Placeholder image for staff profiles

Dr Yulia Gryaditskaya

Senior Research Fellow in Computer Vision and Machine Learning

My publications


Ayan Kumar Bhunia, Ayan Das, Umar Riaz Muhammad, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, Yulia Gryaditskaya, Yi-Zhe Song (2020)Pixelor: A Competitive Sketching AI Agent. So you think you can sketch?, In: ACM Transactions on Graphics39(6) Association for Computing Machinery (ACM)

We present the first competitive drawing agent Pixelor that exhibits human-level performance at a Pictionary-like sketching game, where the participant whose sketch is recognized first is a winner. Our AI agent can autonomously sketch a given visual concept, and achieve a recognizable rendition as quickly or faster than a human competitor. The key to victory for the agent’s goal is to learn the optimal stroke sequencing strategies that generate the most recognizable and distinguishable strokes first. Training Pixelor is done in two steps. First, we infer the stroke order that maximizes early recognizability of human training sketches. Second, this order is used to supervise the training of a sequence-to-sequence stroke generator. Our key technical contributions are a tractable search of the exponential space of orderings using neural sorting; and an improved Seq2Seq Wasserstein (S2S-WAE) generator that uses an optimal-transport loss to accommodate the multi-modal nature of the optimal stroke distribution. Our analysis shows that Pixelor is better than the human players of the Quick, Draw! game, under both AI and human judging of early recognition. To analyze the impact of human competitors’ strategies, we conducted a further human study with participants being given unlimited thinking time and training in early recognizability by feedback from an AI judge. The study shows that humans do gradually improve their strategies with training, but overall Pixelor still matches human performance. The code and the dataset are available at

Deep image-based modeling received lots of attention in recent years, yet the parallel problem of sketch-based modeling has only been briefly studied, often as a potential application. In this work, for the first time, we identify the main differences between sketch and image inputs: (i) style variance, (ii) imprecise perspective, and (iii) sparsity. We discuss why each of these differences can pose a challenge, and even make a certain class of image-based methods inapplicable. We study alternative solutions to address each of the difference. By doing so, we drive out a few important insights: (i) sparsity commonly results in an incorrect prediction of foreground versus background, (ii) diversity of human styles, if not taken into account, can lead to very poor generalization properties, and finally (iii) unless a dedicated sketching interface is used, one can not expect sketches to match a perspective of a fixed viewpoint. Finally, we compare a set of representative deep single-image modeling solutions and show how their performance can be improved to tackle sketch input by taking into consideration the identified critical differences.

Yue Zhong, Yonggang Qi, Yulia Gryaditskaya, Honggang Zhang, Yi-Zhe Song (2020)Towards Practical Sketch-based 3D Shape Generation: The Role of Professional Sketches, In: IEEE Transactions on Circuits and Systems for Video Technologypp. 1-1 IEEE

In this paper, for the first time, we investigate the problem of generating 3D shapes from professional 2D sketches via deep learning. We target sketches done by professional artists, as these sketches are likely to contain more details than the ones produced by novices, and thus the reconstruction from such sketches poses a higher demand on the level of detail in the reconstructed models. This is importantly different to previous work, where the training and testing was conducted on either synthetic sketches or sketches done by novices. Novices sketches often depict shapes that are physically unrealistic, while models trained with synthetic sketches could not cope with the level of abstraction and style found in real sketches. To address this problem, we collected the first large-scale dataset of professional sketches, where each sketch is paired with a reference 3D shape, with a total of 1,500 professional sketches collected across 500 3D shapes. The dataset is available at We introduce two bespoke designs within a deep adversarial network to tackle the imprecision of human sketches and the unique figure/ground ambiguity problem inherent to sketch-based reconstruction. We show that existing 3D shapes generation methods designed for images fail to be naively applied to our problem, and demonstrate the effectiveness of our method both qualitatively and quantitatively.