricted microbial lipids and self-lipids, contribute to the regulation of mucosal immunity, yet the mechanisms underlying their functions remain poorly understood. Here, we demonstrate that NKT cells respond to intestinal lipids and CD11c+ cells (including dendritic cells (DCs) and macrophages) are essential to mediate lipid presentation within the gut ultimately controlling intestinal NKT cell homeostasis and activation. Conversely, CD1d and NKT cells participate in the control of the intestinal bacteria composition and compartmentalization, in the regulation of the IgA repertoire and in the induction of regulatory T cells within the gut. These changes in intestinal homeostasis require CD1d expression on DC/macrophage populations as mice with conditional deletion of CD1d on CD11c+ cells exhibit dysbiosis and altered immune homeostasis. These results unveil the importance of CD11c+ cells in controlling lipid-dependent immunity in the intestinal compartment and reveal an NKT cell–DC crosstalk as a key mechanism for the regulation of gut homeostasis.

    Andrea Björkman, Likun Du, Mirjam van der Burg, Valerie Cormier-Daire, Guntram Borck, Juan Pié, Britt-Marie Anderlid, Lennart Hammarström, Lena Ström, Jean-Pierre de Villartay, David Kipling, Deborah Dunn-Walters, Qiang Pan-Hammarström (2017)Reduced immunoglobulin gene diversity in patients with Cornelia de Lange syndrome, In: Journal of Allergy and Clinical Immunology141(1)pp. 408-411.e8 Elsevier

    B cells rely on a broad receptor repertoire to provide protection against a wide range of pathogens. This is in part achieved through V(D)J recombination, which, by assembling various combinations of variable (V), diversity (D), and joining (J) genes, creates different IgV regions.1 The recombination processes is initiated by recombination-activating gene (RAG) 1/RAG2 enzymes and requires a functional nonhomologous end-joining (NHEJ) machinery. B cells can further diversify their IgV regions through somatic hypermutation (SHM) to improve affinity between the antibody and antigen and switch the isotype of antibody produced by class-switch recombination (CSR).

    Deborah Dunn-Walters, Alexander Stewart, Emma Sinclair, Ilaria Serangeli (2019)Age-related changes in B cells relevant to vaccine responses, In: Interdisciplinary Topics in Gerontology and Geriatrics S. Karger AG, Basel

    Older people have reduced immune responses to infection and vaccination. B cell activation is key for the efficacy of the vaccine response, but there are several age-related changes in B cells which may contribute to the loss of vaccine efficacy. Different subpopulations of B cells contain have different functions and phenotypes. These populations can change as we age; older people have been shown to have fewer “IgM memory” cells, regulatory B cells and plasma cells and more IgD-CD27- “double negative” and “Age-related B cells”. While the overall quantity of antibody in the blood does not change, the quality of the B cell response changes; producing less specific antibodies upon challenge and more autoreactive antibodies. This could be due to changes in selection pressures, as has been demonstrated by repertoire sequencing of different subsets of B cells at different ages. Other changes in antibody repertoire are seen, including: greater levels of IgG2 in older people, and altered IgG1 IGHV gene usage. Since B cells rely on their environment for efficient responses, some of these changes may be due to age-related changes in accessory cells/signals. Other changes appear to be intrinsic to older/aged B cells themselves, such as their tendency to produce greater levels of inflammatory cytokines.

    Christian Margreitter, Hui-Chun Lu, Catherine Townsend, Alexander Stewart, Deborah Dunn-Walters, Franca Fraternali (2018)BRepertoire: A user-friendly web server for analysing antibody repertoire data, In: Nucleic Acids Research46(W1)pp. W264-W270 Oxford University Press (OUP)

    Antibody repertoire analysis by high throughput sequencing is now widely used, but a persisting challenge is enabling immunologists to explore their data to discover discriminating repertoire features for their own particular investigations. Computational methods are necessary for large-scale evaluation of antibody properties. We have developed BRepertoire, a suite of user-friendly web-based software tools for large-scale statistical analyses of repertoire data. The software is able to use data preprocessed by IMGT, and performs statistical and comparative analyses with versatile plotting options. BRepertoire has been designed to operate in various modes, for example analysing sequence-specific V(D)J gene usage, discerning physico-chemical properties of the CDR regions and clustering of clonotypes. Those analyses are performed on the fly by a number of R packages and are deployed by a shiny web platform. The user can download the analysed data in different table formats and save the generated plots as image files ready for publication.We believe BRepertoire to be a versatile analytical tool that complements experimental studies of immune repertoires. To illustrate the server’s functionality, we show use cases including differential gene usage in a vaccination dataset and analysis of CDR3H properties in old and young individuals. The server is accessible under http://mabra.biomed.kcl.ac.uk/BRepertoire.

    JMJ Laffy, T Dodev, JA Macpherson, C Townsend, HC Lu, Deborah Dunn-Walters, F Fraternali (2016)Promiscuous antibodies characterised by their physico-chemical properties: From sequence to structure and back, In: Progress in Biophysics and Molecular Biology128pp. 47-56 Elsevier

    Human B cells produce antibodies, which bind to their cognate antigen based on distinct molecular properties of the antibody CDR loop. We have analysed a set of 10 antibodies showing a clear difference in their binding properties to a panel of antigens, resulting in two subsets of antibodies with a distinct binding phenotype. We call the observed binding multiplicity ‘promiscuous’ and selected physico-chemical CDRH3 characteristics and conformational preferences may characterise these promiscuous antibodies. To classify CDRH3 physico-chemical properties playing a role in their binding properties, we used statistical analyses of the sequences annotated by Kidera factors. To characterise structure-function requirements for antigen binding multiplicity we employed Molecular Modelling and Monte Carlo based coarse-grained simulations. The ability to predict the molecular causes of promiscuous, multi-binding behaviour would greatly improve the efficiency of the therapeutic antibody discovery process.

    D Dunn-Walters (2015)The ageing human B cell repertoire: A failure of selection?, In: Clinical & Experimental Immunology183(1)pp. 50-56 Wiley

    B cells undergo a number of different developmental stages, from initial formation of their B cell receptor (BCR) genes to differentiation into antibody-secreting plasma cells. Because the BCR is vital in these differentiation steps, autoreactive and exogenous antigen binding to the BCR exert critical selection pressures to shape the B cell repertoire. Older people are more prone to infectious disease, less able to respond well to vaccination and more likely to have autoreactive antibodies. Here we review evidence of changes in B cell repertoires in older people, which may be a reflection of age-related changes in B cell selection processes.

    Greg Crawford, Mark David Hayes, Rocio Castro Seoane, Sophie Ward, Tim Dalessandri, Chester Lai, Eugene Healy, David Kipling, Charlotte Proby, Colin Moyes, Kile Green, Katie Best, Muzlifah Haniffa, Marina Botto, Deborah Dunn-Walters, Jessica Strid (2018)Epithelial damage and tissue γδ T cells promote a unique tumor-protective IgE response, In: Nature Immunology19pp. 859-870 Nature Publishing Group

    IgE is an ancient and conserved immunoglobulin isotype with potent immunological function. Nevertheless, the regulation of IgE responses remains an enigma, and evidence of a role for IgE in host defense is limited. Here we report that topical exposure to a common environmental DNA-damaging xenobiotic initiated stress surveillance by γδTCR+ intraepithelial lymphocytes that resulted in class switching to IgE in B cells and the accumulation of autoreactive IgE. High-throughput antibody sequencing revealed that γδ T cells shaped the IgE repertoire by supporting specific variable-diversity-joining (VDJ) rearrangements with unique characteristics of the complementarity-determining region CDRH3. This endogenous IgE response, via the IgE receptor FcεRI, provided protection against epithelial carcinogenesis, and expression of the gene encoding FcεRI in human squamous-cell carcinoma correlated with good disease prognosis. These data indicate a joint role for immunosurveillance by T cells and by B cells in epithelial tissues and suggest that IgE is part of the host defense against epithelial damage and tumor development.

    H Tabibian-Keissar∗, L Hazanov, G Schiby, N Rosenthal, A Rakovsky, M Michaeli, GL Shahaf, Y Pickman, K Rosenblatt, D Melamed, D Dunn-Walters, R Mehr, I Barshack (2015)Aging affects B-cell antigen receptor repertoire diversity in primary and secondary lymphoid tissues, In: European Journal of Immunology46(2)pp. 480-492 2015 WILEY-VCH Verlag GmbH & Co

    The elderly immune system is characterized by reduced responses to infections and vaccines, and an increase in the incidence of autoimmune diseases and cancer. Age-related deficits in the immune system may be caused by peripheral homeostatic pressures that limit bone marrow B-cell production or migration to the peripheral lymphoid tissues. Studies of peripheral blood B-cell receptor spectratypes have shown that those of the elderly are characterized by reduced diversity, which is correlated with poor health status. In the present study, we performed for the first time high-throughput sequencing of immunoglobulin genes from archived biopsy samples of primary and secondary lymphoid tissues in old (74 ± 7 years old, range 61—89) versus young (24 ± 5 years old, range 18–45) individuals, analyzed repertoire diversities and compared these to results in peripheral blood. We found reduced repertoire diversity in peripheral blood and lymph node repertoires from old people, while in the old spleen samples the diversity was larger than in the young. There were no differences in somatic hypermutation characteristics between age groups. These results support the hypothesis that age-related immune frailty stems from altered B-cell homeostasis leading to narrower memory B-cell repertoires, rather than changes in somatic hypermutation mechanisms.

    D Bagnara, M Squillario, D Kipling, T Mora, AM Walczak, L Da Silva, S Weller, D Dunn-Walters, J-C Weill, C-A Reynaud (2015)A reassessment of IgM memory subsets in humans, In: Journal of Immunology195(8)pp. 3716-3724 American Association of Immunologists

    From paired blood and spleen samples from three adult donors, we performed high-throughput VH sequencing of human B cell subsets defined by IgD and CD27 expression: IgD+CD27+ (“marginal zone [MZ]”), IgD−CD27+ (“memory,” including IgM [“IgM-only”], IgG and IgA) and IgD−CD27− cells (“double-negative,” including IgM, IgG, and IgA). A total of 91,294 unique sequences clustered in 42,670 clones, revealing major clonal expansions in each of these subsets. Among these clones, we further analyzed those shared sequences from different subsets or tissues for VH gene mutation, H-CDR3-length, and VH/JH usage, comparing these different characteristics with all sequences from their subset of origin for which these parameters constitute a distinct signature. The IgM-only repertoire profile differed notably from that of MZ B cells by a higher mutation frequency and lower VH4 and higher JH6 gene usage. Strikingly, IgM sequences from clones shared between the MZ and the memory IgG/IgA compartments showed a mutation and repertoire profile of IgM-only and not of MZ B cells. Similarly, all IgM clonal relationships (among MZ, IgM-only, and double-negative compartments) involved sequences with the characteristics of IgM-only B cells. Finally, clonal relationships between tissues suggested distinct recirculation characteristics between MZ and switched B cells. The “IgM-only” subset (including cells with its repertoire signature but higher IgD or lower CD27 expression levels) thus appear as the only subset showing precursor–product relationships with CD27+ switched memory B cells, indicating that they represent germinal center–derived IgM memory B cells and that IgM memory and MZ B cells constitute two distinct entities.

    Graham Pawelec, Ludmila Müller, Tamas Fülöp, Deborah Dunn-Walters (2017)Immune system changes and immunosenescence, In: Oxford Textbook of Geriatric Medicine Oxford University Press

    The immune system defends against infection, but older people paradoxically suffer not only from failing immunity resulting in increased susceptibility to infections and decreased responsiveness to vaccination, but at the same time increased inflammation and immunopathology accompanying immune responses. Interventions to reduce such deleterious effects while enhancing protective immunity are challenging but need to be confronted if we are to deal successfully with the increasing numbers of elderly and frail people in modern societies. To do this, we need to understand the mechanisms responsible for age-associated increased susceptibility to infections and immune-influenced chronic degenerative diseases of ageing. Defining relevant age-associated alterations and identifying reliable biomarkers for monitoring clinically-relevant immune status in the elderly population is crucial to overcoming these problems. Here, we briefly outline age-associated changes to immunity collectively termed ‘immunosenescence’

    CL Townsend, JMJ Laffy, Y-C Wu, JS O’Hare, V Martin, D Kipling, F Fraternali, Deborah Dunn-Walters (2016)Significant differences in physicochemical properties of human immunoglobulin kappa and lambda CDR3 regions, In: Frontiers in Immunology216 Frontiers Media

    Antibody variable regions are composed of a heavy and a light chain and in humans there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain CDR-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 - light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains, and probed the Protein Data Bank (PDB) to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda and heavy chain gene rearrangements are correlated within donors, but can differ between donors. This indicates that TdT may work with differing efficiencies between different people, but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response.

    Deborah Dunn-Walters, Joselli Silva O’Hare (2017)Older Human B Cells and Antibodies, In: Handbook of Immunosenescencepp. 1-34 Springer International Publishing

    B cells have a number of different roles in the immune response. Their excellent antigen presentation potential can contribute to the activation of other cells of the immune system, and evidence is emerging that specialized subsets of these cells, that may be increased with age, can influence the cell-mediated immune system in antitumor responses. They can also regulate immune responses, to avoid autoreactivity and excessive inflammation. Deficiencies in regulatory B cells may be beneficial in cancer but will only exacerbate the inflammatory environment that is a hallmark of aging. The B cell role as antibody producers is particularly important, since antibodies perform numerous different functions in different environments. Although studying tissue responses in humans is not as easy as in mice, we do know that certain classes of antibodies are more suited to protecting the mucosal tissues (IgA) or responding to T-independent bacterial polysaccharide antigens (IgG2) so we can make some inference with respect to tissue-specific immunity from a study of peripheral blood. We can also make inferences about changes in B cell development with age by looking at the repertoire of different B cell populations to see how age affects the selection events that would normally occur to avoid autoreactivity, or increase specificity, to antigen.