Dr Matteo Carpentieri


Lecturer in Environmental Fluid Mechanics
PhD, MEng
+44 (0)1483 686370
10A AB 02
ENG3165: Tuesdays 10 am - 11 am

Biography

Areas of specialism

Environmental fluids; Experimental fluid dynamics

My qualifications

2006
PhD in Environmental Fluid Dynamics
Università degli Studi di Firenze
2001
MEng in Environmental Engineering
Università degli Studi di Firenze

Research

Research projects

Research collaborations

My teaching

Supervision

Postgraduate research supervision

My publications

Publications

Carpentieri M, Robins AG (2010) Tracer Flux Balance at an Urban Canyon Intersection, Boundary-Layer Meteorology 135 (2) pp. 229-242
Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277-296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.
Carpentieri M, Corti A (2004) Use of wind tunnel measurements of tracer dispersion from a landfill for mathematical models validation, Proceedings Vol 1 pp. 33-37
Carpentieri M, Robins AG, Baldi S (2009) Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection, Boundary-Layer Meteorology 133 (2) pp. 277-296
In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.
Carpentieri M, Corti A, Lombardi L (2005) Life cycle assessment (LCA) of an integrated biomass gasification combined cycle IBGCQ with CO2 removal, Energy Conversion and Management 46 (11-12) pp. 1790-1808
Based on the results of previous studies, the efficiency of a Brayton/Hirn combined cycle fuelled with a clean syngas produced by means of biomass gasification and equipped with CO2 removal by chemical absorption reached 33.94%, considering also the separate CO,) compression process. The specific CO2, emission of the power plant was 178 kg/MW h. In comparison with values previously found for an integrated coal gasification combined cycle (ICGCC) with upstream CO2 chemical absorption (38-39% efficiency, 130kg/MWh specific CO2 emissions), this configuration seems to be attractive because of the possibility of operating with a simplified scheme and because of the possibility of using biomass in a more efficient way with respect to conventional systems. In this paper, a life cycle assessment (LCA) was conducted with presenting the results on the basis of the Eco-Indicator 95 impact assessment methodology. Further, a comparison with the results previously obtained for the LCA of the ICGCC was performed in order to highlight the environmental impact of biomass production with fossil fuels utilisation. The LCA shows the important environmental advantages of biomass utilisation in terms of reduction of both greenhouse gas emissions and natural resource depletion, although an improved impact assessment methodology may better highlight the advantages due to the biomass utilisation. (c) 2004 Elsevier Ltd. All rights reserved.
Carpentieri M, Hayden P, Robins A, Xie Z-T, Coceal O (2015) DIPLOS wind tunnel experiments,
Corti A, Carpentieri M, Perruccio A, Capocci M (2004) Combustione di frazioni di rifiuto trattate mediante processo di biodegradazione aerobica e selezione, RS Rifiuti Solidi XVIII (3) pp. 151-160
Corti A, Lombardi L, Carpentieri M, Buiatti E, Bartolacci S, Bianchi F, Linzalone N, Minichilli S, Mancuso S (2006) Valutazione di impatto sanitario del Piano di gestione rifiuti urbani della Provincia di Firenze, Ingegneria Ambientale, Quaderni XXXIV (41)
Carpentieri M, Hayden P, Robins AG (2012) Wind tunnel measurements of pollutant turbulent fluxes in urban intersections, Atmospheric Environment 46 pp. 669-674
Carpentieri M, Giambini P, Corti A (2007) Uncertainty and validation of urban scale modelling systems applied to scenario analysis in Tuscany, Italy, Proceedings Vol 1: Oral Presentations pp. 31-35
Lombardi L, Carnevale EA, Carpentieri M, Corti A (2007) Carbon dioxide capture from landfill gas,
Carpentieri M, Kumar P, Robins A (2011) Flow and concentration measurements in the wake of reduced scale models of cars for developing nanoparticle dispersion models, pp. 31-38
Carpentieri M, Corti A, Lombardi L (2009) Ambiente Italia 2009. Rifiuti made in Italy, In: Bianchi D, Ciafani S (eds.), Ambiente Italia 2009. Rifiuti made in Italy 13
Carpentieri M, Robins A (2009) Flow, dispersion and turbulent fluxes in a street intersection in central London: wind tunnel experiments,
Carpentieri M, Corti A, Zipoli L (2004) Wind tunnel experiments of tracer dispersion downwind from a small-scale physical model of a landfill, Environmental Modelling & Software 19 (10) pp. 881-885
Wind tunnel experiments have been carried out on a small-scale physical model of a municipal waste landfill (MWL) in the CRIACIV (Research Centre of Building Aerodynamics and Wind Engineering) "environmental" wind tunnel in Prato (Italy). The MWL model simulates a landfill whose surface is higher than the surrounding surface, applying a 1:200 scaling factor. Modelling an area source such as landfill is a difficult task for numerical models due to turbulence phenomena that modifies the flow near the source increasing ground level concentration (GLC). For the specific task, a new set-up of the wind tunnel has been developed, with respect to previous studies carried out on line and point sources physical models. The tracer used in the experiments was ethylene, suitable for non-buoyant plume conditions, typical for MWL emissions. A detailed result database has been obtained in terms of GLC and concentration profiles as well as flow turbulence and velocity field characterisation. (C) 2004 Elsevier Ltd. All rights reserved.
Corti A, Lombardi L, Pecorini I, Carpentieri M, Giambini P (2008) Accumulation chamber method and landfill gas diffuse emissions monitoring,
Giambini P, Carpentieri M, Corti A (2008) Intercomparison, sensitivity and uncertainty analysis between different urban dispersion models applied to an air quality action plan in Tuscany, Italy, Croatian Meteorological Journal - Hrvatski Meteoroloski Casopis 43 (part 2) pp. 538-542
Carpentieri M, Clark P (2012) Development of urban parameterisations for NWP models,
Carpentieri M, Kumar P, Robins A (2013) Modelling nanoparticle dispersion in vehicle wakes,
Corti A, Busillo C, Calastrini F, Carpentieri M, Giambini P, Gualtieri G (2006) Modelling emission scenarios in Tuscany: the MoDiVaSET project,
Carpentieri M, Kumar P, Robins A (2011) An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles, Environmental Pollution 159 (3) pp. 685-693
Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches.
Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified.
Carpentieri M, Robins A (2010) Wind tunnel and CFD modelling of flow and pollutant dispersion in urban areas, Proceedings pp. 91-96
Robins A, Carpentieri M, Alzate J, Salizzoni P (2010) The performance of street network urban dispersion model, Proceedings pp. 83-86
Carpentieri M, Salizzoni P, Robins A, Soulhac L (2009) Validation of a neighbourhood scale dispersion model through comparison with wind tunnel data,
Carpentieri M, Corti A, Mancuso S (2005) Evaluation of the mitigation effects of vegetaion on air quality in the Florence metropolitan area, Proceedings Vol: Impacts on Forest and Vegetation pp. 14-23
Hertwig D, Fuka V, Hayden P, Carpentieri M, Goulart E, Thomas G, Castro I, Robins A, Xie Z-T, Coceal O (2016) A comparison of fast dispersion models for localised releases in a streen network,
Baldi S, Carpentieri M, Robins A (2007) Mass flux balance at a urban intersection, Air Pollution Modeling and Its Application XVIII pp. 731-733 Elsevier
Carpentieri M, Robins A (2009) Neighbourhood scale flow and dispersion modelling,
Corti A, Carpentieri M, Giambini P, Lombardi L, Pecorini I (2007) Landfill gas emission monitoring: direct and indirect methodologies, In: Velinni AA (eds.), Landfill research trends 1 pp. 1-46 Nova Science Pub Inc
Carpentieri M, Robins A (2009) Measurement of turbulent fluxes and pollutant mass exchanges in urban areas,
Marucci D, Hancock P, Carpentieri M, Hayden P (2016) Wind-tunnel simulation of stable atmospheric boundary layers for fundamental studies in dispersion and wind power,
Carpentieri M, Kumar P (2011) Ground-fixed and on-board measurements of nanoparticles in the wake of a moving vehicle, Atmospheric Environment 45 (32) pp. 5837-5852
An integrated experimental methodology has been applied to measure number and size distributions of particles in the 5-560nm size range in the wake of a diesel car running at different speeds. Measurements were made at both ground-fixed (0.10 and 0.25m above the ground level) and on-board (in 12 different sampling locations behind the moving car) measurement configurations using a fast response differential mobility spectrometer (Cambustion DMS50) with a sampling frequency up to 10Hz. Results from both the experimental campaigns were analysed to understand the dynamics, dispersion and transport of nanoparticle emissions in the wake of a moving vehicle. Temporal changes in results were divided into three main stages (pre-evolution, evolution and post-evolution) after the release of exhaust emissions from the tailpipe. Evolution stage is of most interest where all the changes to particle number and size distribution occurred. Up to four evolution sub-stages were observed, each showing distinct evolution patterns of particle size distributions, depending on the particular experimental run. In agreement with previous studies, dilution was found to be the dominant process throughout all the evolution stages. The first evolution sub-stage was common to all the measurements, and consisted of an initial particle number concentrations and distributions change due to rapid (less than 1s) nucleation followed by a rapid increase of accumulation mode particle number concentrations. After this first sub-stage the presence of vehicle wake with recirculating particles and the possible influence of other transformation processes lead to complex interactions. Results from the two experimental datasets clearly confirm the presence of two separate groups of particles: (i) new particles, which are freshly emitted and come directly from the tailpipe and (ii) relatively aged particles, which are entrained within the recirculation vortices of the vehicle wake and reside there for a longer time. The two groups have different characteristics and interact with each other. This interaction has often been overlooked in past studies about local scale dispersion of nanoparticle from moving vehicles.
Carpentieri M, Giambini P, Corti A, Procino L (2005) Modelling tracer dispersion from landfills,
Carpentieri M, Corti A, Giambini P (2007) Wind tunnel experiments of flow and dispersion in idealised urban areas, Air Pollution Modeling and Its Application XVIII pp. 734-736 Elsevier
Robins A, Hayden P, Carpentieri M, Nathan P, Benson J (2015) MODITIC wind tunnel experiments,
Carpentieri M, Giambini P, Corti A (2008) Modelling tracer dispersion from landfills, Environmental Modeling and Assessment 13 (3) pp. 415-429
Several wind tunnel experiments of tracer dispersion from reduced-scale landfill models are presented in this paper. Different experimental set-ups, hot-wire anemometry, particle image velocimetry and tracer concentration measurements were used for the characterisation of flow and dispersion phenomena nearby the models. The main aim of these experiments is to build an extensive experimental data set useful for model validation purposes. To demonstrate the potentiality of the experimental data set, a validation exercise on several mathematical models was performed by means of a statistical technique. The experiments highlighted an increase in pollutant ground level concentrations immediately downwind from the landfill because of induced turbulence and mean flow deflection. This phenomenon turns out to be predominant for the dispersion process. Tests with a different set-up showed an important dependence of the dispersion phenomena from the landfill height and highlighted how complex orographic conditions downwind of the landfill do not affect significantly the dispersion behaviour. Validation exercises were useful for model calibration, improving code reliability, as well as evaluating performances. The Van Ulden model proved to give the most encouraging results.
Coceal O, Xie Z-T, Robins A, Bohnenstengel SI, Boppana B, Hayden P, Goulart E, Carpentieri M, Thomas TG, Castro IP, Belcher SE (2015) DIPLOS: Dispersion of Localised Releases in a Street Network,
Carpentieri M (2013) Pollutant dispersion in the urban environment, Reviews in Environmental Science and Biotechnology 12 (1) pp. 5-8
Flow and pollutant dispersion models are important elements for managing air quality in urban areas, to complement and, sometimes, even substitute monitoring. Developing fast and reliable parameterisations is necessary to improve the spatial and temporal resolutions of current mathematical prediction models. Recently there has been a growing interest in the so-called "neighbourhood scale" models, that offer relatively high spatial and temporal resolutions while keeping the needed computational resources at a minimum. This paper describes experimental and numerical simulations performed to explore the interaction of flow and pollutant dispersion with local building and street geometry. The methods developed may be useful as a way for cities to improve air quality management. © 2012 Springer Science+Business Media Dordrecht.
Carpentieri M, Hayden P, Robins A (2016) Wind tunnel experiments in the DIPLOS project,
Kumar P, Carpentieri M, Robins A, Ketzel M, Britter R (2011) Understanding dispersion of nanoparticles in vehicle wakes combining field measurements and wind tunnel simulations, HARMO 2011 - Proceedings of the 14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes pp. 559-563
This work presents selected results of an EPSRC-funded project investigating the dispersion of nanoparticles in the wake of moving vehicles. The aims were to study the changes in particle number distribution (PND) due to the competing effects of dilution and transformation processes (e.g. coagulation, nucleation, condensation) over the travel time from tailpipe to roadside, and to model the fate of these particles in the near and the far wake regions of a moving vehicle. To achieve these objectives, firstly ground-fixed and on-board measurements of PNDs were performed using a fast response (sampling frequency up to 10Hz) differential mobility spectrometer (Cambustion DMS50) in the wake of a diesel engined car moving at a range of speeds from 20 to 50 km h-1. Secondly, wind tunnel simulations were carried out on reduced scale (1:5 and 1:20) models of the car used for the field experiments. The flow and turbulence fields were characterised both in the near and far wake of the modelled vehicle by using a two component laser Doppler anemometer. Concentration measurements were obtained by using a fast response (frequency >350 Hz) flame ionisation detector and a hydrocarbon tracer gas released from the modelled tailpipe. A high resolution experimental data base was obtained from both the field and wind tunnel measurements for formulating the basis of fast mathematical parameterisations that can be used with operational nanoparticle dispersion models.
Carpentieri M, Robins A (2009) Modelling flow and pollutant dispersion in urban areas,
Carpentieri M, Lombardi L, Corti A, Cenni G, Burberi L, Carnevale EA (2008) Pilot plant for CO2 removal from landfill gas,
Carpentieri M, Corti A, Procino L, Zipoli L (2003) Simulazione in galleria del vento della dispersione di tracciante emesso da una discarica, RS Rifiuti Solidi XVII (6) pp. 371-376
Robins AG, Hayden P, Carpentieri M (2015) DIPLOS 1, University of Surrey
Carpentieri M, Robins A (2009) Neighbourhood scale models for flow and dispersion in urban areas,
Robins A, Carpentieri M, Hayden P, Nathan P, Benson A (2016) MODITIC wind tunnel experiments,
Corti A, Lombardi L, Carpentieri M (2002) Impiego di biomassa in ciclo energetico ad alto rendimento: studio impiantistico e bilancio ambientale mediante metodologia LCA,
Cassani S, Pescheta G, Corti A, Carpentieri M, Frassinetti L (2001) Campagna sperimentale per lutilizzo di materiale secco selezionato presso limpianto di termovalorizzazione gestito dal CIS Montale (PT),
Robins A, Carpentieri M, Hayden P, Batten J, Benson J, Nunn A (2016) MODITIC wind tunnel experiments,
Hertwig D, Coceal O, Fuka V, Xie ZT, Thomas TG, Castro I, Carpentieri M, Hayden P, Robins A (2016) Modeling dispersion in a street network for emergency response scenarios: the DIPLOS project,
Le Sage T, Carpentieri M (2013) Securing the infrastructure from the threat of terrorism,
Busillo C, Calastrini F, Carpentieri M, Corti A, Gualtieri G, Canepa E (2004) Meteorological input for atmospheric dispersion models: an inter-comparison between new-generation models, Proceedings Vol 1 pp. 23-27
Carpentieri M, Canepa E, Corti A, Georgieva E (2010) About the behaviour of the SAFE_AIR II atmospheric dispersion numerical model during low wind conditions, EurASAP Newsletter (71) pp. 3-31
Carpentieri M, Robins AG (2015) Influence of urban morphology on air flow over building arrays, Journal of Wind Engineering and Industrial Aerodynamics 145 pp. 61-74
In the present paper we have analysed experimentally (wind tunnel) and numerically (CFD) the impact of some morphological parameters on the flow within and above the urban canopy. In particular, this study is a first attempt in systematically studying the flow in and above urban canopies using simplified, yet more realistic than a simple array of cuboids, building arrays. Current mathematical models would provide the same results for the six case studies presented here (two models by three wind directions), however the measured spatially averaged profiles are quite different from each other.

Results presented here highlight that the differences in the spatially averaged vertical profiles are actually significant in all six experimental/numerical cases. Besides the building height variability, other morphological features proved to be a significant factor in shaping flow and dispersion at the local to neighbourhood scale in the urban canopy and directly above: building aspect ratio (or, conversely, the street canyon aspect ratio), the angle between the street canyons and the incoming wind and local geometrical features such as, for example, the presence of much taller buildings immediately upwind of the studied area.

Carpentieri M, Robins A (2010) Managing air quality in modern cities, Projects (16) pp. 68-70
Corti A, Carpentieri M, D'Amato F (2008) Integration between measurements and dispersion models for landfill gas emission monitoring, Geoingegneria Ambientale e Mineraria 125 (3) pp. 31-41
The work presented here is aimed at developing an indirect methodology for landfill gas emission monitoring by using an integrated approach between measurements and modelling. The proposed methodology is based on an optical measurement system, capable of quantifying concentrations of a tracer gas emitted by a waste landfill, along with a modelling system for tracer gas dispersion in the atmosphere. In the present study, this methodology has been applied, as a preliminary test, at the Case Passerini landfill site, in the Sesto Fiorentino (FI) territory. The test case allowed the evaluation of the proposed methodology, highlighting the positive aspects and the critical factors. The obtained results showed the potentiality of this approach, which can be used in order to integrate, and sometimes even to substitute, more expensive field direct measurement campaigns.
Carpentieri M, Robins A (2009) Wind tunnel experiments of flow and dispersion in a real urban area,
Nasir ZA, Carpentieri M, Campos L, Ciric L, Canales M (2013) Efficacy of UVGI based portable air disinfection devices in built environments: Impact of environmental conditions,
Fuka V, Xie Z-T, Castro I, Hayden P, Carpentieri M, Robins A (2016) LES of scalar dispersion from localized sources in a regular array of buildings,
Smethurst A, Hayden P, Robins A, Carpentieri M (2013) Urban dispersion and the streen network concept,
Carpentieri M, Corti A, Procino L (2004) Studio della dispersione di traccianti gassosi emessi da modelli in scala ridotta di discariche,
Carpentieri M, Kumar P, Robins A (2012) Wind tunnel measurements for dispersion modelling of vehicle wakes, Atmospheric Environment 62 pp. 9-25 Elsevier
Wind tunnel measurements downwind of reduced scale car models have been made to study the wake regions in detail, test the usefulness of existing vehicle wake models, and draw key information needed for dispersion modelling in vehicle wakes. The experiments simulated a car moving in still air. This is achieved by (i) the experimental characterisation of the flow, turbulence and concentration fields in both the near and far wake regions, (ii) the preliminary assessment of existing wake models using the experimental database, and (iii) the comparison of previous field measurements in the wake of a real diesel car with the wind tunnel measurements. The experiments highlighted very large gradients of velocities and concentrations existing, in particular, in the near-wake. Of course, the measured fields are strongly dependent on the geometry of the modelled vehicle and a generalisation for other vehicles may prove to be difficult. The methodology applied in the present study, although improvable, could constitute a first step towards the development of mathematical parameterisations. Experimental results were also compared with the estimates from two wake models. It was found that they can adequately describe the far-wake of a vehicle in terms of velocities, but a better characterisation in terms of turbulence and pollutant dispersion is needed. Parameterised models able to predict velocity and concentrations with fine enough details at the near-wake scale do not exist.
Barlow J, Best M, Bohnenstengel S, Clark P, Grimmond S, Lean H, Christen A, Emeis S, Haeffelin M, Harman I, Lemonsu A, Martilli A, Pardyjak E, Rotach M, Ballard S, Boutle I, Brown A, Cai X, Carpentieri M, Coceal O, Crawford B, Di Sabatino S, Dou J, Drew D, Edwards J, Fallmann J, Fortuniak K, Gornall J, Gronemeier T, Halios C, Hertwig D, Hirano K, Holtslag A, Luo Z, Mills G, Nakayoshi M, Pain K, Schlünzen K, Smith S, Soulhac L, Steeneveld G, Sun T, Theeuwes N, Thomson D, Voogt J, Ward H, Xie Z, Zhong J (2017) Developing a research strategy to better understand, observe and simulate urban atmospheric processes at kilometre to sub-kilometre scales, Bulletin of the American Meteorological Society 98 (10) pp. ES261-ES264 American Meteorological Society
Carpentieri M, Salizzoni P, Robins AG, Soulhac L (2012) Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind tunnel data, Environmental Modelling and Software 37 pp. 110-124 Elsevier
This study compared dispersion calculations using a street network model (SIRANE) with results from wind tunnel experiments in order to examine model performance in simulating short-range pollutant dispersion in urban areas. The comparison was performed using a range of methodologies, from simple graphical comparisons (e.g. scatter plots) to more advanced statistical analyses. A preliminary analysis focussed on the sensitivity of the model to source position, receptor location, wind direction, plume spread parameterisation and site aerodynamic parameters. Sensitivity to wind direction was shown to be by far the most significant. A more systematic approach was then adopted, analysing the behaviour of the model in response to three elements: wind direction, source position and small changes in geometry. These are three very critical aspects of fine scale urban dispersion modelling. The overall model performance, measured using the Chang and Hanna (2004) criteria can be considered as ?good?. Detailed analysis of the results showed that ground level sources were better represented by the model than roof level sources. Performance was generally ?good? for wind directions that were very approximately diagonal to the street axes, while cases with wind directions almost parallel (within 20°) to street axes gave results with larger uncertainties (failing to meet the quality targets). The methodology used in this evaluation exercise, relying on systematic wind tunnel studies on a scaled model of a real neighbourhood, proved very useful for assessing strengths and weaknesses of the SIRANE model, complementing previous validation studies performed with either on-site measurements or wind tunnel measurements over idealised urban geometries.
Castro I, Xie Z, Fuka V, Robins A, Carpentieri M, Hayden P, Hertwig D, Coceal O (2017) Measurements and computations of ?ow in an urban street system, Boundary-Layer Meteorology: an international journal of physical and biological processes in the atmospheric boundary layer 162 (2) pp. 207-230 Springer-Verlag
We present results from laboratory and computational experiments on the turbulent flow over an array of rectangular blocks modelling a typical, asymmetric urban canopy at various orientations to the approach flow. The work forms part of a larger study on dispersion within such arrays (project DIPLOS) and concentrates on the nature of the mean flow and turbulence fields within the canopy region, recognis- ing that unless the flow field is adequately represented in computational models there is no reason to expect realistic simulations of the nature of the dispersion of pollutants emitted within the canopy. Comparisons between the experimental data and those ob- tained from both large-eddy simulation (LES) and direct numerical simulation (DNS) are shown and it is concluded that careful use of LES can produce generally excellent agreement with laboratory and DNS results, lending further confidence in the use of LES for such situations. Various crucial issues are discussed and advice offered to both experimentalists and those seeking to compute canopy flows with turbulence resolving models
Fuka V, Xie Z-T, Castro P, Hayden Paul, Carpentieri Matteo, Robins Alan (2018) Scalar fluxes near a tall building in an aligned array of rectangular buildings, Boundary Layer Meteorology 167 (1) pp. 53-76 Springer Verlag
Scalar dispersion from ground-level sources in arrays of buildings is investigated using wind-tunnel measurements and large-eddy simulation (LES). An array of uniform-height buildings of equal dimensions and an array with an additional single tall building (wind tunnel) or a periodically repeated tall building (LES) are considered. The buildings in the array are aligned and form long streets. The sensitivity of the dispersion pattern to small changes in wind direction is demonstrated. Vertical scalar fluxes are decomposed into the advective and turbulent parts and the influences of wind direction and of the presence of the tall building on the scalar flux components are evaluated. In the uniform-height array turbulent scalar fluxes were dominant, whereas the tall building causes an increase of the magnitude of advective scalar fluxes which become the largest component. The presence of the tall building causes either an increase or a decrease to the total vertical scalar flux depending on the position of the source with respect to the tall building. The results of the simulations can be used to develop parametrizations for street canyon dispersion models and enhance their capabilities in areas with tall buildings.
Carpentieri Matteo, Robins Alan, Hayden Paul, Santi Edoardo (2018) Mean and turbulent mass flux measurements in an idealised street network, Environmental Pollution 234 pp. 356-367 Elsevier
Pollutant mass fluxes are rarely measured in the laboratory, especially their turbulent
component. They play a major role in the dispersion of gases in urban
areas and modern mathematical models often attempt some sort of parametrisation.
An experimental technique to measure mean and turbulent fluxes in an
idealised urban array was developed and applied to improve our understanding
of how the fluxes are distributed in a dense street canyon network. As expected,
horizontal advective scalar fluxes were found to be dominant compared with the
turbulent components. This is an important result because it reduces the complexity
in developing parametrisations for street network models. On the other
hand, vertical mean and turbulent fluxes appear to be approximately of the
same order of magnitude. Building height variability does not appear to affect
the exchange process significantly, while the presence of isolated taller buildings
upwind of the area of interest does. One of the most interesting results, again,
is the fact that even very simple and regular geometries lead to complex advective
patterns at intersections: parametrisations derived from measurements
in simpler geometries are unlikely to capture the full complexity of a real urban
area.
Hertwig D, Soulhac L, Fuka V, Auerswald T, Carpentieri Matteo, Hayden Paul, Robins Alan, Xie Z-T, Coceal O (2018) Evaluation of fast atmospheric dispersion models in a regular
street network,
Environmental Fluid Mechanics 18 (4) pp. 1007-1044 Springer Verlag
The need to balance computational speed and simulation accuracy is a key challenge in designing atmospheric dispersion models that can be used in scenarios where near
real-time hazard predictions are needed. This challenge is aggravated in cities, where models need to have some degree of building-awareness, alongside the ability to capture effects
of dominant urban flow processes. We use a combination of high-resolution large-eddy simulation (LES) and wind-tunnel data of flow and dispersion in an idealised, equal-height
urban canopy to highlight important dispersion processes and evaluate how these are reproduced by representatives of the most prevalent modelling approaches: (i) a Gaussian plume model, (ii) a Lagrangian stochastic model and (iii) street-network dispersion models. Concentration data from the LES, validated against the wind-tunnel data, were averaged over
the volumes of streets in order to provide a high-fidelity reference suitable for evaluating
the different models on the same footing. For the particular combination of forcing wind direction and source location studied here, the strongest deviations from the LES reference
were associated with mean over-predictions of concentrations by approximately a factor of
2 and with a relative scatter larger than a factor of 4 of the mean, corresponding to cases
where the mean plume centreline also deviated significantly from the LES. This was linked
to low accuracy of the underlying flow models/parameters that resulted in a misrepresentation of pollutant channelling along streets and of the uneven plume branching observed in
intersections. The agreement of model predictions with the LES (which explicitly resolves
the turbulent flow and dispersion processes) greatly improved by increasing the accuracy
of building-induced modifications of the driving flow field. When provided with a limited
set of representative velocity parameters, the comparatively simple street-network models
performed equally well or better compared to the Lagrangian model run on full 3D wind
fields. The study showed that street-network models capture the dominant building-induced
dispersion processes in the canopy layer through parametrisations of horizontal advection
and vertical exchange processes at scales of practical interest. At the same time, computational costs and computing times associated with the network approach are ideally suited
for emergency-response applications.
Song J, Fan S, Lin William, Mottet L, Wooward H, Davies Wykes M, Arcucci R, Xiao D, Debay J, ApSimon H, Aristodemou E, Birch David, Carpentieri Matteo, Fan F, Herzog M, Hunt G, Jones R, Pain C, Pavlidis D, Robins Alan, Short C, Linden P (2018) Natural ventilation in cities: the implications of fluid mechanics, Building Research & Information 46 (8) pp. 809-828 Taylor & Francis
Research under the Managing Air for Green Inner Cities (MAGIC) project uses measurements and modelling to investigate the connections between external and internal conditions: the impact of urban airflow on the natural ventilation of a building. The test site was chosen so that under different environmental conditions the levels of external pollutants entering the building, from either a polluted road or a relatively clean courtyard, would be significantly different. Measurements included temperature, relative humidity, local wind and solar radiation, together with levels of carbon monoxide (CO) and carbon dioxide (CO2) both inside and outside the building to assess the indoor?outdoor exchange flows. Building ventilation took place through windows on two sides, allowing for single-sided and crosswind-driven ventilation, and also stack-driven ventilation in low wind conditions. The external flow around the test site was modelled in an urban boundary layer in a wind tunnel. The wind tunnel results were incorporated in a large-eddy-simulation model, Fluidity, and the results compared with monitoring data taken both within the building and from the surrounding area. In particular, the effects of street layout and associated street canyons, of roof geometry and the wakes of nearby tall buildings were examined.
Marucci D, Carpentieri M, Hayden P (2018) On the simulation of thick non-neutral boundary layers
for urban studies in a wind tunnel,
International Journal of Heat and Fluid Flow 72 pp. 37-51 Elsevier
Stable and convective boundary layers over a very rough surface have been studied
in a thermally-stratified wind tunnel. Artificial thickening by means of spires
was used to accelerate the formation of a sufficiently deep boundary layer, suitable
for urban-like boundary layer flow and dispersion studies. For the stable
boundary layer, the methodology presented in Hancock and Hayden (2018) for
low-roughness offshore surface conditions has been successfully applied to cases
with higher-roughness. Different levels of stratification and roughness produced
modifications in the turbulence profiles of the lower half of the boundary layer,
but little or no change in the region above. Data for a stronger stability case
suggested that the employed spires may not be suitable to simulate such extreme
condition, though further studies are needed. The results were in reasonably
good agreement with field measurements. For the convective boundary layer,
great attention was given to the flow uniformity inside the test section. The
selection of a non-uniform inlet temperature profile was in this case found not
as determinant as for the stable boundary layer to improve the longitudinal
uniformity, while the application of a calibrated capping inversion considerably
improved the lateral uniformity. The non-dimensional vertical profiles of turbulent
quantities and heat fluxes, did not seem to be influenced by roughness.