Dr Julie Hunt


Lecturer in Sport and Exercise Sciences
+44 (0)1483 689400
30 PG 00

Biography

University roles and responsibilities

  • Programme Leader for BSc (Hons) Sport and Exercise Science

    Affiliations and memberships

    European College of Sport Science
    Member
    The Physiological Society
    Member

    Research

    Research interests

    Research collaborations

    My teaching

    My publications

    Highlights

    Journal articles

    Hunt JEA, Galeo D, Tufft G, Bunce D & Ferguson RA (2013). Time course of regional vascular adaptations to low load resistance training with blood flow restriction. Journal of Applied Physiology, 115, 3, 403-411.Taylor CW, Ingham SA, Hunt JEA, Martin NR, Lewis MP, Pringle JS, Fudge BW & Ferguson RA (under review). Sprint interval and continuous cycling induce similar increases in AMPK phosphorylation, PGC-1α and VEGF mRNA expression in trained human skeletal muscle. Journal of Applied Physiology.

    Etxebarria N, Hunt JEA, Ingham SA & Ferguson RA (2013). Physiological assessment of isolated running does not directly replicate running capacity after triathlon-specific cycling. Journal of Sports Science, published ahead of print.

    Hunt JEA, Walton LA & Ferguson RA (2012). Brachial artery modifications to blood flow restricted handgrip training and detraining. Journal of Applied Physiology. 112, 956-961.

    Conference presentations

    Hunt JEA, Taylor CW, Martin N, Player D, Lewis MP & Ferguson RA (2013). The acute angiogenic transcriptional response to low load resistance exercise with blood flow restriction. European College of Sports Science, Barcelona.

    Taylor CW, Ingham SA, Hunt JEA, Martin NR, Lewis MP, Pringle JS, Fudge BW & Ferguson RA (2013). Acute interval and continuous sprint cycling increases angiogenic gene expression in trained skeletal muscle. European College of Sports Science, Barcelona

    Hunt JEA, Galeo D & Ferguson RA (2012). Popliteal artery modifications to low load plantar flexion training with blood flow restriction. The Physiological Society; The Biochemical Basis of Elite Performance, London.

    Hunt JEA, Walton LA & Ferguson RA (2011). Brachial artery modifications to blood flow restricted handgrip training and detraining. ACSM 58th Annual Meeting, Denver, Colorado.

    Pringle J, Hunt JEA, Dekerle J, Brickley G (2009). Critical speed, anaerobic distance capacity and swimming performance after prior heavy and severe exercise. ACSM 56th Annual Meeting, Seattle, Washington

    Publications

    Julie E. A. Hunt, Mariana O. C. Coelho, Sean Buxton, Rachel Butcher, Daniel Foran, Daniel Rowland, William Gurton, Heather Macrae, Jones Louise, Kyle S. Gapper, Ralph J. F. Manders, David G. King (2021)Consumption of New Zealand Blackcurrant Extract Improves Recovery from Exercise-Induced Muscle Damage in Non-Resistance Trained Men and Women: A Double-Blind Randomised Trial, In: Nutrients13(8)2875 MDPI

    Background: Blackcurrant is rich in anthocyanins that may protect against exercise-induced muscle damage (EIMD) and facilitate a faster recovery of muscle function. We examined the effects of New Zealand blackcurrant (NZBC) extract on indices of muscle damage and recovery following a bout of strenuous isokinetic resistance exercise. Methods: Using a double-blind, randomised, placebo controlled, parallel design, twenty-seven healthy participants received either a 3 g·day−1 NZBC extract (n = 14) or the placebo (PLA) (n = 13) for 8 days prior to and 4 days following 60 strenuous concentric and eccentric contractions of the biceps brachii muscle on an isokinetic dynamometer. Muscle soreness (using a visual analogue scale), maximal voluntary contraction (MVC), range of motion (ROM) and blood creatine kinase (CK) were assessed before (0 h) and after (24, 48, 72 and 96 h) exercise. Results: Consumption of NZBC extract resulted in faster recovery of baseline MVC (p = 0.04), attenuated muscle soreness at 24 h (NZBC: 21 ± 10 mm vs. PLA: 40 ± 23 mm, p = 0.02) and 48 h (NZBC: 22 ± 17 vs. PLA: 44 ± 26 mm, p = 0.03) and serum CK concentration at 96 h (NZBC: 635 ± 921 UL vs. PLA: 4021 ± 4319 UL, p = 0.04) following EIMD. Conclusions: Consumption of NZBC extract prior to and following a bout of eccentric exercise attenuates muscle damage and improves functional recovery. These findings are of practical importance in recreationally active and potentially athletic populations, who may benefit from accelerated recovery following EIMD.

    Richard A. Ferguson, Julie Hunt, Mark P. Lewis, Neil R. W. Martin, Darren J. Player, Carolin Stangier, Conor W. Taylor, Mark C. Turner (2018)The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction, In: European Journal of Sport Science18(3)pp. 397-406 Taylor & Francis

    This study investigated protein kinase activation and gene expression of angiogenic factors in response to low-load resistance exercise with or without blood flow restriction (BFR). In a repeated measures cross-over design, six males performed four sets of bilateral knee extension exercise at 20% 1RM (reps per set = 30:15:15:continued to fatigue) with BFR (110 mmHg) and without (CON). Muscle biopsies were obtained from the vastus lateralis before, 2 and 4 h post-exercise. mRNA expression was determined using real-time RT–PCR. Protein phosphorylation/expression was determined using Western blot. p38MAPK phosphorylation was greater (p = 0.05) at 2 h following BFR (1.3 ± 0.8) compared to CON (0.4 ± 0.3). AMPK phosphorylation remained unchanged. PGC-1α mRNA expression increased at 2 h (5.9 ± 1.3 vs. 2.1 ± 0.8; p = 0.03) and 4 h (3.2 ± 0.8 vs. 1.5 ± 0.4; p = 0.03) following BFR exercise with no change in CON. PGC-1α protein expression did not change following either exercise. BFR exercise enhanced mRNA expression of vascular endothelial growth factor (VEGF) at 2 h (5.2 ± 2.8 vs 1.7 ± 1.1; p = .02) and 4 h (6.8 ± 4.9 vs. 2.5 ± 2.7; p = .01) compared to CON. mRNA expression of VEGF-R2 and hypoxia-inducible factor 1α increased following BFR exercise but only eNOS were enhanced relative to CON. Matrix metalloproteinase-9 mRNA expression was not altered in response to either exercise. Acute low-load resistance exercise with BFR provides a targeted angiogenic response potentially mediated through enhanced ischaemic and shear stress stimuli.

    JEA Hunt, LA Walton, RA Ferguson (2012)Brachial artery modifications to blood flow-restricted handgrip training and detraining, In: JOURNAL OF APPLIED PHYSIOLOGY112(6)pp. 956-961 AMER PHYSIOLOGICAL SOC
    EB Thompson, L Farrow, JEA Hunt, MP Lewis, RA Ferguson (2015)Brachial artery characteristics and micro-vascular filtration capacity in rock climbers, In: EUROPEAN JOURNAL OF SPORT SCIENCE15(4)pp. 296-304 TAYLOR & FRANCIS LTD
    Ismita Chhetri, Julie E. A. Hunt, Jeewaka R. Mendis, Stephen D. Patterson, Zudin A. Puthucheary, Hugh E. Montgomery, Benedict C. Creagh-Brown (2019)Repetitive vascular occlusion stimulus (RVOS) versus standard care to prevent muscle wasting in critically ill patients (ROSProx):a study protocol for a pilot randomised controlled trial, In: Trials20456pp. 1-14 BMC

    Background Forty per cent of critically ill patients are affected by intensive care unit-acquired weakness (ICU-AW), to which skeletal muscle wasting makes a substantial contribution. This can impair outcomes in hospital, and can cause long-term physical disability after hospital discharge. No effective mitigating strategies have yet been identified. Application of a repetitive vascular occlusion stimulus (RVOS) a limb pressure cuff inducing brief repeated cycles of ischaemia and reperfusion, can limit disuse muscle atrophy in both healthy controls and bed-bound patients recovering from knee surgery. We wish to determine whether RVOS might be effective in mitigating against muscle wasting in the ICU. Given that RVOS can also improve vascular function in healthy controls, we also wish to assess such effects in the critically ill. We here describe a pilot study to assess whether RVOS application is safe, tolerable, feasible and acceptable for ICU patients. Methods This is a randomised interventional feasibility trial. Thirty-two ventilated adult ICU patients with multiorgan failure will be recruited within 48 h of admission and randomised to either the intervention arm or the control arm. Intervention participants will receive RVOS twice daily (except only once on day 1) for up to 10 days or until ICU discharge. Serious adverse events and tolerability (pain score) will be recorded; feasibility of trial procedures will be assessed against pre-specified criteria and acceptability by semi-structured interview. Together with vascular function, muscle mass and quality will be assessed using ultrasound and measures of physical function at baseline, on days 6 and 11 of study enrolment, and at ICU and hospital discharge. Blood and urine biomarkers of muscle metabolism, vascular function, inflammation and DNA damage/repair mechanism will also be analysed. The Health questionnaire will be completed 3 months after hospital discharge. Discussion If this study demonstrates feasibility, the derived data will be used to inform the design (and sample size) of an appropriately-powered prospective trial to clarify whether RVOS can help preserve muscle mass/improve vascular function in critically ill patients.

    Andrea Darling, Kathryn Hart, F Gossiel, F Robertson, Julie Hunt, TR Hill, Sigurd Johnsen, JL Berry, R Eastell, R Vieth, Susan Lanham-New (2017)Higher bone resorption excretion in South Asian women vs White Caucasians and increased bone loss with higher seasonal cycling of vitamin D:  results from the D-FINES cohort study, In: Bone98pp. 47-53 Elsevier

    Few data exist on bone turnover in South Asian women and it is not well elucidated as to whether Western dwelling South Asian women have different bone resorption levels to that of women from European ethnic backgrounds. This study assessed bone resorption levels in UK dwelling South Asian and Caucasian women as well as evaluating whether seasonal variation in 25-hydroxyvitamin D [25(OH)D] is associated with bone resorption in either ethnic group. Data for seasonal measures of urinary N-telopeptide of collagen (uNTX) and serum 25(OH)D were analysed from n=373 women (four groups; South Asian postmenopausal n=44, South Asian premenopausal n=50, Caucasian postmenopausal n=144, Caucasian premenopausal n =135) (mean (± SD) age 48 (14) years; age range 18-79 years) who participated in the longitudinal D-FINES (Diet, Food Intake, Nutrition and Exposure to the Sun in Southern England) cohort study (2006-2007). A mixed between-within subjects ANOVA (n=192) showed a between subjects effect of the four groups (P

    Simon Lambden, Ben C. Creagh-Brown, Julie Hunt, Charlotte Summers, Lui G. Forni (2018)Definitions and pathophysiology of vasoplegic shock, In: Critical Care22(174)pp. 1-8 BioMed Central

    Vasoplegia is the syndrome of pathological low systemic vascular resistance, the dominant clinical feature of which is reduced blood pressure in the presence of a normal or raised cardiac output. The vasoplegic syndrome is encountered in many clinical scenarios, including septic shock, post-cardiac bypass and after surgery, burns and trauma, but despite this, uniform clinical definitions are lacking, which renders translational research in this area challenging. We discuss the role of vasoplegia in these contexts and the criteria that are used to describe it are discussed. Intrinsic processes which may drive vasoplegia, such as nitric oxide, prostanoids, endothelin-1, hydrogen sulphide and reactive oxygen species production, are reviewed and potential for therapeutic intervention explored. Extrinsic drivers, including those mediated by glucocorticoid, catecholamine and vasopressin responsiveness of the blood vessels, are also discussed. The optimum balance between maintaining adequate systemic vascular resistance against the potentially deleterious effects of treatment with catecholamines is as yet unclear, but development of novel vasoactive agents may facilitate greater understanding of the role of the differing pathways in the development of vasoplegia. In turn, this may provide insights into the best way to care for patients with this common, multifactorial condition.

    N Etxebarria, J Hunt, S Ingham, R Ferguson (2014)Physiological assessment of isolated running does not directly replicate running capacity after triathlon-specific cycling, In: JOURNAL OF SPORTS SCIENCES32(3)pp. 229-238 TAYLOR & FRANCIS LTD
    JEA Hunt, C Stodart, RA Ferguson (2016)The influence of participant characteristics on the relationship between cuff pressure and level of blood flow restriction, In: European Journal of Applied Physiology116(7)pp. 1421-1432

    Purpose Previous investigations to establish factors influencing the blood flow restriction (BFR) stimulus have determined cuff pressures required for complete arterial occlusion, which does not reflect the partial restriction prescribed for this training technique. This study aimed to establish characteristics that should be accounted for when prescribing cuff pressures required for partial BFR. Methods Fifty participants were subjected to incremental blood flow restriction of the upper and lower limbs by proximal pneumatic cuff inflation. Popliteal and brachial artery diameter, blood velocity and blood flow was assessed with Doppler ultrasound. Height, body mass, limb circumference, muscle–bone cross-sectional area, adipose thickness (AT) and arterial blood pressure were measured and used in different models of hierarchical linear regression to predict the pressure at which 60 % BFR (partial occlusion) occurred. Results Combined analysis revealed a difference in cuff pressures required to elicit 60 % BFR in the popliteal (111 ± 12 mmHg) and brachial arteries (101 ± 12 mmHg). MAP (r = 0.58) and AT (r = −0.45) were the largest independent determinants of lower and upper body partial occlusion pressures. However, greater variance was explained by upper and lower limb regression models composed of DBP and BMI (48 %), and arm AT and DBP (30 %), respectively. Conclusion Limb circumference has limited impact on the cuff pressure required for partial blood flow restriction which is in contrast to its recognised relationship with complete arterial occlusion. The majority of the variance in partial occlusion pressure remains unexplained by the predictor variables assessed in the present study.