Dr Matteo Carpentieri
Academic and research departments
Centre for Aerodynamics and Environmental Flow, School of Mechanical Engineering Sciences.About
Biography
Dr. Carpentieri's main research interests are in urban fluid mechanics, and in particular pollution dispersion. Recent work includes studying the effect of atmospheric stratification on urban pollution, as well as urban etherogeneity and tall buildings.
He graduated (MEng) in Environmental Engineering at the University of Florence, Italy, where he later obtained a PhD in Environmental Fluid Dynamics with a thesis about air quality modelling. After a short post doctoral contract at Florence, he was granted a two-year Marie Curie Fellowship hosted at the Environmental Flow Research Centre (EnFlo) at the University of Surrey, researching on wind tunnel and numerical modelling of flow and pollutant dispersion in urban areas, nanoparticle dispersion from vehicles and urban meteorology.
At the beginning of 2013 he moved briefly to UCL, where he contributed to the EU-funded RIBS project (Resilient Infrastructure and Building Security) and his work involved, in particular, the study of airborne pathogens dispersion through mathematical modelling, CFD and comparison with experimental data. He has been back to Surrey since October 2013. He became EnFlo PI and CAEF Facilities Director in September 2020.
Areas of specialism
University roles and responsibilities
- CAEF Facilities Director - EnFlo PI
- Sustainability Fellow at the Institute for Sustainability
My qualifications
News
In the media
ResearchResearch interests
Environmental Flow Research Centre
- Flow and pollutant dispersion in urban areas
- Wind tunnel and mathematical modelling
- Environmental fluid dynamics
- Effects of atmospheric stratification on urban dispersion
- Indoor and outdoor dispersion of gases and pathogens
Research projects
NERC-funded project (NERC Highlight Topics #7), £2.5M. The ASSURE objectives are:
* To understand how sources of urban heterogeneity (physical setting, layout of buildings and neighbourhoods, human activities) combine to influence the urban atmosphere in space and time.
* To quantify effects of urban heterogeneity at different scales (street to neighbourhood, to city and beyond) on flow, temperature, moisture and air quality controlling processes and to determine how these processes interact.* To develop a theoretical framework that captures key processes and feedbacks with reduced complexity to aid mesoscale and larger model parameterisations.
* To inform the development priorities of current weather and climate models that have meso-scale capabilities and are used in decision-making processes (e.g. integrated urban services).
EPSRC-Funded project (£1.8M) - The objectives of this project are:
- To understand the magnitude and spatial scale of the effects of a cluster of tall buildings, and the consequent impact on wind, scalar, and temperature fields in urban boundary layers
- To identify the main parameters that govern the extent and character of the near and far fields within the wake (e.g. characteristic geometrical properties, heat transfer rates, stability conditions in the upstream boundary layer)
- To assess what can be said generically (i.e. modelled) and what remains site-specific
- To develop fast, analytical models that describe the behaviour of wakes downstream of groups of tall buildings
- To collate this information within a set of guidelines and tools publicly available to professionals, regulators, and policymakers.
DIPLOS is an EPSRC-funded collaborative project between the Universities of Reading, Southampton and Surrey, and will run from Jan 2014 to Aug 2017. DIPLOS is focused on performing wind tunnel experiments and high-resolution numerical simulations to produce high quality datasets that will then be used to develop and implement parametrizations for dispersion processes in an operational model.
It is estimated that by 2050, around four-million deaths per year will be attributable to outdoor air pollution (twice the current mortality rate)*. Currently, approximately half of the energy use, carbon dioxide emissions and exposure to air pollution in cities is due to either buildings or transportation- and this level is increasing. Now, more than ever, there is a pressing need for a roadmap to ensure that decisions can be taken to allow the sustainable development of cities.
Traditional approaches to urban environmental control rely on energy-consuming and carbon/toxin producing heating, ventilation and cooling (HVAC) systems, which produce an unsustainable cycle of increasing energy use.
In order to break this vicious cycle, a completely different engineering solution is necessary- this system needs to couple with natural systems, so as not to depend solely on mechanical systems.
This project will develop a facility consisting of an integrated suite of models and associated management and decision support tools that allow the city design to become its own HVAC system. The facility will be comprised of three components:
(i)A fully resolved air quality model
(ii)Reduced order modelling
(iii)Cost-benefit analysis
The city will use natural ventilation in buildings to reduce demand for energy and ensure air pollutants are diluted below levels that cause adverse health. This will also be coupled with increased albedo to reduce heat island effects, plus green (parks) and blue (water) spaces to provide cooling and filtration of pollutants.
Poor urban air quality and the threat of terrorist attacks by spreading hazardous substances in cities are a real concern for everyone. In order to prevent health hazards and to plan emergency procedures effectively, we need to be able to predict and simulate how gases and particles spread. A number of mathematical models currently exist that are able to simulate flow and dispersion with reasonable speed and accuracy at the required small scales, however there are still huge gaps in our knowledge and these models do not work well in all conditions. One of the main problems that current models display is in the way they treat atmospheric stratification. The proposed research will tackle this problem and will establish the role of thermal stratification in flow and dispersion in urban areas.
Stratification is common in environmental flows. This is due, for example, to variations in temperature and humidity with height in the atmosphere, or to variations in temperatures and salinity in the oceans. Neutral atmospheric stratification is characterised by an adiabatic profile of potential temperature, meaning that vertical motions of fluid particles are neither amplified nor damped. On the other hand, vertical movements are enhanced in unstable stratification, while stable flows are characterised by attenuated vertical motion.
Although stratification plays a very important role in atmospheric flow and dispersion, the vast majority of studies focus only on neutral flows, mainly because they are simpler to treat either experimentally or numerically. The proposed research aims to start bridging this gap using one of the very few facilities in Europe, or for that matter the world, that is capable of simulating non-neutral atmospheric boundary layer flows.
In meteorology and in mesoscale air quality models, stratification is an important feature, with parametrisations that are usually accurate enough to capture the main behaviour of the flow in different conditions of stability. At smaller scales, however, these relatively simple parametrisations are inadequate. While other small scale features, such as local geometry, may also become more important in determining flow conditions at such scales, stratification plays a significant role.
The prevalence of non-neutral atmospheric stratification (either stable or unstable) is well known, and a number of studies have highlighted the important effects this has on flow and dispersion. Systematic laboratory studies, however, are very rare, due to the complexity of the physical system to be studied and the very few facilities in the world capable of simulating a deep, non-neutral boundary layer. Because of this lack of experimental data-sets, most current mathematical parametrisations that account for this very important effect were developed using data from neutral test cases, sparse and rather uncertain field measurements, and some theoretical reasoning. The capabilities of the EnFlo laboratory offer a unique opportunity to bridge this gap in current models.
The main purpose of the proposed research is to establish the role of thermal stratification, both external and local, on flow and dispersion within an array of building-like obstacles. Experimental methodologies to simulate these issues will also be refined and further developed, as no established procedures and strategies currently exist. The principal outcome of the work will be a better understanding of the physics of this kind of atmospheric flow, focussing mainly in flow and pollutant dispersion within the urban canopy (particularly below roof level). A systematic experimental database on flow and dispersion in non-neutral flows will be produced. The data-set will help develop parametrisations and mathematical models able to predict atmospheric flow and dispersion at small scales more reliably, for example in urban areas or in wind farms.
Research collaborations
- Laboratoire de mécanique des fluides et d'acoustique, École Centrale de Lyon, France
- Boundary Layer Meteorology Group, University of Reading, UK
- Department of Aeronautics, Imperial College London, UK
- Department of Earth Science and Engineering, Imperial College London, UK
- DAMTP, University of Cambridge, UK
- Aeronautics, Astronautics and Computational Engineering, University of Southampton, UK
- Healthy Infrastructure Research Group, University College London, UK
- Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Italy
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Siena, Italy
- CNR-ISMAR Istituto di Scienze Marine, CNR-Genova, Italy
Research interests
Environmental Flow Research Centre
- Flow and pollutant dispersion in urban areas
- Wind tunnel and mathematical modelling
- Environmental fluid dynamics
- Effects of atmospheric stratification on urban dispersion
- Indoor and outdoor dispersion of gases and pathogens
Research projects
NERC-funded project (NERC Highlight Topics #7), £2.5M. The ASSURE objectives are:
* To understand how sources of urban heterogeneity (physical setting, layout of buildings and neighbourhoods, human activities) combine to influence the urban atmosphere in space and time.
* To quantify effects of urban heterogeneity at different scales (street to neighbourhood, to city and beyond) on flow, temperature, moisture and air quality controlling processes and to determine how these processes interact.* To develop a theoretical framework that captures key processes and feedbacks with reduced complexity to aid mesoscale and larger model parameterisations.
* To inform the development priorities of current weather and climate models that have meso-scale capabilities and are used in decision-making processes (e.g. integrated urban services).
EPSRC-Funded project (£1.8M) - The objectives of this project are:
- To understand the magnitude and spatial scale of the effects of a cluster of tall buildings, and the consequent impact on wind, scalar, and temperature fields in urban boundary layers
- To identify the main parameters that govern the extent and character of the near and far fields within the wake (e.g. characteristic geometrical properties, heat transfer rates, stability conditions in the upstream boundary layer)
- To assess what can be said generically (i.e. modelled) and what remains site-specific
- To develop fast, analytical models that describe the behaviour of wakes downstream of groups of tall buildings
- To collate this information within a set of guidelines and tools publicly available to professionals, regulators, and policymakers.
DIPLOS is an EPSRC-funded collaborative project between the Universities of Reading, Southampton and Surrey, and will run from Jan 2014 to Aug 2017. DIPLOS is focused on performing wind tunnel experiments and high-resolution numerical simulations to produce high quality datasets that will then be used to develop and implement parametrizations for dispersion processes in an operational model.
It is estimated that by 2050, around four-million deaths per year will be attributable to outdoor air pollution (twice the current mortality rate)*. Currently, approximately half of the energy use, carbon dioxide emissions and exposure to air pollution in cities is due to either buildings or transportation- and this level is increasing. Now, more than ever, there is a pressing need for a roadmap to ensure that decisions can be taken to allow the sustainable development of cities.
Traditional approaches to urban environmental control rely on energy-consuming and carbon/toxin producing heating, ventilation and cooling (HVAC) systems, which produce an unsustainable cycle of increasing energy use.
In order to break this vicious cycle, a completely different engineering solution is necessary- this system needs to couple with natural systems, so as not to depend solely on mechanical systems.
This project will develop a facility consisting of an integrated suite of models and associated management and decision support tools that allow the city design to become its own HVAC system. The facility will be comprised of three components:
(i)A fully resolved air quality model
(ii)Reduced order modelling
(iii)Cost-benefit analysis
The city will use natural ventilation in buildings to reduce demand for energy and ensure air pollutants are diluted below levels that cause adverse health. This will also be coupled with increased albedo to reduce heat island effects, plus green (parks) and blue (water) spaces to provide cooling and filtration of pollutants.
Poor urban air quality and the threat of terrorist attacks by spreading hazardous substances in cities are a real concern for everyone. In order to prevent health hazards and to plan emergency procedures effectively, we need to be able to predict and simulate how gases and particles spread. A number of mathematical models currently exist that are able to simulate flow and dispersion with reasonable speed and accuracy at the required small scales, however there are still huge gaps in our knowledge and these models do not work well in all conditions. One of the main problems that current models display is in the way they treat atmospheric stratification. The proposed research will tackle this problem and will establish the role of thermal stratification in flow and dispersion in urban areas.
Stratification is common in environmental flows. This is due, for example, to variations in temperature and humidity with height in the atmosphere, or to variations in temperatures and salinity in the oceans. Neutral atmospheric stratification is characterised by an adiabatic profile of potential temperature, meaning that vertical motions of fluid particles are neither amplified nor damped. On the other hand, vertical movements are enhanced in unstable stratification, while stable flows are characterised by attenuated vertical motion.
Although stratification plays a very important role in atmospheric flow and dispersion, the vast majority of studies focus only on neutral flows, mainly because they are simpler to treat either experimentally or numerically. The proposed research aims to start bridging this gap using one of the very few facilities in Europe, or for that matter the world, that is capable of simulating non-neutral atmospheric boundary layer flows.
In meteorology and in mesoscale air quality models, stratification is an important feature, with parametrisations that are usually accurate enough to capture the main behaviour of the flow in different conditions of stability. At smaller scales, however, these relatively simple parametrisations are inadequate. While other small scale features, such as local geometry, may also become more important in determining flow conditions at such scales, stratification plays a significant role.
The prevalence of non-neutral atmospheric stratification (either stable or unstable) is well known, and a number of studies have highlighted the important effects this has on flow and dispersion. Systematic laboratory studies, however, are very rare, due to the complexity of the physical system to be studied and the very few facilities in the world capable of simulating a deep, non-neutral boundary layer. Because of this lack of experimental data-sets, most current mathematical parametrisations that account for this very important effect were developed using data from neutral test cases, sparse and rather uncertain field measurements, and some theoretical reasoning. The capabilities of the EnFlo laboratory offer a unique opportunity to bridge this gap in current models.
The main purpose of the proposed research is to establish the role of thermal stratification, both external and local, on flow and dispersion within an array of building-like obstacles. Experimental methodologies to simulate these issues will also be refined and further developed, as no established procedures and strategies currently exist. The principal outcome of the work will be a better understanding of the physics of this kind of atmospheric flow, focussing mainly in flow and pollutant dispersion within the urban canopy (particularly below roof level). A systematic experimental database on flow and dispersion in non-neutral flows will be produced. The data-set will help develop parametrisations and mathematical models able to predict atmospheric flow and dispersion at small scales more reliably, for example in urban areas or in wind farms.
Research collaborations
- Laboratoire de mécanique des fluides et d'acoustique, École Centrale de Lyon, France
- Boundary Layer Meteorology Group, University of Reading, UK
- Department of Aeronautics, Imperial College London, UK
- Department of Earth Science and Engineering, Imperial College London, UK
- DAMTP, University of Cambridge, UK
- Aeronautics, Astronautics and Computational Engineering, University of Southampton, UK
- Healthy Infrastructure Research Group, University College London, UK
- Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Italy
- Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Siena, Italy
- CNR-ISMAR Istituto di Scienze Marine, CNR-Genova, Italy
Supervision
Postgraduate research supervision
PDRAs
Shanshan Ding (2022-present): ASSURE project
Abhishek Mishra (2022-present): FUTURE project (with Dr Marco Placidi)
Completed postgraduate research projects I have supervised
Mohammadreza Mohammadi (2021): MAGIC project (Wind tunnel experiments)
Behzad Haji Mirza Beigi (2021): MAGIC project (Air quality exposure - fieldwork data)
Davide Marucci (PhD, 2015-2019): Study of the effect of atmospheric stratification on flow and dispersion in the urban environment
Lara Beaton (PhD, 2017-2019): Impact of very tall buildings on urban air quality
Teaching
Current
ENG3167 Aerodynamics
ENGM299 Environmental Aerodynamics and Wind Power
ENG3163 Individual Project
ENGM001 Multi-Disciplinary Design Project
Past
ENG2093 Numerical and Experimental Methods
ENG3165 Numerical Methods and CFD
Publications
Dataset description associated with the article “Turbulence statistics estimation across a step change in roughness via interpretable network-based modelling”, (2024), G. Iacobello, M. Placidi, S. Ding, M. Carpentieri. Files description:- ‘u_timetraces.txt’, ‘v_timetraces.txt’, and ‘w_timetraces.txt' include the instantaneous velocity values for the three velocity components u, v, and w in [m/s].- ‘XYZ_LDA_coordinatees.txt' includes the measurement coordinates (in [m[) with respect to the reference system.- ‘x_coordinatees.txt' and ‘z_coordinatees.txt' include the unique x and z coordinates (streamwise and vertical coordinates, respectively) in [m].
This manuscript mainly explores the characteristics of turbulence quantities in the wake of tall building clusters of different array size (𝑁N) and building spacing (𝑊𝑆WS) arranged in an aligned and regular grid in the flow direction. Velocity fields are measured in a wind tunnel using three-dimensional laser Doppler anemometry. Results show a delayed recovery of 𝑢𝑟𝑚𝑠urms and 𝑣𝑟𝑚𝑠vrms (defined as the root-mean-square of the streamwise and lateral velocities, respectively) in the wake flow compared with the mean flow. Based on the turbulent fluctuations, the extents of the near-, transition- and far-wake regions in Mishra et al. (Boundary-Layer Meteorol., vol. 189, 2023, pp. 1–25) are revisited. In the near wake, we observe a significant reduction in 𝑢𝑟𝑚𝑠urms and 𝑣𝑟𝑚𝑠vrms in the wake of a 4×44×4 cluster compared with that of a single building. In the transition region, the turbulence intensity magnitudes within the cluster reduce to below their free-stream counterpart; this reduction is associated with the slowly varying nature of the normalised wake deficit in the streamwise direction. The recovery of the root mean square in the far-wake region is observed for 𝑥≥2.5𝑊𝐴x≥2.5WA (where 𝑊𝐴WA is the width of the cluster), with the mutual interaction of the wakes formed behind the individual buildings reducing with an increase in 𝑊𝑆WS, resulting in a faster recovery of the turbulent fluctuations. Finally, wavelet analysis suggests the existence of multi-scale vortex-shedding frequencies downwind of tall building clusters.
Wind tunnel experiments on regular arrays of buildings were conducted in the environmental wind tunnel in the EnFlo laboratory at the University of Surrey. The model canopy comprised a square array of 14×21 rectangular blocks (1h×2h) with height h = 70 mm. Preliminary measurements of velocity, turbulence and tracer concentrations were made for 3 wind directions: 0, 45 and 90°. The results from this first experimental campaign along with numerical simulations have shown that the canopy has obstacles sufficiently long compared with their heights to yield extensive flow channelling along streets. Across the whole of the downwind half of the long street the flow for the present canopy is closely aligned with the obstacle faces, despite the 45° flow orientation aloft. This supports the suggestion that the streets are long enough to be representative for street network modelling approaches; shorter streets would probably not be sufficient and it will be interesting to see how well network models can predict concentrations in the present canopy. The extensive array and the small scale of the model posed challenging problems for reaching the desired high accuracy needed to validate the numerical simulations. The improvements in the methodology will be presented and discussed at the conference. The wind tunnel data, along with LES and DNS simulations, are being used to understand the behaviour of flow and dispersion within regular array with a more realistic geometry than the usual cuboids. This integrated methodology will help developing parametrisations for improved street network dispersion models.
Wind tunnel experiments were carried out on four urban morphologies: two tall canopies with uniform-height and two super-tall canopies with a large variation in element heights (where the maximum element height is more than double the average canopy height, $h_{max}$=2.5 $h_{avg}$). {The average canopy height and packing density were fixed across the surfaces to $h_{avg} = 80$ mm, and $\lambda_{p} = 0.44$, respectively.} A combination of laser doppler anemometry and direct drag measurements were used to calculate and scale the mean velocity profiles {within the boundary layer depth, $\delta$}. In the uniform-height experiment, the high packing density resulted in a `skimming flow' regime with very little flow penetration into the canopy. This led to a surprisingly shallow roughness sublayer ($z\approx1.15h_{avg}$), and a well-defined inertial sublayer above it. {In the heterogeneous-height canopies, despite the same packing density and average height, the flow features were significantly different.} {The height heterogeneity enhanced mixing thus encouraging deep flow penetration into the canopy. A deeper roughness sublayer was found to exist and extend up to just above the tallest element height (corresponding to $z/h_{avg} = 2.85$)}, which was found to be the dominant lengthscale controlling the flow behaviour. {Results points toward the existence of an inertial sublayer for all surfaces considered herein despite the severity of the surface roughness ($\delta/h_{avg} = 3 - 6.25$)}. This contrasts with previous literature.
In this paper non-neutral approaching flows were employed in a meteorological wind tunnel on a regular urban-like array of rectangular buildings. As far as stable stratication is concerned, results on the flow above and inside the canopy show a clear reduction of the Reynolds stresses and an increment of the Monin-Obukhov length up to 80%. The roughness length and displacement height were also affected, with a reduction up to 27% for the former and an increment up to 5% for the latter. A clear reduction of the turbulence within the canopy was observed. In the convective stratication cases, the friction velocity appears increased by both the effect of roughness and unstable stratication. The increased roughness causes a reduction in the surface stratication, reflected in an increase of the Monin-Obukhov length, which is double over the array compared to the approaching ow. The effect on the aerodynamic roughness length and displacement height are specular to the SBL case, an increase up to 55% of the former and a reduction of the same amount for the latter.
Wind tunnel experiments have been carried out on a small-scale physical model of a municipal waste landfill (MWL) in the CRIACIV (Research Centre of Building Aerodynamics and Wind Engineering) "environmental" wind tunnel in Prato (Italy). The MWL model simulates a landfill whose surface is higher than the surrounding surface, applying a 1:200 scaling factor. Modelling an area source such as landfill is a difficult task for numerical models due to turbulence phenomena that modifies the flow near the source increasing ground level concentration (GLC). For the specific task, a new set-up of the wind tunnel has been developed, with respect to previous studies carried out on line and point sources physical models. The tracer used in the experiments was ethylene, suitable for non-buoyant plume conditions, typical for MWL emissions. A detailed result database has been obtained in terms of GLC and concentration profiles as well as flow turbulence and velocity field characterisation. (C) 2004 Elsevier Ltd. All rights reserved.
Several wind tunnel experiments of tracer dispersion from reduced-scale landfill models are presented in this paper. Different experimental set-ups, hot-wire anemometry, particle image velocimetry and tracer concentration measurements were used for the characterisation of flow and dispersion phenomena nearby the models. The main aim of these experiments is to build an extensive experimental data set useful for model validation purposes. To demonstrate the potentiality of the experimental data set, a validation exercise on several mathematical models was performed by means of a statistical technique. The experiments highlighted an increase in pollutant ground level concentrations immediately downwind from the landfill because of induced turbulence and mean flow deflection. This phenomenon turns out to be predominant for the dispersion process. Tests with a different set-up showed an important dependence of the dispersion phenomena from the landfill height and highlighted how complex orographic conditions downwind of the landfill do not affect significantly the dispersion behaviour. Validation exercises were useful for model calibration, improving code reliability, as well as evaluating performances. The Van Ulden model proved to give the most encouraging results.
Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277-296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.
Pollutant mass fluxes are rarely measured in the laboratory, especially their turbulent component. They play a major role in the dispersion of gases in urban areas and modern mathematical models often attempt some sort of parametrisation. An experimental technique to measure mean and turbulent fluxes in an idealised urban array was developed and applied to improve our understanding of how the fluxes are distributed in a dense street canyon network. As expected, horizontal advective scalar fluxes were found to be dominant compared with the turbulent components. This is an important result because it reduces the complexity in developing parametrisations for street network models. On the other hand, vertical mean and turbulent fluxes appear to be approximately of the same order of magnitude. Building height variability does not appear to affect the exchange process significantly, while the presence of isolated taller buildings upwind of the area of interest does. One of the most interesting results, again, is the fact that even very simple and regular geometries lead to complex advective patterns at intersections: parametrisations derived from measurements in simpler geometries are unlikely to capture the full complexity of a real urban area.
Research under the Managing Air for Green Inner Cities (MAGIC) project uses measurements and modelling to investigate the connections between external and internal conditions: the impact of urban airflow on the natural ventilation of a building. The test site was chosen so that under different environmental conditions the levels of external pollutants entering the building, from either a polluted road or a relatively clean courtyard, would be significantly different. Measurements included temperature, relative humidity, local wind and solar radiation, together with levels of carbon monoxide (CO) and carbon dioxide (CO2) both inside and outside the building to assess the indoor–outdoor exchange flows. Building ventilation took place through windows on two sides, allowing for single-sided and crosswind-driven ventilation, and also stack-driven ventilation in low wind conditions. The external flow around the test site was modelled in an urban boundary layer in a wind tunnel. The wind tunnel results were incorporated in a large-eddy-simulation model, Fluidity, and the results compared with monitoring data taken both within the building and from the surrounding area. In particular, the effects of street layout and associated street canyons, of roof geometry and the wakes of nearby tall buildings were examined.
Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified.
Scalar dispersion from ground-level sources in arrays of buildings is investigated using wind-tunnel measurements and large-eddy simulation (LES). An array of uniform-height buildings of equal dimensions and an array with an additional single tall building (wind tunnel) or a periodically repeated tall building (LES) are considered. The buildings in the array are aligned and form long streets. The sensitivity of the dispersion pattern to small changes in wind direction is demonstrated. Vertical scalar fluxes are decomposed into the advective and turbulent parts and the influences of wind direction and of the presence of the tall building on the scalar flux components are evaluated. In the uniform-height array turbulent scalar fluxes were dominant, whereas the tall building causes an increase of the magnitude of advective scalar fluxes which become the largest component. The presence of the tall building causes either an increase or a decrease to the total vertical scalar flux depending on the position of the source with respect to the tall building. The results of the simulations can be used to develop parametrizations for street canyon dispersion models and enhance their capabilities in areas with tall buildings.
In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.
This study compared dispersion calculations using a street network model (SIRANE) with results from wind tunnel experiments in order to examine model performance in simulating short-range pollutant dispersion in urban areas. The comparison was performed using a range of methodologies, from simple graphical comparisons (e.g. scatter plots) to more advanced statistical analyses. A preliminary analysis focussed on the sensitivity of the model to source position, receptor location, wind direction, plume spread parameterisation and site aerodynamic parameters. Sensitivity to wind direction was shown to be by far the most significant. A more systematic approach was then adopted, analysing the behaviour of the model in response to three elements: wind direction, source position and small changes in geometry. These are three very critical aspects of fine scale urban dispersion modelling. The overall model performance, measured using the Chang and Hanna (2004) criteria can be considered as ‘good’. Detailed analysis of the results showed that ground level sources were better represented by the model than roof level sources. Performance was generally ‘good’ for wind directions that were very approximately diagonal to the street axes, while cases with wind directions almost parallel (within 20°) to street axes gave results with larger uncertainties (failing to meet the quality targets). The methodology used in this evaluation exercise, relying on systematic wind tunnel studies on a scaled model of a real neighbourhood, proved very useful for assessing strengths and weaknesses of the SIRANE model, complementing previous validation studies performed with either on-site measurements or wind tunnel measurements over idealised urban geometries.
The understanding of the behaviour of pollutants released in urban sites is of paramount importance for a number of reasons, mainly related to human health. Furthermore, the particular present international political situation adds further concerns, as the deliberate discharge of toxic material in populated areas is a serious threat. Wind tunnel experiments were performed in order to study flow and pollutant dispersion in a real urban environment. The work is part of a larger EPSRC funded project (DAPPLE, Dispersion of Air Pollution & Penetration into the Local Environment) involving six British Universities.
Experimental investigations using wind and water tunnels have long been a staple of fluid mechanics research for a large number of applications. These experiments often single out a specific physical process to be investigated, while studies involving multiscale and multi-physics processes are rare due to the difficulty and complexity in the experimental setup. In the era of climate change, there is an increasing interest in innovative experimental studies in which fluid (wind and water) tunnels are employed for modelling multiscale, multi-physics phenomena of the urban climate. High-quality fluid tunnel measurements of urban-physics related phenomena are also much needed to facilitate the development and validation of advanced multi-physics numerical models. As a repository of knowledge in modelling these urban processes, we cover fundamentals, recommendations and guidelines for experimental design, recent advances and outlook on eight selected research areas, including (i) thermal buoyancy effects of urban airflows, (ii) aerodynamic and thermal effects of vegetation, (iii) radiative and convective heat fluxes over urban materials, (iv) influence of thermal stratification on land-atmosphere interactions, (v) pollutant dispersion, (vi) indoor and outdoor natural ventilation, (vii) wind thermal comfort, and (viii) urban winds over complex urban sites. Further, three main challenges, i.e., modelling of multi-physics, modelling of anthropogenic processes, and combined use of fluid tunnels, scaled outdoor and field measurements for urban climate studies, are discussed.
In the present paper we have analysed experimentally (wind tunnel) and numerically (CFD) the impact of some morphological parameters on the flow within and above the urban canopy. In particular, this study is a first attempt in systematically studying the flow in and above urban canopies using simplified, yet more realistic than a simple array of cuboids, building arrays. Current mathematical models would provide the same results for the six case studies presented here (two models by three wind directions), however the measured spatially averaged profiles are quite different from each other. Results presented here highlight that the differences in the spatially averaged vertical profiles are actually significant in all six experimental/numerical cases. Besides the building height variability, other morphological features proved to be a significant factor in shaping flow and dispersion at the local to neighbourhood scale in the urban canopy and directly above: building aspect ratio (or, conversely, the street canyon aspect ratio), the angle between the street canyons and the incoming wind and local geometrical features such as, for example, the presence of much taller buildings immediately upwind of the studied area.
Wind-tunnel experiments were carried out on four urban morpholo-6 gies: two tall canopies with uniform height and two super-tall canopies with a 7 large variation in element heights (where the maximum element height is more 8 than double the average canopy height, h max =2.5h avg). The average canopy 9 height and packing density are fixed across the surfaces to h avg = 80 mm, 10 and λ p = 0.44, respectively. A combination of laser doppler anemometry and 11 direct-drag measurements are used to calculate and scale the mean velocity 12 profiles within the boundary-layer depth δ. In the uniform-height experiment, 13 the high packing density results in a 'skimming flow' regime with very little 14 flow penetration into the canopy. This leads to a surprisingly shallow rough-15 ness sublayer (z ≈ 1.15h avg), and a well-defined inertial sublayer above it. 16 In the heterogeneous-height canopies, despite the same packing density and 17 average height, the flow features are significantly different. The height het-18 erogeneity enhances mixing, thus encouraging deep flow penetration into the 19 canopy. A deeper roughness sublayer is found to exist extending up to just 20 above the tallest element height (corresponding to z/h avg = 2.85), which is 21 found to be the dominant length scale controlling the flow behaviour. Results 22 point toward the existence of a constant stress layer for all surfaces considered 23 herein despite the severity of the surface roughness (δ/h avg = 3 − 6.25). This 24 contrasts with previous literature. 25 Keywords Laser doppler anemometry · Turbulent boundary layers · Urban 26 roughness · Wind-tunnel experiments
Experimental investigations using wind and water tunnels have long been a staple in fluid mechanics research. These experiments often choose a specific physical process to be investigated, whereas studies involving multiscale and multiphysics processes are rare. In the era of climate change, there is increasing interest in innovative experimental studies in which fluid (wind and water) tunnels are used in the modeling of multiscale, multiphysics phenomena of the urban climate. Fluid tunnel measurements of urban-physics-related phenomena are also required to facilitate the development and validation of advanced multiphysics numerical models. As a repository of knowledge for modeling these urban processes, we cover the fundamentals, experimental design guidelines, recent advances, and outlook of eight selected research areas, i.e., (i) absorption of solar radiation, (ii) inhomogeneous thermal buoyancy effects, (iii) influence of thermal stratification on land-atmosphere interactions, (iv) indoor and outdoor natural ventilation, (v) aerodynamic effects of vegetation, (vi) dispersion of pollutants, (vii) outdoor wind thermal comfort, and (viii) wind flows over complex urban sites. Three main challenges are discussed, i.e., (i) the modeling of multiphysics, (ii) the modeling of anthropogenic processes, and (iii) the combined use of fluid tunnels and scaled outdoor and field measurements for urban climate studies.
Wind tunnel measurements downwind of reduced scale car models have been made to study the wake regions in detail, test the usefulness of existing vehicle wake models, and draw key information needed for dispersion modelling in vehicle wakes. The experiments simulated a car moving in still air. This is achieved by (i) the experimental characterisation of the flow, turbulence and concentration fields in both the near and far wake regions, (ii) the preliminary assessment of existing wake models using the experimental database, and (iii) the comparison of previous field measurements in the wake of a real diesel car with the wind tunnel measurements. The experiments highlighted very large gradients of velocities and concentrations existing, in particular, in the near-wake. Of course, the measured fields are strongly dependent on the geometry of the modelled vehicle and a generalisation for other vehicles may prove to be difficult. The methodology applied in the present study, although improvable, could constitute a first step towards the development of mathematical parameterisations. Experimental results were also compared with the estimates from two wake models. It was found that they can adequately describe the far-wake of a vehicle in terms of velocities, but a better characterisation in terms of turbulence and pollutant dispersion is needed. Parameterised models able to predict velocity and concentrations with fine enough details at the near-wake scale do not exist.
We conducted experimental investigations on the effect of stable thermal conditions on rough-wall boundary layers, with a specific focus on their response to abrupt increases in surface roughness. For stably stratified boundary layers, a new analytical relation between the skin-friction coefficient, $C_f$, and the displacement thickness was proposed. Following the sharp roughness change, the overshoot in $C_f$ is slightly enhanced in stably stratified layers when compared with that of neutral boundary layers. Regarding the velocity defect law, we found that the displacement thickness multiplied by $\sqrt{2/C_f}$, performs better than the boundary layer thickness alone when describing the similarity within internal boundary layers for both neutral and stable cases. A non-adjusted region located just beneath the upper edge of the internal boundary layer was observed, with large magnitudes of skewness and kurtosis of streamwise and wall-normal velocity fluctuations for both neutral and stable cases. At a fixed wall-normal location, the greater the thermal stratification, the greater the magnitudes of skewness and kurtosis. Quadrant analysis revealed that the non-adjusted region is characterised by an enhancement/reduction of ejection/sweep events, particularly for stably stratified boundary layers. Spatially, these ejections correspond well with peaks of kurtosis, exhibit stronger intensity and occur more frequently following the abrupt change in surface conditions.
This study investigates flow variability at different scales and its effects on the dispersion of a passive scalar in a regular street network by means of direct numerical simulations (DNS), and compared to wind tunnel (WT) measurements. Specific scientific questions addressed include: (i) sources of variability in the flow at street-network scale, (ii) the effects of such variability on both puff and continuous localised releases, (iii) additional sources of uncertainty related to experimental setups and their consequences. The street network modelled here consists of an array of rectangular buildings arranged uniformly and with periodic horizontal boundary conditions. The flow is driven by a body force at an angle of 45 degrees relative to the streets in the network. Sources of passive scalars were located near ground level at three different types of locations: a short street, an intersection between streets and a long street. Flow variability is documented at different scales: small-scale intra-street variations linked with local flow topology; inter-street flow structure differences; street-network scale variability; and larger-scale spatial variations associated with above-canopy structures. Flow statistics and the dispersion behaviour of both continuous and short-duration (puff) releases of a passive scalar in the street network are analysed and compared with the results of wind-tunnel measurements. Results agree well with the experimental data for a source location in an intersection, especially for flow statistics and mean concentration profiles for continuous releases. Larger differences arise in the comparisons of puff releases. These differences are quantified by computing several puff parameters including time of arrival, travel time, rise and decay times. Reasons for the differences are discussed in relation to the underlying flow variability identified, differences between the DNS and WT setup and uncertainties in the experimental setup. Implications for the propagation of short-duration releases in real urban areas are discussed in the light of our findings. In particular, it is highlighted that in modelling singular events such as accidental releases, characterising uncertainties is more meaningful and useful than computing ensemble averages.
Wind tunnel experiments on regular arrays of buildings were conducted in the environmental wind tunnel in the EnFlo laboratory at the University of Surrey. The model canopy comprised a square array of 14×21 rectangular blocks (1h × 2h) with height h = 70 mm. Preliminary measurements of velocity, turbulence and tracer concentrations were made for 3 wind directions: 0, 45 and 90◦. The results from this first experimental campaign along with numerical simulations have shown that the canopy has obstacles sufficiently long compared with their heights to yield extensive flow channelling along streets. Across the whole of the downwind half of the long street the flow for the present canopy is closely aligned with the obstacle faces, despite the 45◦ flow orientation aloft. This supports the suggestion that the streets are long enough to be representative for street network modelling approaches; shorter streets would probably not be sufficient and it will be interesting to see how well network models can predict concentrations in the present canopy. The extensive array and the small scale of the model posed challenging problems for reaching the desired high accuracy needed to validate the numerical simulations. The improvements in the methodology will be presented and discussed at the conference. The wind tunnel data, along with LES and DNS simulations, are being used to understand the behaviour of flow and dispersion within regular array with a more realistic geometry than the usual cuboids. This integrated methodology will help developing parametrisations for improved street network dispersion models
In this work, we study the development of the internal boundary layer (IBL) induced by a surface roughness discontinu-ity, where the downstream surface has a roughness length greater than that upstream. The work is carried out in the EnFlo meteorological wind tunnel, at the University of Surrey, in both thermally neutral and stable cases with varying degrees of stability. For the neutrally-stratified boundary layer, the IBL development in the log-law region shows good agreement with the diffusion model proposed by Panofsky and Dutton (Atmospheric turbulence, Wiley, New York, 1984) provided that a modified origin condition is introduced and its growth rate is dictated by a constant diffusion term. However, the model over-predicts the growth of the IBL in the outer layer, where the IBL depth grows slowly with fetch following a power function with exponent n being 0.61 (whereas the original model prescribes n ≈ 0.8). For the stably-stratified boundary layers, n is found to further reduce as the bulk Richardson number, Ri b , increases. The analysis of the top region of the IBL shows that the slow growth rate is due to a combination of the decay of the diffusion term and a significantly negative mean wall-normal velocity, which transports fluid elements towards the wall. Considering these two effects, a modified diffusion model is proposed which well captures the growth of the IBL for both neutrally and stably-stratified boundary layers. Graphical abstract 1 Introduction
Wind tunnel experiments were conducted to understand the effect of building array size (N), aspect ratio (AR), and the spacing between buildings (W S) on the mean structure and decay of their wakes. Arrays of size 3×3, 4×4,and 5×5, AR = 4, 6, and 8, and W S = 0.5W B , 1W B , 2W B and 4W B (where W B is the building width) were considered. Three different wake regimes behind the building clusters were identified: near-, transition-, and far-wake regimes. The results suggest that the spatial extent of these wake regimes is governed by the overall array width (W A). The effects of individual buildings are observed to be dominant in the near-wake regime (0 < x/W A < 0.45) where individual wakes appear behind each building. These wakes are observed to merge in the transition-wake region (0.45 < x/W A < 1.5), forming a combined wake in which the individual contributions are no longer apparent. In the far-wake regime (x/W A > 1.5), clusters' wakes are akin to those developing downwind of a single isolated building. Accordingly, new local and global scaling parameters in the near-and far-wake regimes are introduced. The decay of the centreline velocity deficit is then modelled as a function of the three parameters considered in the experiment.
Flow and pollutant dispersion models are important elements for managing air quality in urban areas, to complement and, sometimes, even substitute monitoring. Developing fast and reliable parameterisations is necessary to improve the spatial and temporal resolutions of current mathematical prediction models. Recently there has been a growing interest in the so-called "neighbourhood scale" models, that offer relatively high spatial and temporal resolutions while keeping the needed computational resources at a minimum. This paper describes experimental and numerical simulations performed to explore the interaction of flow and pollutant dispersion with local building and street geometry. The methods developed may be useful as a way for cities to improve air quality management. © 2012 Springer Science+Business Media Dordrecht.
We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognis- ing that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those ob- tained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models
The work presented here is aimed at developing an indirect methodology for landfill gas emission monitoring by using an integrated approach between measurements and modelling. The proposed methodology is based on an optical measurement system, capable of quantifying concentrations of a tracer gas emitted by a waste landfill, along with a modelling system for tracer gas dispersion in the atmosphere. In the present study, this methodology has been applied, as a preliminary test, at the Case Passerini landfill site, in the Sesto Fiorentino (FI) territory. The test case allowed the evaluation of the proposed methodology, highlighting the positive aspects and the critical factors. The obtained results showed the potentiality of this approach, which can be used in order to integrate, and sometimes even to substitute, more expensive field direct measurement campaigns.
Wind tunnel experiments were conducted to study the impact of atmospheric stratification on flow and dispersion within and over a regular array of rectangular buildings. Three stable and two convective incoming boundary layers were tested with a Richardson number ranging from -1.5 to 0.29. Dispersion measurements were carried using a fast response flame ionisation detector. The results show that the stratification effect on the plume width is significantly lower than the effect on the vertical profiles. Stable stratification did not affect the plume central axis inside the canopy, but in the unstable case the axis appeared to deviate from the neutral case direction. Above the canopy both stratification types caused an increase in the plume deflection angle compared to the neutral case. Measured mean concentrations in stable stratification were up to two times larger in the canopy compared to the neutral case, while in convective conditions they were to three times smaller. The proportionality between the vertical turbulent fluxes and the vertical mean concentration gradient was also confirmed in the stratified cases. The high-quality experimental data produced during this work may help developing new mathematical models and parametrisation for non-neutral stratified conditions, as well as validating existing and future numerical simulations.
Preliminary wind tunnel experiments for the FUTURE project. Using the 'A tunnel' facility at the EnFlo lab, University of Surrey. Each file consists of the mean velocity values (U, V) measured at different locations (x,y,z) in the wake of a group of tall buildings arranged in a regular array. Additionally, the reference velocity measured at the tunnel inlet, reference temperature and atmospheric pressure are also included in each file.
The data presented in this dataset has been acquired in the period from 20th June to 09th July 2022 in the EnFlo wind tunnel. Spires with the height of 600 mm were employed to simulate a boundary layer about 550 mm deep. The reference velocity for the presented data is 1.5 m/s for Case 1, 3 and 1.00 m/s for Case 3, 4. The first 11 meters of the floor are covered by offshore roughness elements and the next 7 meters are covered by onshore roughness elements.
The effects of a stably-stratified boundary layer on flow and dispersion in a bi-dimensional street canyon with unity aspect ratio have been investigated experimentally in a wind tunnel in combination with differential wall heating. Laser-Doppler anemometry together with a fast flame ionisation detector and cold-wire anemometry were employed to sample velocities, concentration, temperatures and fluxes. A single-vortex pattern was observed in the isothermal case, preserved also when leeward wall was heated, but with a considerable increment of the vortex speed. Heating the windward wall, instead, was found to generate a counter-rotating vortex, resulting in the reduction of velocity within the canopy. The stable stratification also contributes reducing the speed, but only in the lower half of the canyon. The largest values of turbulent kinetic energy were observed above the canopy, while inside they were concentrated close to the windward wall, even when the leeward one was heated. An incoming stable stratification produced a significant and generalised turbulence reduction in all the cases. Windward heating was found to produce larger temperature increments within the canopy, while in the leeward case heat was immediately vacated above the canopy. A stable approaching flow reduced both the temperature and the heat fluxes. A passive tracer was released from a point source located at ground level at the centre of the street canyon. The resulting plume cross-section pattern was mostly affected by the windward wall heating, which produced an increment of the pollutant concentration on the windward side by breaking the main vortex circulation. The application of an incoming stable stratification created a generalised increment of pollutant within the canopy, with concentrations twice as large. Turbulent pollutant fluxes were found significant only at roof level and close to the source. On the other hand, in the windward wall-heated case the reduction of the mean flux renders the turbulent component relevant in other locations as well. The present work highlights the importance of boundary layer stratification and local heating, both capable of creating significant modifications in the flow and pollutant fields at microscale range.
Stable and convective boundary layers over a very rough surface have been studied in a thermally-stratified wind tunnel. Artificial thickening by means of spires was used to accelerate the formation of a sufficiently deep boundary layer, suitable for urban-like boundary layer flow and dispersion studies. For the stable boundary layer, the methodology presented in Hancock and Hayden (2018) for low-roughness offshore surface conditions has been successfully applied to cases with higher-roughness. Different levels of stratification and roughness produced modifications in the turbulence profiles of the lower half of the boundary layer, but little or no change in the region above. Data for a stronger stability case suggested that the employed spires may not be suitable to simulate such extreme condition, though further studies are needed. The results were in reasonably good agreement with field measurements. For the convective boundary layer, great attention was given to the flow uniformity inside the test section. The selection of a non-uniform inlet temperature profile was in this case found not as determinant as for the stable boundary layer to improve the longitudinal uniformity, while the application of a calibrated capping inversion considerably improved the lateral uniformity. The non-dimensional vertical profiles of turbulent quantities and heat fluxes, did not seem to be influenced by roughness.
The need to balance computational speed and simulation accuracy is a key challenge in designing atmospheric dispersion models that can be used in scenarios where near real-time hazard predictions are needed. This challenge is aggravated in cities, where models need to have some degree of building-awareness, alongside the ability to capture effects of dominant urban flow processes. We use a combination of high-resolution large-eddy simulation (LES) and wind-tunnel data of flow and dispersion in an idealised, equal-height urban canopy to highlight important dispersion processes and evaluate how these are reproduced by representatives of the most prevalent modelling approaches: (i) a Gaussian plume model, (ii) a Lagrangian stochastic model and (iii) street-network dispersion models. Concentration data from the LES, validated against the wind-tunnel data, were averaged over the volumes of streets in order to provide a high-fidelity reference suitable for evaluating the different models on the same footing. For the particular combination of forcing wind direction and source location studied here, the strongest deviations from the LES reference were associated with mean over-predictions of concentrations by approximately a factor of 2 and with a relative scatter larger than a factor of 4 of the mean, corresponding to cases where the mean plume centreline also deviated significantly from the LES. This was linked to low accuracy of the underlying flow models/parameters that resulted in a misrepresentation of pollutant channelling along streets and of the uneven plume branching observed in intersections. The agreement of model predictions with the LES (which explicitly resolves the turbulent flow and dispersion processes) greatly improved by increasing the accuracy of building-induced modifications of the driving flow field. When provided with a limited set of representative velocity parameters, the comparatively simple street-network models performed equally well or better compared to the Lagrangian model run on full 3D wind fields. The study showed that street-network models capture the dominant building-induced dispersion processes in the canopy layer through parametrisations of horizontal advection and vertical exchange processes at scales of practical interest. At the same time, computational costs and computing times associated with the network approach are ideally suited for emergency-response applications.