Marta Topor

Psychology PhD Student

My research project

My qualifications

BSc in Psychology
University of Surrey
MSc in Research Methods in Psychology
University of Surrey

My publications


The study assessed a new mobile electroencephalography (EEG) system with water-based electrodes for its applicability in time-frequency and event related potential research. It was compared to a standard gel-based wired system. EEG was recorded on two occasions as participants completed the flanker task, first with the gel-based system followed by the water-based system. Technical and practical considerations for the application of the new water-based system are reported based on the participant and experimenter experiences. Empirical comparisons focused on EEG data noise levels, frequency power across four bands including theta, alpha, low beta and high beta and P300 and ERN event related potential components. The water-based system registered more noise compared to the gel-based system which resulted in increased loss of data during artefact rejection. Signal to noise ratio was significantly lower for the water-based system in the parietal channels which impacted the observed parietal beta power. It also led to a shift in topography of the maximal P300 activity from parietal to frontal regions. It is also evident, that the water-based system may be prone to slow drift noise which may affect the reliability and consistency of low frequency band analyses. Considerations for the use of this specific system for time-frequency and event related potentials are discussed.

MARTA TOPOR, BERTRAM OPITZ, HAYLEY LEONARD (2021)Error-Related Cognitive Control and Behavioral Adaptation Mechanisms in the Context of Motor Functioning and Anxiety, In: Frontiers in human neuroscience15615616 Frontiers Media S.A

Motor proficiency reflects the ability to perform precise and coordinated movements in different contexts. Previous research suggests that different profiles of motor proficiency may be associated with different cognitive functioning characteristics thus suggesting an interaction between cognitive and motor processes. The current study investigated this interaction in the general population of healthy adults with different profiles of motor proficiency by focusing on error-related cognitive control and behavioral adaptation mechanisms. In addition, the impact of these processes was assessed in terms of trait anxiety and worries. Forty healthy adults were divided into high and low motor proficiency groups based on an assessment of their motor skills. Using electroencephalography during a flanker task, error-related negativity (ERN) was measured as the neural indicator of cognitive control. Post-error slowing (PES) was measured to represent behavioral adaptation. Participants also completed an anxiety assessment questionnaire. Participants in the high motor proficiency group achieved better task accuracy and showed relatively enhanced cognitive control through increased ERN. Contrastingly, individuals in the lower motor proficiency group achieved poorer accuracy whilst showing some evidence of compensation through increased PES. Trait anxiety reflecting general worries was found to be correlated with motor functioning, but the study could not provide evidence that this was related to cognitive or behavioral control mechanisms. The interaction between cognitive and motor processes observed in this study is unique for healthy and sub-clinical populations and provides a baseline for the interpretation of similar investigations in individuals with motor disorders.

Additional publications